1
|
Dokania P, Roy D, Banerjee R, Sarkar A. Green synthesis of nanoparticles for waste water treatment. BIO REFINERY OF WASTEWATER TREATMENT 2025:171-202. [DOI: 10.1016/b978-0-323-95670-3.00007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Hazarika K, Borgohain C, Borah JP. Influence of Controlled Dipolar Interaction for Polymer-Coated Gd-Doped Magnetite Nanoparticles toward Magnetic Hyperthermia Application. ACS OMEGA 2024; 9:6696-6708. [PMID: 38371823 PMCID: PMC10870280 DOI: 10.1021/acsomega.3c07835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 02/20/2024]
Abstract
To maximize heat release from immobilized nanoparticles (NPs), a detailed understanding of the controlled dipolar interaction is essential for challenging magnetic hyperthermia (MH) therapies. To design optimal MH experiments, it is necessary to precisely determine magnetic states impacted by the inevitable concurrence of magnetic interactions under a common experimental form. In this work, we describe how the presence of dipolar interaction significantly alters the heating mechanism of host materials when NPs are embedded in them for MH applications. The concentration of the NPs and the intensity of their interaction can profoundly impact the amplitude and shape of the heating curves of the host material. The heating capability of interacting NPs might be enhanced or diminished, depending on their concentration within the host material. We propose chitosan- and dextran-coated Gd-doped Fe3O4 NPs directing dipole interactions effective for the linear regime to enlighten the pragmatic trends. The outcomes of our study may have substantial implications for cancer therapy and could inspire novel approaches for maximizing the effectiveness of MH.
Collapse
Affiliation(s)
- Krishna
Priya Hazarika
- Nanomagnetism
Group, Department of Physics, National Institute
of Technology Nagaland, Dimapur, Nagaland 797103, India
| | - C. Borgohain
- Central
Instrumentation Facility (CIF), Indian Institute
of Technology Guwahati, Guwahati, Assam 781039, India
| | - J. P. Borah
- Nanomagnetism
Group, Department of Physics, National Institute
of Technology Nagaland, Dimapur, Nagaland 797103, India
| |
Collapse
|
3
|
Almutairi TS. Unraveling the Complex Interplay of Phase Transitions in Spinel Ferrites: A Comprehensive Quantum Mechanical Vibrational Study of ZnFe 2O 4. ACS OMEGA 2023; 8:36999-37010. [PMID: 37841198 PMCID: PMC10568704 DOI: 10.1021/acsomega.3c04268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023]
Abstract
The rich phase transition landscape of spinel ferrites and its profound impact on their physical properties have garnered significant interest in recent years. The complex interplay of divalent and trivalent cations distributed across A- and B-sites gives rise to a captivating variety of interactions. In this study, we delve into the structural, electronic, magnetic, and vibrational properties of ZnFe2O4 as a function of the degree of inversion, employing first-principles density functional theory with global and range-separated hybrid functionals and a local basis set. The ground state of ZnFe2O4 is an open-shell system, characterized by Zn atoms occupying tetrahedral sites, Fe atoms residing in octahedral sites, and Fe atom spins exhibiting ligand parallel alignment. In the normal structure, the antiparallel arrangement is less stable than the ferro arrangement by 0.058 eV (673 K) for fully relaxed structures, decreasing to 0.034 eV (395 K) upon incorporating a zero-point vibrations contribution. For normal ferromagnetic ZnFe2O4, we calculated scattering for A1g, Eg, and 3T2g symmetry at 676.6, 367.1, and (189.7, 457.7, 602.3) cm-1, respectively. Additionally, four T1u vibrational frequencies predicted by group theory were obtained at 524.59, 358.48, 312.49, and 192.9 cm-1, demonstrating excellent agreement with the experimental studies. We also explored the influence of spin rearrangement and inversion (X = 0.5 and 1) on Raman and infrared spectra. By analyzing the infrared spectra of isotopic substitutions, we reevaluated the assignments of the four T1u modes in light of available experimental data. Notably, the sensitivity of peak positions and intensities for some Raman modes, particularly A1g and T2g(2), to spin arrangement could provide a convenient experimental tool for detecting phase transitions induced by changes in temperature or external electric fields. This investigation shines a light on the complex interplay of phase transitions in spinel ferrites, paving the way for a deeper understanding of their properties and potential applications.
Collapse
Affiliation(s)
- Tahani Saad Almutairi
- Section of Physical Chemistry
Department of Chemistry, Taibah University, Madinah 42353, Saudi Arabia
| |
Collapse
|
4
|
Aadil M, Taki AG, Zulfiqar S, Rahman A, Shahid M, Warsi MF, Ahmad Z, Alothman AA, Mohammad S. Gadolinium doped zinc ferrite nanoarchitecture reinforced with a carbonaceous matrix: a novel hybrid material for next-generation flexible capacitors. RSC Adv 2023; 13:28063-28075. [PMID: 37746331 PMCID: PMC10517144 DOI: 10.1039/d3ra05290g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023] Open
Abstract
Herein, nanostructured Gd-doped ZnFe2O4 (GZFO) has been synthesized via the sol-gel route and its CNT-reinforced nanohybrid was formed via an advanced ultrasonication method. The as-synthesized, hybrid electroactive materials have been supported on aluminum foil (AF) to design a flexible electrode for hybrid capacitor (HC) applications. Nanostructured material synthesis, Gd-doping, and CNT reinforcement approaches have been adopted to develop a rationally designed electrode with a high surface area, boosted electrical conductivity, and enhanced specific capacitance. Electrochemical impedance spectroscopy, galvanostatic charge/discharge, and cyclic voltammetry processes have been used to measure the electrochemical performance of the prepared ferrite material-based working electrodes in a 3M KOH solution. A nanohybrid-based working electrode (GZFO/C@AF) shows superior rate capacitive and electrochemical aptitude (specific capacitance, rate performance, and cyclic activity) than its counterpart working electrodes (ZFO@AF and GZFO@AF). The hybrid working electrode (GZFO/C@AF electrode) shows a high specific capacitance of 887 F g-1 and good retention of 94.5% for 7000 cycles (at 15 Ag-1). The maximum energy density and power density values for the GZFO/C@AF electrode are 40.025 Wh Kg-1 and 279.78 W Kg-1, respectively. Based on the findings of the electrochemical experiments, GZFO/C@AF shows promise as an electrode material for hybrid capacitors that provide energy to wearable electronic devices.
Collapse
Affiliation(s)
- Muhammad Aadil
- Department of Chemistry, Rahim Yar Khan Campus, The Islamia University of Bahawalpur Rahim Yar Khan 64200 Pakistan
| | - Anmar Ghanim Taki
- Department of Radiology & Sonar Techniques, Al-Noor University College Nineveh Iraq
| | - Sonia Zulfiqar
- Department of Chemistry, Faculty of Science, University of Ostrava 30. Dubna 22 Ostrava 701 03 Czech Republic
- Department of Chemical and Biological Engineering, Iowa State University Sweeney Hall, 618 Bissell Road Ames Iowa 50011 USA
| | - Abdur Rahman
- Hefei National Laboratory for Physical Sciences and Microscale, Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Muhammad Shahid
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Muhammad Farooq Warsi
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur Bahawalpur 63100 Pakistan
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University 280 Daehak-ro Gyeongsan 38541 Republic of Korea
| | - Asma A Alothman
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saikh Mohammad
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
5
|
Mondal P, Nandan A, Ajithkumar S, Siddiqui NA, Raja S, Kola AK, Balakrishnan D. Sustainable application of nanoparticles in wastewater treatment: Fate, current trend & paradigm shift. ENVIRONMENTAL RESEARCH 2023:116071. [PMID: 37209979 DOI: 10.1016/j.envres.2023.116071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023]
Abstract
Existing water and wastewater treatment techniques are becoming increasingly difficult to employ due to the discovery of new toxins, the rapid development of population and industrial activities, and the limited quantity of water resources. Treatment of wastewater is a critical need in modern civilization due to a scarcity of water resources and rising industrial activity. Some of the techniques utilized include adsorption, flocculation, filtration, and others, although they are only used for primary wastewater treatment. However, the development and deployment of modern wastewater management with high efficiency and low capitalization are critical in terms of mitigating the environmental consequences of waste. The employment of different nanomaterials in the treatment of wastewater has opened up a world of possibilities for heavy metal and pesticide removal, as well as the treatment of microbes and organic contaminants in wastewater. Nanotechnology is a rapidly evolving technology because of certain nanoparticle's outstanding physiochemical and biological capabilities as contrasted to bulk counterparts. Secondly, it has been established that this is a cost-effective treatment strategy with significant potential in wastewater management, transcending the limitations imposed by currently existing technology. Advances in nanotechnology to reduce water contamination have been presented in this review, including the use of various nanomaterials such as nanocatalysts, nanoadsorbents, and nanomembranes in the treatment of wastewater containing organic contaminants, hazardous metals, and virulent pathogens.
Collapse
Affiliation(s)
- Prasenjit Mondal
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Abhishek Nandan
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India.
| | - Sarath Ajithkumar
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Nihal Anwar Siddiqui
- Centre of Excellence in Occupational Health, Safety, Fire and Environment, GD Goenka University, Sohna, Gurgaon, India
| | - Sivashankar Raja
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | - Anand Kishore Kola
- Department of Chemical Engineering, National Institute of Technology Warangal, India
| | | |
Collapse
|
6
|
Khatun N, Ahmed S, Hossain MS, Uddin Farhad SF, Mamun MA, Alam MS, Begum MHA, Tanvir NI, Hakim M, Islam S. Influence of Y 3+ and La 3+ ions on the structural, magnetic, electrical, and optical properties of cobalt ferrite nanoparticles. Heliyon 2023; 9:e13019. [PMID: 36747563 PMCID: PMC9898293 DOI: 10.1016/j.heliyon.2023.e13019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
In the current study, nanocrystalline CoY0.5xLa0.5xFe2-xO4 (where x = 0.00, 0.02, 0.04, 0.06, 0.08, and 0.10) ferrites have been synthesized via a sol-gel auto combustion process. The synthesized powders were pressed into pellet forms and sintered at 900 °C for 4 h in the air. X-ray diffractometry (XRD) confirmed the single-phase cubic spinel structure of the synthesized samples having the mean crystallite domain sizes ranging from 122 and 54 nm. FTIR spectroscopic analyses revealed two strong bands within the range of 600 to 350 cm-1, further confirming the cubic inverse spinel structure of the prepared materials. The surface morphologies and composition were investigated by Field Emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray (EDX) Spectroscopy. The magnetic hysteresis curves recorded at room temperature exhibit ferrimagnetic behavior. The highest coercivity (Hc∼1276 Oe) was found at a high doping (x = 0.10) concentration of Y3+ and La3+ in cobalt ferrite. Dielectric constant increase with increased doping concentration whereas real-impedance and dielectric loss decrease with increased in doping concentration and applied frequency. The band gap energy increased from 1.48 to 1.53 eV with increasing Y3+ and La3+concentrations in the UV-Vis region. The elevated levels of magnetic and dielectric substances in the ferrite nanoparticles suggest that the material could be used for magnetic recording media and high-frequency devices.
Collapse
Affiliation(s)
- Nazia Khatun
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh,Corresponding author.
| | - Sajib Ahmed
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University (NSTU), Bangladesh
| | - Mohammad Sajjad Hossain
- Institute of Mining, Mineralogy and Metallurgy, Bangladesh Council of Scientific and Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Syed Farid Uddin Farhad
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Md Al- Mamun
- Bangladesh Atomic Energy Center (BAEC), Dhaka 1000, Bangladesh
| | - Mohammad Saiful Alam
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University (NSTU), Bangladesh
| | - Most. Hosney Ara Begum
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Nazmul Islam Tanvir
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Mahmuda Hakim
- Biomedical and Toxicology Research Institute (BTRI), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Suravi Islam
- Industrial Physics Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh,Corresponding author.
| |
Collapse
|
7
|
The Role of Chromium on the Structural, Electronic and Photoluminescence properties of Alumina: Theoretical and Experimental Study. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Influence of Ce3+ (Rare Earth Element) on the Structural, Morphological, Impedance, Binding Energy and Ferrimagnetic Properties of Spinel ZnFe2O4 Nanoparticles Fabricated by the Coprecipitation Method: Antibacterial Activity. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00570-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Baburao B, Hari Kumar N, Edukondalu A, Venkata Narayana M, Ravinder D. Structural, Optical, DC electrical, Thermo-electric, Dielectric and magnetic properties of Mg0.8Zn0.2GdxFe2-xO4 nanoparticles synthesised by citrate-gel auto combustion method. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Maria Jose L, Anna Thomas S, Aravind A, Ma YR, Anil Kadam S. Effect of Ni Doping on the Adsorption and Visible light Photocatalytic Activity of ZnO Hexagonal Nanorods. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Sumalatha E, Hari kumar N, Edukondalu A, Ravinder D. Effect of La3+ ion doped Co-Zn Nano Ferrites: Structural, Optical, Electrical and Magnetic Properties. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Lakshmikantha J, Krishnamurthy G, Hanumantha Nayak R, Pari M, Ranjitha N, Naik N. Synthesis, Structure, Thermal, Magnetic, Dielectric Properties of Ce3+ Doped M-Type SrFe12O19 And Electrochemical Determination of L-Cysteine. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Zheng Y, Hussain G, Li S, Batool S, Wang X. Effects of Rhenium Substitution of Co and Fe in Spinel CoFe 2O 4 Ferrite Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2839. [PMID: 36014707 PMCID: PMC9416171 DOI: 10.3390/nano12162839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
In this work, nanoparticles of Co1-xRexFe2O4 and CoFe2-xRexO4 (0 ≤ x ≤ 0.05) were synthesized by the sol-gel method. The Rietveld refinement analysis of XRD and Raman data revealed that all of the prepared samples were single phase with a cubic spinel-type structure. With the substitution of Re, the lattice parameters were slightly increased, and Raman spectra peak positions corresponding to the movement of the tetrahedral sublattice shifted to a higher energy position. Furthermore, Raman spectra showed the splitting of T2g mode into branches, indicating the presence of different cations at crystallographic A- and B-sites. The SEM micrograph confirms that surface Re exchange changes the coordination environment of metals and induces Fe-site structure distortion, thereby revealing more active sites for reactions and indicating the bulk sample's porous and agglomerated morphology. The vibrating sample magnetometer (VSM) results demonstrated that the synthesized nanoparticles of all samples were ferromagnetic across the entire temperature range of 300-4 K. The estimated magnetic parameters, such as the saturation magnetization, remanent magnetization, coercivity, blocking temperature (TB), and magnetic anisotropy, were found to reduce for the Co-site doping with the increasing doping ratio of Re, while in the Fe site, they enhanced with the increasing doping ratio. The ZFC-FC magnetization curve revealed the presence of spin-glass-like behavior due to the strong dipole-dipole interactions in these ferrite nanoparticles over the whole temperature range. Finally, the dielectric constant (εr') and dielectric loss (tanδ) were sharply enhanced at low frequencies, while the AC conductivity increased at high frequencies. The sharp increases at high temperatures are explained by enhancing the barrier for charge mobility at grain boundaries, suggesting that samples were highly resistive. Interestingly, these parameters (εr', tanδ) were found to be higher for the Fe-site doping with the increasing Re doping ratio compared with the Co site.
Collapse
Affiliation(s)
- Yuruo Zheng
- Department of Natural and Applied Sciences Duke Kunshan University, Suzhou 215316, China
| | - Ghulam Hussain
- Department of Natural and Applied Sciences Duke Kunshan University, Suzhou 215316, China
| | - Shuyi Li
- Department of Natural and Applied Sciences Duke Kunshan University, Suzhou 215316, China
| | - Shanta Batool
- Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei 230026, China
| | - Xiawa Wang
- Department of Natural and Applied Sciences Duke Kunshan University, Suzhou 215316, China
| |
Collapse
|
14
|
Radu I, Turcan I, Lukacs AV, Roman T, Bulai GA, Olariu MA, Dumitru I, Pui A. Structural, dielectric and gas sensing properties of gadolinium (Gd3+) substituted zinc-manganese nanoferrites. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Agboola PO, Haider S, Shakir I. The impact of rare earth Nd 3+ cations on structural, spectral, magnetic and dielectric parameters of NiFe 2O 4 nanoparticles. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2059953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Philips O. Agboola
- College of Engineering Al-Muzahmia Branch, King Saud University, Riyadh, Saudi Arabia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh, Saudi Arabia
| | - Imran Shakir
- Department of Materials Science and Engineering, University of California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Nikmanesh H, Jaberolansar E, Kameli P, Varzaneh AG. Effect of praseodymium in cation distribution, and temperature-dependent magnetic response of cobalt spinel ferrite nanoparticles. NANOTECHNOLOGY 2022; 33:275709. [PMID: 35299157 DOI: 10.1088/1361-6528/ac5ee4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
This work reports cation distribution, magnetic, structural, and morphological studies of rare-earth Pr doped cobalt ferrite nanoparticles CoFe2-xPrxO4(x= 0, 0.02, 0.04, 0.06 at%) fabricated by sol-gel auto-combustion method. X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), and Fourier-transform infrared (FTIR) microscopy were utilized to study the structural and morphological characteristics of the prepared samples. Rietveld refinement by the Material Analyses Using Diffraction (MAUD) software showed the formation of mono-phase cubic spinel structure with Fd-3m space group; however, there was a trace of impure PrFeO3phase for the sample CoFe1.96Pr0.04O4(x= 0.06). Cation distribution was inferred from the XRD patterns using MAUD program. FESEM analysis revealed the spherical-shaped particles with dimensions close to the data extracted from XRD analysis and HRTEM images confirmed it. FTIR measurements revealed the presence of two prominent stretching vibrational modes confirming the successful formation of ferrite spinel structure. Magnetic properties of the nanoparticles were measured at two different temperatures 300 K and 10 K. For the low temperature of 10 K a high sensitive measurement method as Superconducting Quantum Interference Device (SQUID) magnetometry was used and Vibrating Sample Magnetometer (VSM) recorded the magnetic data at 300 K. Comparison of the magnetic results exhibited a significant enhancement with temperature drop due to the reduction in thermal fluctuations. Paramagnetic nature of rare-earth ions may be the main reason forMSdecrement from 76 emu g-1(x= 0.0) to 60 emu g-1(x= 0.02) at 300 K. At 10 K, the estimated cation distribution played a vital role in justification of obtained magnetic results. All the obtained data showed that the synthesized magnetic nanoparticles can be implemented in permanent magnet industry and information storage fields, especially when it comes to lower temperatures.
Collapse
Affiliation(s)
| | - Elnaz Jaberolansar
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parviz Kameli
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Ghotbi Varzaneh
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- BCMaterials & University of Basque Country, Sarriena s/n, Leioa E-48940, Spain
| |
Collapse
|
17
|
Moussi R, Bougoffa A, Trabelsi A, Dhahri E, Graça M, Valente M, Barille R, Rguiti M. Investigation of the effect of Sr-substitution on the structural, morphological, dielectric, and energy storage properties of BaTiO3-based perovskite ceramics. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Dewi SH, Mulyawan A, Sarwanto Y, Winatapura DS, Adi WA. Effect of La3+ substitution on structural, microstructure, magnetic properties, and microwave absorbing ability of yttrium iron garnet. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Soft Chemistry Synthesis and Characterization of CoFe1.8RE0.2O4 (RE3+ = Tb3+, Er3+) Ferrite. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanosized CoFe1.8RE0.2O4 (RE3+ = Tb3+, Er3+) ferrites were obtained through wet ferritization method. These ferrites were characterized by X-ray diffraction (XRD), scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM/HR-TEM), Fourier transform infrared spectroscopy (FTIR), Mössbauer spectroscopy and magnetic measurements. The XRD results revealed that the average crystallite size is 5.77 nm for CoFe1.8Tb0.2O4 and 6.42 nm for CoFe1.8Er0.2O4. Distribution of metal cations in the spinel structure estimated from X-ray diffraction data showed that the Tb3+ and Er3+ ions occupy the octahedral sites. TEM images indicated the presence of polyhedral particles with average size 5.91 nm for CoFe1.8Tb0.2O4 and 6.80 nm for CoFe1.8Er0.2O4. Room temperature Mössbauer spectra exhibit typical nanoscaled cobalt ferrite spectra in good agreement with XRD and TEM data. The saturation magnetization value (Ms) is 60 emu/g for CoFe1.8Tb0.2O4 and 80 emu/g for CoFe1.8Er0.2O4. CoFe1.8RE0.2O4 nanoparticles showed similar antimicrobial efficacy against the five tested microbial strains, both in planktonic and biofilm state. The results highlight the promising potential of these types of nanoparticles for the development of novel anti-biofilm agents and materials.
Collapse
|
20
|
Nikmanesh H, Jaberolansar E, Kameli P, Varzaneh AG, Mehrabi M, Rostami M. Structural and magnetic properties of CoFe 2O 4ferrite nanoparticles doped by gadolinium. NANOTECHNOLOGY 2021; 33:045704. [PMID: 34673546 DOI: 10.1088/1361-6528/ac31e8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
This work's main purpose is to investigate the effect of Gd3+substitution on the structural, cation distribution, morphological, and magnetic characteristics of cobalt ferrite nanostructures. The nanostructures were synthesized through the sol-gel auto combustion technique. X-ray diffraction (XRD) analysis with the Rietveld refinement through the Material Analysis Using Diffraction (MAUD) program confirmed a single-phase spinel structure for lower contents of Gd3+. However, for higher concentrations, a trace of second phase GdFeO3was evident. The crystallite size reduction from 17 to 11 nm with Gd3+doping confirmed the formation of nanocrystalline Co-Gd ferrite. Cation distribution was another parameter inferred from the experimental data of XRD analyzed by the MAUD program. Fourier-transform infrared spectra confirmed the formation of spinel structure through two prominent vibrational modes observed at the desired wavelength range. FESEM analysis confirmed the data obtained from the XRD about the structure and morphology of the nano samples. Saturation magnetization (MS) of the nano samples evaluated at 10 K showed a decreasing behavior from 94 to 86 emu g-1by Gd3+doping, while a fluctuating trend ofMSwas observed at room temperature. Coercive field (HC) evaluated at 10 K reached a maximum value of about 1145 kA m-1for the sample CoFe1.96Gd0.04O4, and then it decreased. At the same time,HCexperienced no considerable change at 300 K. The possible concepts attributed to such a trend ofHCwere also investigated. Overall, the significant impact of Gd3+doping on the cobalt ferrite nanoparticles causes Gd-Co ferrite to have a desirable capacity of permanent magnet materials and storage of information with high density. As a result, this ferrite may be a proper candidate to be utilized, especially at lower temperatures.
Collapse
Affiliation(s)
| | - Elnaz Jaberolansar
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parviz Kameli
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali Ghotbi Varzaneh
- Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran
- BCMaterials & University of Basque Country, Sarriena s/n, Leioa 48940, Spain
| | - Mohsen Mehrabi
- Department of Physics, Persian Gulf University, Bushehr 75169, Iran
| | | |
Collapse
|
21
|
Abdel-Rafei MK, Thabet NM, Abdel Maksoud MIA, Abd Elkodous M, Kawamura G, Matsuda A, Ashour AH, El-Batal AI, El-Sayyad GS. Influence of Ce 3+ Substitution on Antimicrobial and Antibiofilm Properties of ZnCe xFe 2-xO 4 Nanoparticles (X = 0.0, 0.02, 0.04, 0.06, and 0.08) Conjugated with Ebselen and Its Role Subsidised with γ-Radiation in Mitigating Human TNBC and Colorectal Adenocarcinoma Proliferation In Vitro. Int J Mol Sci 2021; 22:10171. [PMID: 34576334 PMCID: PMC8466506 DOI: 10.3390/ijms221810171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 01/13/2023] Open
Abstract
Cancers are a major challenge to health worldwide. Spinel ferrites have attracted attention due to their broad theranostic applications. This study aimed at investigating the antimicrobial, antibiofilm, and anticancer activities of ebselen (Eb) and cerium-nanoparticles (Ce-NPs) in the form of ZnCexFe2-XO4 on human breast and colon cancer cell lines. Bioassays of the cytotoxic concentrations of Eb and ZnCexFe2-XO4, oxidative stress and inflammatory milieu, autophagy, apoptosis, related signalling effectors, the distribution of cells through the cell-cycle phases, and the percentage of cells with apoptosis were evaluated in cancer cell lines. Additionally, the antimicrobial and antibiofilm potential have been investigated against different pathogenic microbes. The ZOI, and MIC results indicated that ZnCexFe2-XO4; X = 0.06 specimen reduced the activity of a wide range of bacteria and unicellular fungi at low concentration including P. aeruginosa (9.5 mm; 6.250 µg/mL), S. aureus (13.2 mm; 0.390 µg/mL), and Candida albicans (13.5 mm; 0.195 µg/mL). Reaction mechanism determination indicated that after ZnCexFe2-xO4; X = 0.06 treatment, morphological differences in S.aureus were apparent with complete lysis of bacterial cells, a concomitant decrease in the viable number, and the growth of biofilm was inhibited. The combination of Eb with ZFO or ZnCexFe2-XO4 with γ-radiation exposure showed marked anti-proliferative efficacy in both cell lines, through modulating the oxidant/antioxidant machinery imbalance, restoring the fine-tuning of redox status, and promoting an anti-inflammatory milieu to prevent cancer progression, which may be a valuable therapeutic approach to cancer therapy and as a promising antimicrobial agent to reduce the pathogenic potential of the invading microbes.
Collapse
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - Noura M. Thabet
- Radiation Biology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt;
| | - M. I. A. Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - M. Abd Elkodous
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi 441-8580, Aichi, Japan; (M.A.E.); (G.K.)
| | - A. H. Ashour
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (M.I.A.A.M.); (A.H.A.)
| | - Ahmed I. El-Batal
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| | - Gharieb S. El-Sayyad
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; (A.I.E.-B.); (G.S.E.-S.)
| |
Collapse
|
22
|
The impact of highly paramagnetic Gd3+ cations on structural, spectral, magnetic and dielectric properties of spinel nickel ferrite nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Abdel Maksoud MIA, El-Sayyad GS, El-Bastawisy HS, Fathy RM. Antibacterial and antibiofilm activities of silver-decorated zinc ferrite nanoparticles synthesized by a gamma irradiation-coupled sol-gel method against some pathogenic bacteria from medical operating room surfaces. RSC Adv 2021; 11:28361-28374. [PMID: 35480774 PMCID: PMC9038124 DOI: 10.1039/d1ra04785j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
This work aimed at the gamma irradiation-assisted synthesis of silver (Ag)-decorated ZnFe2O4 (ZFO) ferrite nanoparticles (NPs), which were tested for their antibacterial and antibiofilm activities against some pathogenic bacteria from medical operating room surfaces. The prepared Ag-decorated ZFO NPs were characterized via XRD, SEM, EDX, elemental mapping, and FTIR analysis. The antibacterial potential was tested as ZOI and MIC, while antibiofilm activity was estimated by the tube method. The growth curve assay, the effect of UV on the antimicrobial activity, and cell membrane leakage were evaluated, and the antibacterial reaction mechanism was investigated by SEM/EDX analysis. The XRD and FTIR results confirmed the successful preparation of Ag-decorated ZFO NPs. Antibacterial results revealed that the most potent decorated sample was Ag0.75@ZFO NPs, recording the most significant inhibition zone against Staphylococcus vitulinus (24.67 ± 0.577 mm) and low MIC (0.097 μg mL-1) against S. vitulinus. The antibiofilm activity of Ag0.75@ZFO NPs was the highest, recorded as 97.3% for S. aureus and 95.25% for Enterococcus columbae. In the case of UV exposure, bacterial growth reached the lowest grade. Finally, it was seen that the amount of cellular protein released from bacterial cells is directly proportional to the concentration of Ag0.75@ZFO NPs, which clearly explains the formation of pits in the cell membrane. The synthesized nanocomposites may find an application after mixing with operating room paints to reduce the harmful effect of pathogenic microbes and, therefore, eliminate bacterial contamination.
Collapse
Affiliation(s)
- M I A Abdel Maksoud
- Materials Science Lab., Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Gharieb S El-Sayyad
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Hanan S El-Bastawisy
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Rasha M Fathy
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
24
|
Almessiere M, Slimani Y, Auwal I, Shirsath S, Gondal M, Sertkol M, Baykal A. Biosynthesis effect of Moringa oleifera leaf extract on structural and magnetic properties of Zn doped Ca-Mg nano-spinel ferrites. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
25
|
Amri N, Massoudi J, Nouri K, Triki M, Dhahri E, Bessais L. Influence of neodymium substitution on structural, magnetic and spectroscopic properties of Ni-Zn-Al nano-ferrites. RSC Adv 2021; 11:13256-13268. [PMID: 35423872 PMCID: PMC8697615 DOI: 10.1039/d0ra10140k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
Ni0.6Zn0.4Al0.5Fe1.5-x Nd x O4 ferrite samples, with x = 0.00, 0.05, 0.075 and 0.1, were synthesized using the sol-gel method. The effects of Nd3+ doping on the structural, magnetic and spectroscopic properties were investigated. XRD Rietveld refinement carried out using the FULLPROF program shows that the Ni-Zn ferrite retains its pure single phase cubic structure with Fd3̄m space group. An increase in lattice constant and porosity happens with increasing Nd3+ concentration. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. The change in Raman modes in the synthesized ferrite system were observed with Nd3+ substitution. The magnetization curves show a typical transition, at the Curie temperature T C, from a low temperature ferrimagnetic state to a high temperature paramagnetic state. The saturation magnetization, coercivity and remanence magnetization are found to be decreasing with increasing the Nd3+ concentration.
Collapse
Affiliation(s)
- N Amri
- Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax B.P. 1171 3000 Sfax Tunisia
| | - J Massoudi
- Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax B.P. 1171 3000 Sfax Tunisia
| | - K Nouri
- ICMPE (UMR 7182), CNRS, UPEC, Université Paris Est 94320 Thiais France
| | - M Triki
- Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Université de Sfax B. P 1171 3000 Sfax Tunisia
| | - E Dhahri
- Laboratoire de Physique Appliquée, Faculté des Sciences de Sfax, Université de Sfax B.P. 1171 3000 Sfax Tunisia
| | - L Bessais
- ICMPE (UMR 7182), CNRS, UPEC, Université Paris Est 94320 Thiais France
| |
Collapse
|
26
|
Jose LM, Raj RSA, Sajan D, Aravind A. Adsorption and photocatalytic activity of biosynthesised ZnO nanoparticles using Aloe Vera leaf extract. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abeec6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
In this article, we demonstrates the growth of phase pure ZnO nanostructures from Aloe-Vera leaf extract and degradation of an organic dye-Malachite Green (MG)- from aqueous medium using the same as catalyst. Adsorption mechanisms were evaluated using Lagergren’s pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. X-Ray diffraction data showed that the synthesised ZnO is crystalline with hexagonal wurtzite phase. Average crystallite size and lattice strain was estimated from Scherrer equation and Williamson-Hall analysis with the help of Rietveld refinement data. Crystallite size obtained from Scherrer method is 12.62 nm while that from Williamson-Hall analysis is 19.27 nm. Uniform growth of ZnO nano-sheets were confirmed by FE-SEM analysis. Optical characterisation was carried by UV-Visible spectroscopy and the band gap ZnO nanoparticles was found to be 3.19 eV. Zn-O stretching vibrations were recorded at 550 cm−1 using FTIR spectrophotometer. Results showed that biosynthesised ZnO nanosheets are particularly effective for the degradation of MG dye.
Collapse
|
27
|
Zhao M, Zhao Z, Lyu Y, Lu W, Jin M, Liu T, Zhu H, Ding Y. Co–Al Spinel as an Efficient Support for Co-Based Fischer–Tropsch Catalyst: The Effect of Metal–Support Interaction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Min Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziang Zhao
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuan Lyu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wei Lu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ming Jin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hejun Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yunjie Ding
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
28
|
Abdel Maksoud M, El-Ghandour A, Ashour A, Atta M, Abdelhaleem S, El-Hanbaly AH, Fahim RA, Kassem SM, Shalaby M, Awed A. La3+ doped LiCo0.25Zn0.25Fe2O4 spinel ferrite nanocrystals: Insights on structural, optical and magnetic properties. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2019.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Sol–gel auto-ignition fabrication of Gd3+ incorporated Ni0.5Co0.5Fe2O4 multifunctional spinel ferrite nanocrystals and its impact on structural, optical and magnetic properties. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03505-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
30
|
Nikzad A, Parvizi R. Presence of neodymium and gadolinium in cobalt ferrite lattice: Structural, magnetic and microwave features for electromagnetic wave absorbing. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
31
|
Unveiling the Effect of Zn2+ Substitution in Enrichment of Structural, Magnetic, and Dielectric Properties of Cobalt Ferrite. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01523-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Narsimulu D, Rao BN, Nagaraju G, Yu JS, Satyanarayana N. Enhanced energy storage performance of nanocrystalline Sm-doped CoFe2O4 as an effective anode material for Li-ion battery applications. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-019-04484-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Rehman S, Almessiere MA, Tashkandi N, Baykal A, Slimani Y, Jermy R, Ravinayagam V, Yaman C. Fabrication of Spinel Cobalt Ferrite (CoFe
2
O
4
) Nanoparticles with Unique Earth Element Cerium and Neodymium for Anticandidal Activities. ChemistrySelect 2019. [DOI: 10.1002/slct.201901811] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Suriya Rehman
- Department of Epidemic Disease ResearchInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Munerah Abdullah Almessiere
- Department of BiophysicsInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
- Department of PhysicsCollege of ScienceImam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Nedaa Tashkandi
- Department of Nano-Medicine ResearchInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nano-Medicine ResearchInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Yassine Slimani
- Department of BiophysicsInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Rabindran Jermy
- Department of Nano-Medicine ResearchInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Vijaya Ravinayagam
- Department of Nano-Medicine ResearchInstitute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
- Deanship of Scientific ResearchImam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| | - Cevat Yaman
- Department of Environmental EngineeringCollege of EngineeringImam Abdulrahman Bin Faisal University, P.O. Box 1982 31441 Dammam Saudi Arabia
| |
Collapse
|
34
|
Slimani Y, Almessiere MA, Korkmaz AD, Guner S, Güngüneş H, Sertkol M, Manikandan A, Yildiz A, Akhtar S, Shirsath SE, Baykal A. Ni 0.4Cu 0.2Zn 0.4Tb xFe 2-xO 4 nanospinel ferrites: Ultrasonic synthesis and physical properties. ULTRASONICS SONOCHEMISTRY 2019; 59:104757. [PMID: 31479888 DOI: 10.1016/j.ultsonch.2019.104757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/27/2023]
Abstract
The Fe3+ ions were replace with Tb3+ ions as highly paramagnetic rare earth element within the structure of Ni0.4Cu0.2Zn0.4Fe2O4 nano-spinel ferrites (NSFs). The structural, magnetic, spectroscopic and optic properties have been studied in details. All products have been synthesized via ultrasonic approach via Qsonica ultrasonic homogenizer, frequency: 20 kHz and power: 70 W for 60 min. No annealing or calcination process was applied for any product. The microstructural analysis of products has been done via X-ray powder diffractometry (XRD) which presented the cubic spinel structure with nanosized distribution of all. The cubic morphology of all products were confirmed by both HR-TEM and FE-SEM. Optical band gap (Eg) values were assessed by applying %DR (percent diffuse reflectance) analysis and Kubelka-Munk theory. The Tauc schemes showed that Eg values are in a narrow range (1.87-1.98 eV). The quadrupole splitting, line width, hyperfine magnetic field, isomer shift values and cation distribution have been determined from 57Fe Mossbauer analysis. The magnetic properties of various nanoparticles have been obtained from VSM (vibration sample magnetometer) measurements at 10 and 300 K (RT). The magnetic results revealed superparamagnetic and soft ferromagnetic traits at 10 and 300 K, respectively. Ms (saturation magnetization) and Mr (remanence) initially increase with increasing Tb3+ substituting level up to x = 0.06 then diminish for further x values. Hc (coercivity) shows an opposite variation tendency of Ms and Mr. The observed magnetic traits are deeply discussed in relation with the structure, morphology, magnetic moments and cation distributions.
Collapse
Affiliation(s)
- Y Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - M A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - A Demir Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Uskudar, Turkey
| | - S Guner
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - H Güngüneş
- Department of Physics, Hitit University, 19030 Çevre Yolu Bulvarı-Çorum, Turkey
| | - M Sertkol
- Deanship of Preparatory Year Building 450, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - A Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai 600073, Tamil Nadu, India
| | - A Yildiz
- Department of Textile Engineering, Namık Kemal University, 59860 Corlu-Tekirdag, Turkey
| | - S Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Sagar E Shirsath
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - A Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
35
|
Almessiere MA, Slimani Y, Korkmaz AD, Guner S, Sertkol M, Shirsath SE, Baykal A. Structural, optical and magnetic properties of Tm 3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. ULTRASONICS SONOCHEMISTRY 2019; 54:1-10. [PMID: 30833194 DOI: 10.1016/j.ultsonch.2019.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/13/2019] [Accepted: 02/24/2019] [Indexed: 05/24/2023]
Abstract
Co-Tm nano-spinel ferrite with chemical formula CoTmxFe2-xO4 (0.0 ≤ x ≤ 0.08) NPs were prepared via sonochemical approach. X-ray powder diffraction patterns, microscopic images (SEM and TEM) and infrared spectra proved the formation of Co spinel ferrite. The effect of Tm3+ substituted on spinal structure was evaluated by lattice parameters, tetrahedral and octahedral bond length and cationic distribution. The band gap energy (Eg) of samples were estimated by performing UV-Vis percent diffuse reflectance (% DR) and applying the Kubelka-Munk theory. Eg values are in an interval between 1.33 eV and 1.64 eV. The analyses of magnetization were performed at room (300 K; RT) and low (10 K) temperatures. Different magnetic parameters including coercivity Hc, saturation magnetization Ms, remanence Mr, squareness ratio (SQR = Mr/Ms) and magnetic moment nB were deduced and discussed. The results showed superparamagnetic (SPM) nature at RT for x = 0.00 and 0.02 samples. However, the other products exhibit ferromagnetic (FM) nature. At 10 K, all synthesized NPs display FM behavior. An amazing increase in the magnitudes of Ms, Mr and Hc was observed at 10 K in comparison to RT, which is principally due to the reduced thermal fluctuations of magnetic moments at lower temperatures. The Tm3+ substitution affects considerably the magnetizations data. An enhancement in the Ms, Mr, and nB was detected on increasing the Tm3+ concentration. The SQR values at RT are found to be smaller than 0.5 postulating a single domain nature with uniaxial anisotropy for all produced ferrites. However, SQRs are in the range 0.66-0.76 at 10 K, suggesting the multi magnetic domain at low temperature, except the x = 0.02 product where the SQR = 0.47 indicating the single magnetic domain. The obtained magnetic results were investigated deeply with relation to structural and microstructural properties.
Collapse
Affiliation(s)
- M A Almessiere
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia; Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Y Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - A D Korkmaz
- Department of Chemistry, Istanbul Medeniyet University, 34700 Istanbul, Uskudar, Turkey
| | - S Guner
- Institute of Inorganic Chemistry, RWTH Aachen University, D-52074 Aachen, Germany
| | - M Sertkol
- Deanship of Preparatory Year Building 450, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Sagar E Shirsath
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
| | - A Baykal
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
36
|
Jadhav S, Shewale P, Shin B, Patil M, Kim G, Rokade A, Park S, Bohara R, Yu Y. Study of structural and magnetic properties and heat induction of gadolinium-substituted manganese zinc ferrite nanoparticles for in vitro magnetic fluid hyperthermia. J Colloid Interface Sci 2019; 541:192-203. [DOI: 10.1016/j.jcis.2019.01.063] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 12/16/2022]
|
37
|
Almessiere MA, Slimani Y, Korkmaz AD, Baykal A, Güngüneş H, Sözeri H, Shirsath SE, Güner S, Akhtar S, Manikandan A. Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized via sonochemical route. RSC Adv 2019; 9:30671-30684. [PMID: 35529361 PMCID: PMC9072207 DOI: 10.1039/c9ra06353f] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/19/2019] [Indexed: 01/12/2023] Open
Abstract
In the current study, Ni0.4Cu0.2Zn0.4LaxYxFe2−xO4 (x = 0.00 − 0.10) nanospinel ferrites (NSFs) were fabricated via an ultrasonic irradiation route. The creation of single phase of spinel nanoferrites (NSFs) was investigated by X-ray powder diffractometry (XRD) and selected area diffraction pattern (SAED). The cubic morphology of all samples was confirmed by scanning and transmission electron microscopies (SEM and TEM) respectively. The UV-Vis investigations provided the direct optical energy band gap values in a narrow photon energy interval of 1.87–1.92 eV. The 57Fe Mössbauer spectroscopy analysis explained that the hyperfine magnetic fields of Octahedral (Oh) and Tetrahedral (Td) sites decreased with substitution. The paramagnetic properties of NPs decrease with increase of content of doped ions. Investigations of magnetic properties reveal a superparamagnetic nature at 300 K and soft ferromagnetic trait at 10 K. The Ms (saturation magnetization) and Mr (remanence) decrease and the Hc (coercivity) increases slightly with La3+ and Y3+ substitution. The observed magnetic traits are deeply discussed in relation with the morphology, structure, magnetic moments and cation distributions. The microwave characterization of the prepared NSFs showed that, dissipation (i.e., absorption) of incoming microwave energy occurs at a single frequency, for each sample, lying between 7 and 10.5 GHz. The reflection losses (RL) at these frequencies range from −30 to −40 dB and the mechanism of which is explained in the framework of dipolar relaxation and spin rotation. The best microwave properties were obtained with a LaY concentration of x = 0.08 having an RL of −40 dB @ 10.5 GHz and an absorption bandwidth of 8.4 GHz @ −10 dB. With these high values of RL and absorbing bandwidth, LaY doped NiCuZn NSF products would be promising candidates for radar absorbing materials in the X-band. The best microwave properties for the NSFs were obtained with an LaY concentration of x = 0.08, RL of −40 dB @ 10.5 GHz and absorption bandwidth of 8.4 GHz @ −10 dB. The NSF products show promise as radar absorbing materials in the X-band.![]()
Collapse
Affiliation(s)
- M. A. Almessiere
- Department of Biophysics
- Institute for Research & Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam
- Saudi Arabia
| | - Y. Slimani
- Department of Biophysics
- Institute for Research & Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam
- Saudi Arabia
| | - A. Demir Korkmaz
- Department of Chemistry
- Istanbul Medeniyet University
- Istanbul
- Turkey
| | - A. Baykal
- Department of Nanomedicine
- Institute for Research & Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam
- Saudi Arabia
| | - H. Güngüneş
- Department of Physics
- Hitit University
- Çorum
- Turkey
| | - H. Sözeri
- TUBITAK-UME
- National Metrology Institute
- Turkey
| | - Sagar E. Shirsath
- School of Materials Science and Engineering
- University of New South Wales
- Sydney
- Australia
| | - S. Güner
- Institute of Inorganic Chemistry
- RWTH Aachen University
- D-52074 Aachen
- Germany
| | - S. Akhtar
- Department of Biophysics
- Institute for Research & Medical Consultations (IRMC)
- Imam Abdulrahman Bin Faisal University
- Dammam
- Saudi Arabia
| | - A. Manikandan
- Department of Chemistry
- Bharath Institute of Higher Education and Research (BIHER)
- Bharath University
- Chennai
- India
| |
Collapse
|
38
|
Sensitive 1,2-dichlorobenzene chemi-sensor development based on solvothermally prepared FeO/CdO nanocubes for environmental safety. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Pawar RA, Patange SM, Shitre AR, Gore SK, Jadhav SS, Shirsath SE. Crystal chemistry and single-phase synthesis of Gd3+substituted Co–Zn ferrite nanoparticles for enhanced magnetic properties. RSC Adv 2018; 8:25258-25267. [PMID: 35542154 PMCID: PMC9082527 DOI: 10.1039/c8ra04282a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/21/2018] [Indexed: 11/21/2022] Open
Abstract
Rare earth (RE) ions are known to improve the magnetic interactions in spinel ferrites if they are accommodated in the lattice, whereas the formation of a secondary phase leads to the degradation of the magnetic properties of materials.
Collapse
Affiliation(s)
- R. A. Pawar
- Department of Physics
- Arts, Commerce and Science College
- India
| | | | - A. R. Shitre
- Department of Physics
- Yashwantrao Chavan Mahavidyalaya
- Osmanabad 413601
- India
| | - S. K. Gore
- Dnyanopasak Shikshan Mandal's Arts, Commerce and Science College
- Jintur 431509
- India
| | - S. S. Jadhav
- Dnyanopasak Shikshan Mandal's Arts, Commerce and Science College
- Jintur 431509
- India
| | - Sagar E. Shirsath
- School of Materials Science and Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
40
|
Yadav RS, Kuřitka I, Vilcakova J, Havlica J, Kalina L, Urbánek P, Machovsky M, Skoda D, Masař M, Holek M. Sonochemical synthesis of Gd 3+ doped CoFe 2O 4 spinel ferrite nanoparticles and its physical properties. ULTRASONICS SONOCHEMISTRY 2018; 40:773-783. [PMID: 28946484 DOI: 10.1016/j.ultsonch.2017.08.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 06/07/2023]
Abstract
In this work, a facile and green method for gadolinium doped cobalt ferrite (CoFe2-xGdxO4; x=0.00, 0.05, 0.10, 0.15, 0.20) nanoparticles by using ultrasonic irradiation was reported. The impact of Gd3+ substitution on the structural, magnetic, dielectric and electrical properties of cobalt ferrite nanoparticles was evaluated. The sonochemically synthesized spinel ferrite nanoparticles were characterized by X-ray Diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM). X-ray diffraction (XRD) study confirmed the formation of single phase spinel ferrite of CoFe2-xGdxO4 nanoparticles. XRD results also revealed that ultrasonic irradiation seems to be favourable to achieve highly crystalline single crystal phase gadolinium doped cobalt ferrite nanoparticles without any post annealing process. Fourier Transform Infrared and Raman Spectra confirmed the formation of spinel ferrite crystal structure. X-ray photoelectron spectroscopy revealed the impact of Gd3+ substitution in CoFe2O4 nanoparticles on cation distribution at the tetrahedral and octahedral site in spinel ferrite crystal system. The electrical properties showed that the Gd3+ doped cobalt ferrite (CoFe2-xGdxO4; x=0.20) exhibit enhanced dielectric constant (277 at 100Hz) and ac conductivity (20.2×10-9S/cm at 100Hz). The modulus spectroscopy demonstrated the impact of Gd3+ substitution in cobalt ferrite nanoparticles on grain boundary relaxation time, capacitance and resistance. Magnetic property measurement revealed that the coercivity decreases with Gd3+ substitution from 234.32Oe (x=0.00) to 12.60Oe (x=0.05) and further increases from 12.60Oe (x=0.05) to 68.62Oe (x=0.20). Moreover, saturation magnetization decreases with Gd3+ substitution from 40.19emu/g (x=0.00) to 21.58emu/g (x=0.20). This work demonstrates that the grain size and cation distribution in Gd3+ doped cobalt ferrite nanoparticles synthesized by sonochemical method, is effective in controlling the structural, magnetic, and electrical properties, and can be find very promising applications.
Collapse
Affiliation(s)
- Raghvendra Singh Yadav
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic.
| | - Ivo Kuřitka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Jarmila Vilcakova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Jaromir Havlica
- Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic
| | - Lukas Kalina
- Materials Research Centre, Brno University of Technology, Purkyňova 464/118, 61200 Brno, Czech Republic
| | - Pavel Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Michal Machovsky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - David Skoda
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Milan Masař
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| | - Martin Holek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic
| |
Collapse
|
41
|
Bagade A, Ganbavle V, Mohite S, Dongale T, Sinha B, Rajpure K. Assessment of structural, morphological, magnetic and gas sensing properties of CoFe 2 O 4 thin films. J Colloid Interface Sci 2017; 497:181-192. [DOI: 10.1016/j.jcis.2017.02.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 10/20/2022]
|
42
|
The structural and magnetic properties of dual phase cobalt ferrite. Sci Rep 2017; 7:2524. [PMID: 28566686 PMCID: PMC5451463 DOI: 10.1038/s41598-017-02784-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 04/19/2017] [Indexed: 12/02/2022] Open
Abstract
The bismuth (Bi3+)-doped cobalt ferrite nanostructures with dual phase, i.e. cubic spinel with space group Fd3m and perovskite with space group R3c, have been successfully engineered via self-ignited sol-gel combustion route. To obtain information about the phase analysis and structural parameters, like lattice constant, Rietveld refinement process is applied. The replacement of divalent Co2+ by trivalent Bi3+ cations have been confirmed from energy dispersive analysis of the ferrite samples. The micro-structural evolution of cobalt ferrite powders at room temperature under various Bi3+ doping levels have been identified from the digital photoimages recorded using scanning electron microscopy. The hyperfine interactions, like isomer shift, quadrupole splitting and magnetic hyperfine fields, and cation distribution are confirmed from the Mossbauer spectra. Saturation magnetization is increased with Bi3+-addition up to x = 0.15 and then is decreased when x = 0.2. The coercivity is increased from 1457 to 2277 G with increasing Bi3+-doping level. The saturation magnetization, coercivity and remanent ratio for x = 0.15 sample is found to be the highest, indicating the potential of Bi3+-doping in enhancing the magnetic properties of cobalt ferrite.
Collapse
|
43
|
Alves TEP, Pessoni HVS, Franco Jr. A. The effect of Y3+ substitution on the structural, optical band-gap, and magnetic properties of cobalt ferrite nanoparticles. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp02167d] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study we investigated the structural, optical band-gap, and magnetic properties of CoYxFe2−xO4 (0 ≤ x ≤ 0.04) nanoparticles (NPs) synthesized using a combustion reaction method without the need for subsequent heat treatment or the calcing process.
Collapse
Affiliation(s)
- T. E. P. Alves
- Instituto de Fisica
- Universidade Federal de Goias
- Goiania
- Brazil
- Instituto de Quimica
| | | | - A. Franco Jr.
- Instituto de Fisica
- Universidade Federal de Goias
- Goiania
- Brazil
| |
Collapse
|
44
|
Kakade SG, Kambale RC, Ramanna CV, Kolekar YD. Crystal strain, chemical bonding, magnetic and magnetostrictive properties of erbium (Er3+) ion substituted cobalt-rich ferrite (Co1.1Fe1.9−xErxO4). RSC Adv 2016. [DOI: 10.1039/c6ra03377f] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Induced strain and magnetostrictive coefficient (λ11) with the applied magnetic field (H) for different compositions of Co1.1Fe1.9−xErxO4.
Collapse
Affiliation(s)
- S. G. Kakade
- Department of Physics
- Savitribai Phule Pune University
- Pune–411 007
- India
| | - R. C. Kambale
- Department of Physics
- Savitribai Phule Pune University
- Pune–411 007
- India
| | - C. V. Ramanna
- Department of Mechanical Engineering
- University of Texas at El Paso
- El Paso
- USA
| | - Y. D. Kolekar
- Department of Physics
- Savitribai Phule Pune University
- Pune–411 007
- India
| |
Collapse
|
45
|
Sharma R, Bansal S, Singhal S. Augmenting the catalytic activity of CoFe2O4 by substituting rare earth cations into the spinel structure. RSC Adv 2016. [DOI: 10.1039/c6ra14325c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The current research work evaluates significant enhancement in photo-Fenton activity of pristine cobalt ferrite (CoFe2O4) by inserting very small quantity of rare earth cations such as cerium (Ce3+) and lanthanum (La3+) into its spinel structure.
Collapse
Affiliation(s)
- Rimi Sharma
- Department of Chemistry
- Panjab University
- Chandigarh
- India – 160014
| | | | - Sonal Singhal
- Department of Chemistry
- Panjab University
- Chandigarh
- India – 160014
| |
Collapse
|
46
|
Atif M, Idrees M, Nadeem M, Siddique M, Ashraf MW. Investigation on the structural, dielectric and impedance analysis of manganese substituted cobalt ferrite i.e., Co1−xMnxFe2O4 (0.0 ≤ x ≤ 0.4). RSC Adv 2016. [DOI: 10.1039/c5ra20621a] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The microstructure and cation distribution of Co1−xMnxFe2O4 were investigated and correlated with their electrical properties. Here, Mn substitution enhances the resistive properties which make them favorable for high-frequency applications.
Collapse
Affiliation(s)
- M. Atif
- Functional Materials Lab
- Department of Physics
- Air University
- Islamabad
- Pakistan
| | - M. Idrees
- Department of Physics
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - M. Nadeem
- Physics Division
- Directorate of Science
- PINSTECH
- Islamabad
- Pakistan
| | - M. Siddique
- Physics Division
- Directorate of Science
- PINSTECH
- Islamabad
- Pakistan
| | - M. W. Ashraf
- Department of Mathematics & Natural Sciences
- Prince Mohammad Bin Fahd University
- Al Khobar 31952
- Kingdom of Saudi Arabia
| |
Collapse
|
47
|
Wang L, Li S, Li J, Liu M, Xu S, Li H. Sol–gel synthesis and characterization of single-phase CoLaxFe2−xO4 ferrite nanoparticles dispersed in a SiO2 matrix. RSC Adv 2016. [DOI: 10.1039/c5ra26351d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-phase CoLaxFe2−xO4 (x = 0, 0.05, 0.10, 0.15, 0.20) nanoparticles dispersed in a SiO2 (30 wt%) matrix were synthesized by a sol–gel method.
Collapse
Affiliation(s)
- Li Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Shanshan Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Ji Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Mei Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Shichong Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| | - Haibo Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education
- Jilin Normal University
- Siping 136000
- China
| |
Collapse
|