1
|
Udoetok IA, Mohamed MH, Wilson LD. Hybrid Chitosan Biosorbents: Tunable Adsorption at Surface and Micropore Domains. Biomimetics (Basel) 2024; 9:725. [PMID: 39727729 DOI: 10.3390/biomimetics9120725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Herein, we report a study that provides new insight on the knowledge gaps that relate to the role of biopolymer structure and adsorption properties for chitosan adsorbents that are cross-linked with glutaraldehyde. The systematic modification of chitosan cross-linked with glutaraldehyde (CG) and its quaternized forms (QCG) was studied in relation to the reaction conditions: mole ratios of reactants and pH conditions. Complementary adsorbent characterization employed 13C NMR/FTIR spectroscopy, TGA and DSC, point-zero-charge (PZC), solvent swelling, and sorption studies using selected dye probes. The spectral and thermal techniques provide complementary evidence that affirm the key role of cross-linker content and quaternization on variation of the physicochemical properties of chitosan. The PZC results reveal a neutral surface charge for the modified materials between pH 6.0 to 6.3 ± 0.3, as compared with pH 8.7 ± 0.4 for pristine chitosan. Solvent swelling in water decreased with greater cross-linking, while the QCG materials had greater swelling over CG materials due to enhanced hydration. The adsorption results reveal variable dye uptake properties according to the cross-linker content. Similarly, surface versus micropore adsorption was demonstrated, according to the nature and ionization state of the dye for the modified adsorbents, where the CG and QCG materials had tunable sorption properties that exceeded that of unmodified chitosan. A key step in tuning the structure and surface chemical properties of cross-linked chitosan involves pH control during synthesis. The facile tunability of the physicochemical properties of the modified biopolymers reported herein means that they possess features of biomimetics that are relevant to advanced drug delivery, antimicrobial materials for wound healing, biosensors, and biosorbents for biomedical applications.
Collapse
Affiliation(s)
- Inimfon A Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Mohamed H Mohamed
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Ahmetli G, Soydal U, Kocaman S, Özmeral N, Musayev N. New biobased chitosan-modified peach kernel shell composites and examining their behavior in different environmental conditions. Int J Biol Macromol 2024; 280:135832. [PMID: 39307502 DOI: 10.1016/j.ijbiomac.2024.135832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Bisphenol A-type epoxy (ER) is a versatile synthetic polymer preferred for composite materials but non-biodegradability raises challenges for composites recycling in particular. The present study first investigated the potential usability of peach kernel shells (PKSh) waste as fillers in ER to decrease the cost of composite materials and increase their bio-based content. Different chemical modifications were performed to increase the poor compatibility between the hydrophilic lignocellulosic filler and the hydrophobic polymer matrix. The modified PKShs were obtained by alkali treatment (NaOH-PKSh), coating with biopolymer chitosan (CTS-PKSh), and cross-linking of CTS with glutaraldehyde (GA@CTS-PKSh). The aging of composites is a highly topical subject given the increasing use of composites in structural applications in many industries. The composites' thermal stability and dynamic-mechanical properties in different aging environments (water, seawater, and hydrothermal) were examined. The order of the aging conditions in terms of their effects on the composite properties was: hydrothermal > water > seawater. The ER/GA@CTS-PKSh composite was the most resistant to all environmental conditions. The tensile strength of epoxy matrix (ER) increased max. by 7.78 %, 21.11 %, 42.22 %, and 45.46 % in the case of raw, NaOH-PKSh, CTS-PKSh, and GA@CTS-PKSh fillers, respectively. Composites showed higher absorption in both UV and visible regions.
Collapse
Affiliation(s)
- Gulnare Ahmetli
- Dept. of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Campus, Konya, Turkey.
| | - Ulku Soydal
- Dept. of Biotechnology, Faculty of Science, Selcuk University, Campus, Konya, Turkey; Karapınar Aydoğanlar Vocational School, Selcuk University, Konya, Turkey
| | - Suheyla Kocaman
- Dept. of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Campus, Konya, Turkey
| | - Nimet Özmeral
- Dept. of Chemical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Campus, Konya, Turkey
| | - Nijat Musayev
- Konya Technical University Graduate Education Institute, Chemical Engineering Master Program, Konya, Turkey
| |
Collapse
|
3
|
Shishparenok AN, Petryaev ER, Koroleva SA, Dobryakova NV, Zlotnikov ID, Komedchikova EN, Kolesnikova OA, Kudryashova EV, Zhdanov DD. Bacterial Cellulose-Chitosan Composite for Prolonged-Action L-Asparaginase in Treatment of Melanoma Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1727-1743. [PMID: 39523112 DOI: 10.1134/s0006297924100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 11/16/2024]
Abstract
A significant challenge associated with the therapeutic use of L-ASP for treatment of tumors is its rapid clearance from plasma. Effectiveness of L-ASP is limited by the dose-dependent toxicity. Therefore, new approaches are being developed for L-ASP to improve its therapeutic properties. One of the approaches to improve properties of the enzymes, including L-ASP, is immobilization on various types of biocompatible polymers. Immobilization of enzymes on a carrier could improve stability of the enzyme and change duration of its enzymatic activity. Bacterial cellulose (BC) is a promising carrier for various drugs due to its biocompatibility, non-toxicity, high porosity, and high drug loading capacity. Therefore, this material has high potential for application in biomedicine. Native BC is known to have a number of disadvantages related to structural stability, which has led to consideration of the modified BC as a potential carrier for immobilization of various proteins, including L-ASP. In our study, a BC-chitosan composite in which chitosan is cross-linked with glutaraldehyde was proposed for immobilization of L-ASP. Physicochemical characteristics of the BC-chitosan films were found to be superior to those of native BC films, resulting in increase in the release time of L-ASP in vitro from 8 to 24 h. These films exhibited prolonged toxicity (up to 10 h) against the melanoma cell line. The suggested strategy for A-ASP immobilization on the BC-chitosan films could be potentially used for developing therapeutics for treatment of surface types of cancers including melanomas.
Collapse
Affiliation(s)
| | | | - Svetlana A Koroleva
- Patrice Lumumba Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | | | - Igor D Zlotnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elena N Komedchikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga A Kolesnikova
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Elena V Kudryashova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | |
Collapse
|
4
|
Cicek Ozkan B, Guner M. Adjustable dielectric and bioactivity characteristics of chitosan-based composites via crosslinking approach and incorporation of graphene. Int J Biol Macromol 2024; 270:132125. [PMID: 38750849 DOI: 10.1016/j.ijbiomac.2024.132125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/20/2024]
Abstract
This study explores the structural, electrical, dielectric, and bioactivity properties of chitosan (CS) composites incorporating graphene (G) nanoparticles. Characterization techniques, including Field Emission Scanning Electron Microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), dielectric spectroscopy, and in vitro testing in SBF, were employed to investigate the effects of G content and crosslinking. The XPS peak at 289.89 eV for CS-G10 indicates CC and CH bonds, suggesting significant interactions between chitosan's hydroxyl groups and graphene's carbon atoms, ensuring structural homogeneity. Dielectric constant (ε') gradually increased with G loading (0 %, 1 %, 5 %, and 10 %) for uncrosslinked composites, reaching 17.94, 18.92, 28.28, and 41.1, respectively. Crosslinked composites exhibited reduced ε' values (15.71, 15.42, 14.14, and 27.03) compared to non-crosslinked ones, with marginal increases post-percolation threshold (5 wt% G filling). XRD analysis revealed shifts in characteristic peaks of CS after SBF treatment, with new peaks at 28.9° and 48.5° indicating hydroxyapatite presence, confirming composite bioactivity. CS-G10/GA showed the highest bioactivity, suggesting promise for biomedical applications.
Collapse
Affiliation(s)
- Betul Cicek Ozkan
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey.
| | - Melek Guner
- Department of Metallurgical and Materials Engineering, Technology Faculty, Fırat University, 23119 Elazığ, Turkey; Central Laboratory, Application, and Research Center, Batman University, 72070 Batman, Turkey
| |
Collapse
|
5
|
Udoetok IA, Karoyo AH, Mohamed MH, Wilson LD. Chitosan Biocomposites with Variable Cross-Linking and Copper-Doping for Enhanced Phosphate Removal. Molecules 2024; 29:445. [PMID: 38257359 PMCID: PMC10820908 DOI: 10.3390/molecules29020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The fabrication of chitosan (CH) biocomposite beads with variable copper (Cu2+) ion doping was achieved with a glutaraldehyde cross-linker (CL) through three distinct methods: (1) formation of CH beads was followed by imbibition of Cu(II) ions (CH-b-Cu) without CL; (2) cross-linking of the CH beads, followed by imbibition of Cu(II) ions (CH-b-CL-Cu); and (3) cross-linking of pristine CH, followed by bead formation with Cu(II) imbibing onto the beads (CH-CL-b-Cu). The biocomposites (CH-b-Cu, CH-b-CL-Cu, and CH-CL-b-Cu) were characterized via spectroscopy (FTIR, 13C solid NMR, XPS), SEM, TGA, equilibrium solvent swelling methods, and phosphate adsorption isotherms. The results reveal variable cross-linking and Cu(II) doping of the CH beads, in accordance with the step-wise design strategy. CH-CL-b-Cu exhibited the greatest pillaring of chitosan fibrils with greater cross-linking, along with low Cu(II) loading, reduced solvent swelling, and attenuated uptake of phosphate dianions. Equilibrium and kinetic uptake results at pH 8.5 and 295 K reveal that the non-CL Cu-imbibed beads (CH-b-Cu) display the highest affinity for phosphate (Qm = 133 ± 45 mg/g), in agreement with the highest loading of Cu(II) and enhanced water swelling. Regeneration studies demonstrated the sustainability and cost-effectiveness of Cu-imbibed chitosan beads for controlled phosphate removal, whilst maintaining over 80% regenerability across several adsorption-desorption cycles. This study offers a facile synthetic approach for controlled Cu2+ ion doping onto chitosan-based beads, enabling tailored phosphate oxyanion uptake from aqueous media by employing a sustainable polysaccharide biocomposite adsorbent for water remediation by mitigation of eutrophication.
Collapse
Affiliation(s)
| | | | | | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada (A.H.K.)
| |
Collapse
|
6
|
Arismendi D, Vera I, Ahumada I, Richter P. A thin biofilm of chitosan as a sorptive phase in the rotating disk sorptive extraction of triclosan and methyl triclosan from water samples. Anal Chim Acta 2023; 1252:341053. [PMID: 36935141 DOI: 10.1016/j.aca.2023.341053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
The features and nature of the sorptive phase may be the stage that determines the scope of microextraction techniques. In search of new alternatives, materials of natural origin have recently been explored to establish greener analytical strategies. Based on that search, this research proposes the use of chitosan as a sorptive phase, which was assessed in the rotating disk sorptive extraction of emerging contaminants from aqueous systems. Chitosan is a biopolymer of animal origin that is usually found in the shells of crustaceans. The main characteristic of this material is the presence of a high number of nitrogenous groups, which gives it high reactivity, but its main disadvantage is associated with its high swelling capacity. In this research, chitosan was crosslinked with a low concentration of glutaraldehyde to form thin films that were easily immobilized on the surface of the rotating disk. The main advantage of this modification is the considerable decrease in the swelling capacity, which prevents loss and rupture of the sorbent during high rotation of the disk. In addition, it not only improved the physical characteristics of chitosan but also increased its extraction capacity. With regard to its use as a sorptive phase, all the variables associated with the microextraction of the analytes were studied, and optimal variables were found to be: pH 4, 20% NaCl (salting out effect), 30-45 min as equilibrium time and elution of analytes with a mixture of methanol:ethyl acetate (1:1). Validation of the methodology for the determination of methyl triclosan and triclosan was carried out, and relative recoveries between 89 and 96% and relative standard deviations less than 14% were found. The detection limits were 0.11 and 0.20 μg L-1, respectively. Through its application in real samples (natural and residual waters), triclosan was quantified between 0.7 and 1.3 μg L-1. Finally, the "green" properties of the phase were evaluated, demonstrating that it is reusable for at least three cycles and biodegradable. Compared to its efficiency with a commercial phase (in this case, the styrene divinyl benzene phase), the proposed biosorbent provided a similar and even higher sorptive capacity (depending on the analyte).
Collapse
Affiliation(s)
- Daniel Arismendi
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| | - Iván Vera
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Inés Ahumada
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile
| | - Pablo Richter
- Department of Inorganic and Analytical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, P.O. Box 233, Santiago, Chile.
| |
Collapse
|
7
|
Study of stability, kinetic parameters and release of lysozyme immobilized on chitosan microspheres by crosslinking and covalent attachment for cotton fabric functionalization. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
8
|
Headley JV, Peru KM, Vander Meulen I. Advances in mass spectrometry for molecular characterization of oil sands naphthenic acids and process chemicals in wetlands. CAN J CHEM 2021. [DOI: 10.1139/cjc-2020-0478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Advances in mass spectrometry in the authors’ and key collaborators’ research are reviewed for analysis of oil sands naphthenic acids fraction compounds (NAFCs) and industrial process chemicals, sulfolane and alkanolamines, in wetlands. Focus is given to developments of analyses of NAFCs in constructed wetland treatment systems and natural wetlands in the Athabasca oil sands region, Alberta, Canada. The analytical developments are applied to show the utility of wetlands to sequester and oxidize oil sands naphthenic acids. The advancements in molecular characterization led to the first application of high-resolution mass spectrometry (Fourier transform ion-cyclotron resonance and Orbitrap mass spectrometry) for elucidation of toxic mono- and di-carboxylic NAFCs in oil sands environmental samples. Key findings reveal that oil sands NAFCs are not limited to saturated structures but contain a diverse range of components, many of which contain S, N, heteroatomic species and aromatic species. Other developments of mass spectrometry methods for industrial process chemicals show for the first time that the completely water-miscible chemical, sulfolane, translocate to upper portions of cattails at natural wetland sites in the Canadian environment. Likewise, wetland-plant mediated changes of complex mixtures of alkanolamines were revealed based on the coupling of ion chromatography mass spectrometry and ultrahigh resolution mass spectrometry. The advances in mass spectrometry are of particular benefit to Canada, for development of soil and water quality guidelines for oil sands NAFCs and process chemicals. In turn, the water quality guidelines serve to protect Canadian aquatic environments.
Collapse
Affiliation(s)
- John V. Headley
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - Kerry M. Peru
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| | - Ian Vander Meulen
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate Science and Technology Branch, Environment and Climate Change Canada, 11 Innovation Blvd., Saskatoon, SK S7N 3H5, Canada
| |
Collapse
|
9
|
Magli S, Rossi L, Consentino C, Bertini S, Nicotra F, Russo L. Combined Analytical Approaches to Standardize and Characterize Biomaterials Formulations: Application to Chitosan-Gelatin Cross-Linked Hydrogels. Biomolecules 2021; 11:biom11050683. [PMID: 34062918 PMCID: PMC8147276 DOI: 10.3390/biom11050683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
A protocol based on the combination of different analytical methodologies is proposed to standardize the experimental conditions for reproducible formulations of hybrid hydrogels. The final hybrid material, based on the combination of gelatin and chitosan functionalized with methylfuran and cross-linked with 4-arm-PEG-maleimide, is able to mimic role, dynamism, and structural complexity of the extracellular matrix. Physical-chemical properties of starting polymers and finals constructs were characterized exploiting the combination of HP-SEC-TDA, UV, FT-IR, NMR, and TGA.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Lorenzo Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Cesare Consentino
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, 20126 Milan, Italy; (C.C.); (S.B.)
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy; (S.M.); (L.R.); (F.N.)
- BioNanoMedicine Center, University of Milano-Bicocca, 20126 Milan, Italy
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
- Correspondence: ; Tel.: +39-0264483462
| |
Collapse
|
10
|
Binary Pectin-Chitosan Composites for the Uptake of Lanthanum and Yttrium Species in Aqueous Media. MICROMACHINES 2021; 12:mi12050478. [PMID: 33922115 PMCID: PMC8143457 DOI: 10.3390/mi12050478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022]
Abstract
Rare-earth elements such as lanthanum and yttrium have wide utility in high-tech applications such as permanent magnets and batteries. The use of biopolymers and their composites as adsorbents for La (III) and Y (III) ions were investigated as a means to increase the uptake capacity. Previous work has revealed that composite materials with covalent frameworks that contain biopolymers such as pectin and chitosan have secondary adsorption sites for enhanced adsorption. Herein, the maximum adsorption capacity of a 5:1 Pectin-Chitosan composite with La (III) and Y (III) was 22 mg/g and 23 mg/g, respectively. Pectin-Chitosan composites of variable composition were characterized by complementary methods: spectroscopy (FTIR, 13C solids NMR), TGA, and zeta potential. This work contributes to the design of covalent Pectin-Chitosan biopolymer frameworks for the controlled removal of La (III) and Y (III) from aqueous media.
Collapse
|
11
|
Recent Advances in the Synthesis, Properties, and Applications of Modified Chitosan Derivatives: Challenges and Opportunities. Top Curr Chem (Cham) 2021; 379:19. [DOI: 10.1007/s41061-021-00331-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
|
12
|
Adsorption Studies of Waterborne Trihalomethanes Using Modified Polysaccharide Adsorbents. Molecules 2021; 26:molecules26051431. [PMID: 33800798 PMCID: PMC7961458 DOI: 10.3390/molecules26051431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/04/2022] Open
Abstract
The adsorptive removal of trihalomethanes (THMs) from spiked water samples was evaluated with a series of modified polysaccharide adsorbents that contain β-cylodextrin or chitosan. The uptake properties of these biodegradable polymer adsorbents were evaluated with a mixture of THMs in aqueous solution. Gas chromatography employing a direct aqueous injection (DAI) method with electrolytic conductivity detection enabled quantification of THMs in water at 295 K and at pH 6.5. The adsorption isotherms for the polymer-THMs was evaluated using the Sips model, where the monolayer adsorption capacities ranged between 0.04 and 1.07 mmol THMs/g for respective component THMs. Unique adsorption characteristics were observed that vary according to the polymer structure, composition, and surface chemical properties. The modified polysaccharide adsorbents display variable molecular recognition and selectivity toward component THMs in the mixed systems according to the molecular size and polarizability of the adsorbates.
Collapse
|
13
|
Roacho-Pérez JA, Rodríguez-Aguillón KO, Gallardo-Blanco HL, Velazco-Campos MR, Sosa-Cruz KV, García-Casillas PE, Rojas-Patlán L, Sánchez-Domínguez M, Rivas-Estilla AM, Gómez-Flores V, Chapa-Gonzalez C, Sánchez-Domínguez CN. A Full Set of In Vitro Assays in Chitosan/Tween 80 Microspheres Loaded with Magnetite Nanoparticles. Polymers (Basel) 2021; 13:polym13030400. [PMID: 33513783 PMCID: PMC7865444 DOI: 10.3390/polym13030400] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Microspheres have been proposed for different medical applications, such as the delivery of therapeutic proteins. The first step, before evaluating the functionality of a protein delivery system, is to evaluate their biological safety. In this work, we developed chitosan/Tween 80 microspheres loaded with magnetite nanoparticles and evaluated cell damage. The formation and physical-chemical properties of the microspheres were determined by FT-IR, Raman, thermogravimetric analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and SEM. Cell damage was evaluated by a full set of in vitro assays using a non-cancerous cell line, human erythrocytes, and human lymphocytes. At the same time, to know if these microspheres can load proteins over their surface, bovine serum albumin (BSA) immobilization was measured. Results showed 7 nm magnetite nanoparticles loaded into chitosan/Tween 80 microspheres with average sizes of 1.431 µm. At concentrations from 1 to 100 µg/mL, there was no evidence of changes in mitochondrial metabolism, cell morphology, membrane rupture, cell cycle, nor sister chromatid exchange formation. For each microgram of microspheres 1.8 µg of BSA was immobilized. The result provides the fundamental understanding of the in vitro biological behavior, and safety, of developed microspheres. Additionally, this set of assays can be helpful for researchers to evaluate different nano and microparticles.
Collapse
Affiliation(s)
- Jorge A Roacho-Pérez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Kassandra O Rodríguez-Aguillón
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Hugo L Gallardo-Blanco
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - María R Velazco-Campos
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - Karla V Sosa-Cruz
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Perla E García-Casillas
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Luz Rojas-Patlán
- Departamento de Genética, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (H.L.G.-B.); (M.R.V.-C.); (L.R.-P.)
| | - Margarita Sánchez-Domínguez
- Centro de Investigación en Materiales Avanzados, S.C. (CIMAV, S.C.), Unidad Monterrey, Apodaca 66628, Mexico;
| | - Ana M Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
| | - Víctor Gómez-Flores
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
| | - Christian Chapa-Gonzalez
- Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Ciudad Juárez 32310, Mexico; (K.V.S.-C.); (P.E.G.-C.); (V.G.-F.)
- Correspondence: (C.C.-G.); (C.N.S.-D.)
| | - Celia N Sánchez-Domínguez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico; (J.A.R.-P.); (K.O.R.-A.); (A.M.R.-E.)
- Correspondence: (C.C.-G.); (C.N.S.-D.)
| |
Collapse
|
14
|
Bui TH, Lee W, Jeon SB, Kim KW, Lee Y. Enhanced Gold(III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116989] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
15
|
Modular Chitosan-Based Adsorbents for Tunable Uptake of Sulfate from Water. Int J Mol Sci 2020; 21:ijms21197130. [PMID: 32992564 PMCID: PMC7582897 DOI: 10.3390/ijms21197130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 01/26/2023] Open
Abstract
The context of this study responds to the need for sorbent technology development to address the controlled removal of inorganic sulfate (SO42−) from saline water and the promising potential of chitosan as a carrier system for organosulfates in pharmaceutical and nutraceutical applications. This study aims to address the controlled removal of sulfate using chitosan as a sustainable biopolymer platform, where a modular synthetic approach was used for chitosan bead preparation that displays tunable sulfate uptake. The beads were prepared via phase-inversion synthesis, followed by cross-linking with glutaraldehyde, and impregnation of Ca2+ ions. The sulfate adsorption properties of the beads were studied at pH 5 and variable sulfate levels (50–1000 ppm), where beads with low cross-linking showed moderate sulfate uptake (35 mg/g), while cross-linked beads imbibed with Ca2+ had greater sulfate adsorption (140 mg/g). Bead stability, adsorption properties, and the point-of-zero charge (PZC) from 6.5 to 6.8 were found to depend on the cross-linking ratio and the presence of Ca2+. The beads were regenerated over multiple adsorption-desorption cycles to demonstrate the favorable uptake properties and bead stability. This study contributes to the development of chitosan-based adsorbent technology via a modular materials design strategy for the controlled removal of sulfate. The results of this study are relevant to diverse pharmaceutical and nutraceutical applications that range from the controlled removal of dextran sulfate from water to the controlled release of chondroitin sulfate.
Collapse
|
16
|
Karoyo A, Dehabadi L, Alabi W, Simonson CJ, Wilson LD. Hydration and Sorption Properties of Raw and Milled Flax Fibers. ACS OMEGA 2020; 5:6113-6121. [PMID: 32226894 PMCID: PMC7098004 DOI: 10.1021/acsomega.0c00100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The physicochemical and hydration properties of mechanically modified flax fibers (FFs) were investigated herein. Raw flax fibers (FF-R) were ball-milled and sieved through mesh with various aperture sizes (420, 210, and 125 μm) to achieve modified samples, denoted as FF-420, FF-210, and FF-125, respectively. The physicochemical and hydration properties of FF-R with variable particle sizes were characterized using several complementary techniques: microscopy (SEM), spectroscopy (FT-IR, XRD, and XPS), thermoanalytical methods (DSC and TGA), adsorption isotherms using gas/dye probes, and solvent swelling studies in liquid H2O. The hydration of FF biomass is governed by the micropore structure and availability of active surface sites, as revealed by the adsorption isotherm results and the TGA/DSC profiles of the hydrated samples. Gravimetric water swelling, water retention values, and vapor adsorption results provide further support that particle size reduction of FF-R upon milling parallels the changes in surface chemical and physicochemical properties relevant to adsorption/hydration in the modified FF materials. This study outlines a facile strategy for the valorization and tuning of the physicochemical properties of agricultural FF biomass via mechanical treatment for diverse applications in biomedicine, energy recovery, food, and biosorbents for environmental remediation.
Collapse
Affiliation(s)
- Abdalla
H. Karoyo
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Leila Dehabadi
- Dr.
Ma’s Laboratories, Inc., Unit 4, 8118 North Fraser Way, Burnaby, British Columbia V5J 0E5, Canada
| | - Wahab Alabi
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Carey J. Simonson
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
17
|
Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110740. [PMID: 32204048 DOI: 10.1016/j.msec.2020.110740] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/20/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023]
Abstract
Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80-90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.
Collapse
|
18
|
Gas and Solution Uptake Properties of Graphene Oxide-Based Composite Materials: Organic vs. Inorganic Cross-Linkers. JOURNAL OF COMPOSITES SCIENCE 2019. [DOI: 10.3390/jcs3030080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study focused on a comparison of the adsorption properties of graphene oxide (GO) and its composites that were prepared via cross-linking with chitosan (CTS) or Al3+ species, respectively. Comparative material characterization was achieved by several complementary methods: SEM, NMR spectroscopy, zeta-potential, dye-based adsorption, and gas adsorption at equilibrium and dynamic conditions. SEM, solids NMR, and zeta-potential results provided supporting evidence for cross-linking between GO and the respective cross-linker units. The zeta-potential of GO composites decreased upon cross-linking due to electrostatic interactions and charge neutralization. Equilibrium and kinetic adsorption profiles of the GO composites with methylene blue (MB) in aqueous media revealed superior uptake over pristine GO. The monolayer adsorption capacity (mg g−1) of MB are listed in descending order for each material: GO–CTS (408.6) > GO–Al (351.4) > GO (267.1). The gas adsorption results showed parallel trends, where the surface area and pore structure of the composites exceeded that for GO due to pillaring effects upon cross-linking. The green strategy reported herein for the preparation of tunable GO-based composites revealed versatile adsorption properties for diverse heterogeneous adsorption processes.
Collapse
|
19
|
Xue C, Wilson LD. A structural study of self-assembled chitosan-based sponge materials. Carbohydr Polym 2019; 206:685-693. [DOI: 10.1016/j.carbpol.2018.10.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/01/2022]
|
20
|
|
21
|
Dehabadi L, Karoyo AH, Wilson LD. Spectroscopic and Thermodynamic Study of Biopolymer Adsorption Phenomena in Heterogeneous Solid-Liquid Systems. ACS OMEGA 2018; 3:15370-15379. [PMID: 31458195 PMCID: PMC6643837 DOI: 10.1021/acsomega.8b01663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 10/29/2018] [Indexed: 05/24/2023]
Abstract
Molecular selective adsorption processes at the solid surface of biopolymers in mixed solvent systems are poorly understood due to manifold interactions. However, the ability to achieve adsorptive fractionation of liquid mixtures is posited to relate to the role of specific solid-liquid interactions at the adsorbent interface. The hydration of solid biopolymers (amylose, amylopectin, cellulose) in binary aqueous systems is partly governed by the relative solvent binding affinities with the biopolymer surface sites, in accordance with the role of textural and surface chemical properties. While molecular models that account for the surface area and solvent effects provide reliable estimates of hydration energy and binding affinity parameters, spectroscopic and thermal methods offer a facile alternative experimental approach to account for detailed aspects of solvation phenomena at biopolymer interfaces that involve solid-liquid adsorption. In this report, thermal and spectroscopic methods were used to understand the interaction of starch- and cellulose-based materials in water-ethanol (W-E) binary mixtures. Batch adsorption studies in binary W-E mixtures reveal the selective solvent uptake properties by the biomaterials, in agreement with their solvent swelling in pure water or ethanol. The nature, stability of the bound water, and the thermodynamic properties of the biopolymers in variable hydration states were probed via differential scanning calorimetry and Raman spectroscopy. The trends in biopolymer-solvent interactions are corroborated by dye adsorption and scanning electron microscopy, indicating that biopolymer adsorption properties in W-E mixtures strongly depend on the surface area, pore structure, and accessibility of the polar surface groups of the biopolymer systems, in agreement with the solvent-selective uptake results reported herein.
Collapse
|
22
|
“Pillaring Effects” in Cross-Linked Cellulose Biopolymers: A Study of Structure and Properties. INT J POLYM SCI 2018. [DOI: 10.1155/2018/6358254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Modified cellulose materials (CLE-4, CLE-1, and CLE-0.5) were prepared by cross-linking with epichlorohydrin (EP), where the products display variable structure, morphology, and thermal stability. Adsorptive probes such as nitrogen gas and phenolic dyes in aqueous solution reveal that cross-linked cellulose has greater accessible surface area (SA) than native cellulose. The results also reveal that the SA of cross-linked cellulose increased with greater EP content, except for CLE-0.5. The attenuation of SA for CLE-0.5 may relate to surface grafting onto cellulose beyond the stoichiometric cellulose and EP ratio since ca. 30% of the hydroxyl groups of cellulose are accessible for cross-linking reaction due to its tertiary fibril nature. Scanning electron microscopy (SEM) results reveal the variable surface roughness and fibre domains of cellulose due to cross-linking. X-ray diffraction (XRD) and 13C NMR spectroscopy indicate that cellulose adopts a one-chain triclinic unit cell structure (P1 space group) with gauche-trans (gt) and trans-gauche (tg) conformations of the glucosyl linkages and hydroxymethyl groups. The structural characterization results reveal that cross-linking of cellulose occurs at the amorphous domains. By contrast, the crystalline domains are preserved according to similar features in the XRD, FTIR, and 13C NMR spectra of cellulose and its cross-linked forms. This study contributes to an improved understanding of the role of cross-linking of native cellulose in its structure and functional properties. Cross-linked cellulose has variable surface functionality, structure, and textural properties that contribute significantly to their unique physicochemical properties over its native form.
Collapse
|
23
|
Udoetok IA, Wilson LD, Headley JV. Ultra-sonication assisted cross-linking of cellulose polymers. ULTRASONICS SONOCHEMISTRY 2018; 42:567-576. [PMID: 29429704 DOI: 10.1016/j.ultsonch.2017.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/09/2017] [Accepted: 12/10/2017] [Indexed: 05/20/2023]
Abstract
Cross-linked cellulose-epichlorohydrin polymers were synthesized by a conventional heating with stirring (C-EP heating) and a parallel process using ultra-sonication (C-EP sonication) in the presence of aqueous ammonia. Structural characterization of modified cellulose was carried out using FTIR/13C solid state NMR spectroscopy and thermal methods (DSC and TGA). Evidence of products with variable textural properties and morphology was supported by nitrogen gas adsorption, solvent swelling, and microscopy (SEM, TEM) results. C-EP sonication possess greater cross-linker content judging by the loss of the cellulose fibril structure which was facilitated by acoustic cavitation effects due to ultra-sonication. Equilibrium sorption studies in aqueous solution with 2-naphthoxy acetic acid (NAA) revealed that C-EP heating had slightly greater sorption capacity than C-EP sonication at alkaline pH. By contrast, C-EP sonication had greater uptake of NAA at acidic pH. Kinetic uptake studies at pH 3 is described by the pseudo-second order model, where the surface sites of C-EP heating became saturated within ca. 75 min; whereas, ca. 350 min occurred for C-EP sonication. This study demonstrates that the yield of sonication assisted cross-linking of cellulose is greater with improved adsorption properties. The study also reveals the utility of sonication assisted synthesis for the valorization and utilization of cellulose modified materials.
Collapse
Affiliation(s)
- Inimfon A Udoetok
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - John V Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
24
|
Salzano de Luna M, Altobelli R, Gioiella L, Castaldo R, Scherillo G, Filippone G. Role of polymer network and gelation kinetics on the mechanical properties and adsorption capacity of chitosan hydrogels for dye removal. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24436] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Martina Salzano de Luna
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
- Institute for Polymers, Composites and Biomaterials; National Research Council of Italy (UoS Napoli/Portici), Piazzale E. Fermi 1; 80055 Portici (Naples) Italy
| | - Rosaria Altobelli
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
| | - Lucia Gioiella
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
| | - Rachele Castaldo
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
- Institute for Polymers, Composites and Biomaterials; National Research Council of Italy (headquarter), Via Campi Flegrei 34; 80078 Pozzuoli (Naples) Italy
| | - Giuseppe Scherillo
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
| | - Giovanni Filippone
- Department of Chemical, Materials and Production Engineering (INSTM Consortium - UdR Naples); University of Naples Federico II, Piazzale Tecchio 80; Naples 80125 Italy
| |
Collapse
|
25
|
Mahaninia MH, Wilson LD. A Kinetic Uptake Study of Roxarsone Using Cross-Linked Chitosan Beads. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04412] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mohammad H. Mahaninia
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK Canada, S7N 5C9
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK Canada, S7N 5C9
| |
Collapse
|
26
|
Phosphate uptake studies of cross-linked chitosan bead materials. J Colloid Interface Sci 2017; 485:201-212. [DOI: 10.1016/j.jcis.2016.09.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 11/21/2022]
|
27
|
Udoetok IA, Wilson LD, Headley JV. Self-Assembled and Cross-Linked Animal and Plant-Based Polysaccharides: Chitosan-Cellulose Composites and Their Anion Uptake Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33197-33209. [PMID: 27802018 DOI: 10.1021/acsami.6b11504] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Self-assembled and cross-linked chitosan/cellulose glutaraldehyde composite materials (CGC) were prepared with enhanced surface area and variable morphology. FTIR, CHN, and 13C solid state NMR studies provided support for the cross-linking reaction between the amine groups of chitosan and glutaraldehyde; whereas, XRD and TGA studies provided evidence of cellulose-chitosan interactions for the composites. SEM, equilibrium swelling, and nitrogen adsorption studies corroborate the enhanced surface area and variable morphology of the cross-linked biopolymers. Equilibrium sorption studies at alkaline conditions with phenolic dyes, along with single component and mixed naphthenates in aqueous solution revealed variable uptake properties with the composites. The Freundlich isotherm model revealed that the composite at the highest levels of cross-linker, CGC3, had the highest sorption affinity (KF; L mmol/g) for phenolphthalein (phth) followed by ortho-nitrophenyl acetic acid (ONPAA) and para-nitrophenol (PNP), as follows: Phth (5.03 × 10-1) > ONPAA (2.28 × 10-1) > PNP (8.49 × 10-2). The Sips isotherm model provided a good description of the sorption profile of single component and naphthenate mixtures. The monolayer uptake capacity (Qm; mg g-1) is given in parentheses: 2-hexyldecanoic acid (S1; 115 mg/g) > 2-naphthoxyacetic acid (S3; 40.5 mg/g) > trans-4-pentylcyclohexylcarboxylic acid (S2; 13.7 mg/g). By comparison, the Qm values for CGC3 with naphthenate mixtures (24.1 and 27.4 mg/g) according to UV spectroscopy and electrospray ionization mass spectrometry (ESI-HRMS). The sorbent materials generally show greater uptake with naphthenates that possess lower vs higher double bond equivalence (DBE) values. Kinetic studies revealed that the sorption of phth adopted behavior described by the pseudo-second order model, while uptake for S3 and naphthenate mixtures adopted pseudo-first order behavior. This study contributes to a greater understanding of the sorption properties of the two types of abundant biopolymers and their composites by illustrating their tunable sorption properties. The key role of hydrophobic interactions for CGC materials was evidenced by the controlled sorptive uptake of carboxylate anions with variable molecular structure.
Collapse
Affiliation(s)
- Inimfon A Udoetok
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan , 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - John V Headley
- Water Science and Technology Directorate, Environment and Climate Change Canada , 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
28
|
Mahaninia MH, Wilson LD. Modular Cross-Linked Chitosan Beads with Calcium Doping for Enhanced Adsorptive Uptake of Organophosphate Anions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b02814] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad H. Mahaninia
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
29
|
Sequestration of agrochemicals from aqueous media using cross-linked chitosan-based sorbents. ADSORPTION 2016. [DOI: 10.1007/s10450-016-9796-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
30
|
Udoetok IA, Dimmick RM, Wilson LD, Headley JV. Adsorption properties of cross-linked cellulose-epichlorohydrin polymers in aqueous solution. Carbohydr Polym 2016; 136:329-40. [DOI: 10.1016/j.carbpol.2015.09.032] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/05/2015] [Accepted: 09/10/2015] [Indexed: 11/29/2022]
|