1
|
Moon S, Yoo J, Lee W, Lee K. Enhancement of electrochemical detection performance towards 2,4,6-trinitrotoluene by a bottom layer of ZnO nanorod arrays. Heliyon 2023; 9:e15880. [PMID: 37215872 PMCID: PMC10192408 DOI: 10.1016/j.heliyon.2023.e15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The ZnO nanostructure layers have been widely investigated as electrodes for sensors due to their intrinsic advantages such as high active area and low cost. In this work, to enhance the detection properties of ZnO nanostructural electrodes, self-organized ZnO nanorod arrays were synthesized using the chemical bath deposition (CBD) method on FTO glasses and ZnO nanoparticles. The fabricated ZnO electrodes on the two different substrates were characterized by SEM, TEM, XRD, and XPS. Subsequently, the detection performance of ZnO nanorod electrodes was electrochemically measured in a 2,4,6-trinitrotoluene (2,4,6-TNT) solution by CV and EIS. The differences in current densities between the ZnO electrodes were determined by the width of the ZnO nanorods, resulting in a ∼45% higher detection efficiency with F-CBD (the ZnO nanorods on FTO) electrodes compared to S-CBD (the ZnO nanorods on ZnO nanoparticles) electrodes.
Collapse
Affiliation(s)
- Sanghyeon Moon
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - JeongEun Yoo
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Wonjoo Lee
- Aerospace and Defence Reliability Center, Korea Testing Laboratory, 10 Chungui-ro, Jinju-si, Gyeongsangnam-do, 52852, Republic of Korea
| | - Kiyoung Lee
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| |
Collapse
|
2
|
Lopat’eva ER, Krylov IB, Segida OO, Merkulova VM, Ilovaisky AI, Terent’ev AO. Heterogeneous Photocatalysis as a Potent Tool for Organic Synthesis: Cross-Dehydrogenative C-C Coupling of N-Heterocycles with Ethers Employing TiO 2/ N-Hydroxyphthalimide System under Visible Light. Molecules 2023; 28:molecules28030934. [PMID: 36770603 PMCID: PMC9920906 DOI: 10.3390/molecules28030934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Despite the obvious advantages of heterogeneous photocatalysts (availability, stability, recyclability, the ease of separation from products and safety) their application in organic synthesis faces serious challenges: generally low efficiency and selectivity compared to homogeneous photocatalytic systems. The development of strategies for improving the catalytic properties of semiconductor materials is the key to their introduction into organic synthesis. In the present work, a hybrid photocatalytic system involving both heterogeneous catalyst (TiO2) and homogeneous organocatalyst (N-hydroxyphthalimide, NHPI) was proposed for the cross-dehydrogenative C-C coupling of electron-deficient N-heterocycles with ethers employing t-BuOOH as the terminal oxidant. It should be noted that each of the catalysts is completely ineffective when used separately under visible light in this transformation. The occurrence of visible light absorption upon the interaction of NHPI with the TiO2 surface and the generation of reactive phthalimide-N-oxyl (PINO) radicals upon irradiation with visible light are considered to be the main factors determining the high catalytic efficiency. The proposed method is suitable for the coupling of π-deficient pyridine, quinoline, pyrazine, and quinoxaline heteroarenes with various non-activated ethers.
Collapse
|
3
|
Modelling the Interaction between Carboxylic Acids and Zinc Oxide: Insight into Degradation of ZnO Pigments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113362. [PMID: 35684300 PMCID: PMC9181975 DOI: 10.3390/molecules27113362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022]
Abstract
Computational modelling applied to cultural heritage can assist the characterization of painting materials and help to understand their intrinsic and external degradation processes. The degradation of the widely employed zinc oxide (ZnO)—a white pigment mostly used in oil paints—leads to the formation of metal soaps, complexes of Zn ions and long-chain fatty acids coming from the degradation of the oil binder. Being a serious problem affecting the appearance and the structural integrity of many oil paintings, it is relevant to characterize the structure of these complexes and to understand the reaction pathways associated with this degradation process. Density functional theory (DFT) calculations were performed to investigate the adsorption of the acetate and acetic acid on relatively large ZnO clusters and the formation of Zn–acetate complexes. Carboxylic acids with longer alkyl chains were then investigated as more realistic models of the fatty acids present in the oil medium. In addition, DFT calculations using a periodic ZnO slab were performed in order to compare the obtained results at different levels of theory. Optimization calculations as well as the formation energies of the ZnO@carboxylate coupled systems and the thermodynamics leading to possible degradation products were computed. Our results highlight the potential for DFT calculations to provide a better understanding of oil paint degradation, with the aim of contributing to the development of strengthening and conservation strategies of paintings.
Collapse
|
4
|
Omran BA, Baek KH. Valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment: Approaching green chemistry and circular economy principles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114806. [PMID: 35240500 DOI: 10.1016/j.jenvman.2022.114806] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most critical issues worldwide and is a priority in all scientific agendas. Green nanotechnology presents a plethora of promising avenues for wastewater treatment. This review discusses the current trends in the valorization of zero-cost, biodegradable, and readily available agro-industrial biowaste to produce green bio-nanocatalysts and bio-nanosorbents for wastewater treatment. The promising roles of green bio-nanocatalysts and bio-nanosorbents in removing organic and inorganic water contaminants are discussed. The potent antimicrobial activity of bio-derived nanodisinfectants against water-borne pathogenic microbes is reviewed. The bioactive molecules involved in the chelation and tailoring of green synthesized nanomaterials are highlighted along with the mechanisms involved. Furthermore, this review emphasizes how the valorization of agro-industrial biowaste to green nanomaterials for wastewater treatment adheres to the fundamental principles of green chemistry, circular economy, nexus thinking, and zero-waste manufacturing. The potential economic, environmental, and health impacts of valorizing agro-industrial biowaste to green nanomaterials are highlighted. The challenges and future outlooks for the management of agro-industrial biowaste and safe application of green nanomaterials for wastewater treatment are summarized.
Collapse
Affiliation(s)
- Basma A Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Sakib S, Hosseini A, Zhitomirsky I, Soleymani L. Photoelectrochemical IL-6 Immunoassay Manufactured on Multifunctional Catecholate-Modified TiO 2 Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50851-50861. [PMID: 34664926 DOI: 10.1021/acsami.1c18240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is an increasing interest in using photoelectrochemistry for enhancing the signal-to-noise ratio and sensitivity of electrochemical biosensors. Nevertheless, it remains challenging to create photoelectrochemical biosensors founded on stable material systems that are also easily biofunctionalized for sensing applications. Herein, a photoelectrochemical immunosensor is reported, in which the concentration of the target protein directly correlates to a change in the measured photocurrent. The material system for the photoelectrode signal transducer involves using catecholate ligands to modify the properties of TiO2 nanostructures in a three-pronged approach of morphology tuning, photoabsorption enhancement, and facilitating bioconjugation. The catecholate-modified TiO2 photoelectrode is combined with a signal-off direct immunoassay to detect interleukin-6 (IL-6), a key biomarker for diagnosing and monitoring various diseases. Catecholate ligands are added during hydrothermal synthesis of TiO2 to enable the growth of three-dimensional nanostructures to form highly porous photoelectrodes that provide a three-dimensional scaffold for immobilizing capture antibodies. Surface modification by catecholate ligands greatly enhances photocurrent generation of the TiO2 photoelectrodes by improving photoabsorption in the visible range. Additionally, catecholate molecules facilitate bioconjugation and probe immobilization by forming a Schiff-base between their -COH group and the -NH2 group of the capture antibodies. The highest photocurrent achieved herein is 8.89 μA cm-2, which represents an enhancement by a factor of 87 from unmodified TiO2. The fabricated immunosensor shows a limit-of-detection of 3.6 pg mL-1 and a log-linear dynamic range of 2-2000 pg mL-1 for IL-6 in human blood plasma.
Collapse
Affiliation(s)
- Sadman Sakib
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
| | - Amin Hosseini
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Igor Zhitomirsky
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton L8S 4L7, Canada
- School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, Canada
| |
Collapse
|
6
|
Dispersant Molecules with Functional Catechol Groups for Supercapacitor Fabrication. Molecules 2021; 26:molecules26061709. [PMID: 33808543 PMCID: PMC8003128 DOI: 10.3390/molecules26061709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022] Open
Abstract
Cathodes for supercapacitors with enhanced capacitive performance are prepared using MnO2 as a charge storage material and carbon nanotubes (CNT) as conductive additives. The enhanced capacitive properties are linked to the beneficial effects of catecholate molecules, such as chlorogenic acid and 3,4,5-trihydroxybenzamide, which are used as co-dispersants for MnO2 and CNT. The dispersant interactions with MnO2 and CNT are discussed in relation to the chemical structures of the dispersant molecules and their biomimetic adsorption mechanisms. The dispersant adsorption is a key factor for efficient co-dispersion in ethanol, which facilitated enhanced mixing of the nanostructured components and allowed for improved utilization of charge storage properties of the electrode materials with high active mass of 40 mg cm−2. Structural peculiarities of the dispersant molecules are discussed, which facilitate dispersion and charging. Capacitive properties are analyzed using cyclic voltammetry, chronopotentiometry and impedance spectroscopy. A capacitance of 6.5 F cm−2 is achieved at a low electrical resistance. The advanced capacitive properties of the electrodes are linked to the microstructures of the electrodes prepared in the presence of the dispersants.
Collapse
|
7
|
Sayed HM, Said MM, Morcos NYS, El Gawish MA, Ismail AFM. Antitumor and Radiosensitizing Effects of Zinc Oxide-Caffeic Acid Nanoparticles against Solid Ehrlich Carcinoma in Female Mice. Integr Cancer Ther 2021; 20:15347354211021920. [PMID: 34105411 PMCID: PMC8193661 DOI: 10.1177/15347354211021920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the anticancer and radio-sensitizing efficacy of Zinc Oxide-Caffeic Acid Nanoparticles (ZnO-CA NPs). ZnO-CA NPs were formulated by the conjugation of Zinc Oxide nanoparticles (ZnO NPs) with caffeic acid (CA) that were characterized by Fourier Transform Infrared Spectra (FT-IR), X-ray Diffractometer (XRD), and Transmission Electron Microscopy (TEM). In vitro anticancer potential of ZnO-CA NPs was evaluated by assessing cell viability in the human breast (MCF-7) and hepatocellular (HepG2) carcinoma cell lines. In vivo anticancer and radio-sensitizing effects of ZnO-CA NPs in solid Ehrlich carcinoma-bearing mice (EC mice) were also assessed. Treatment of EC mice with ZnO-CA NPs resulted in a considerable decline in tumor size and weight, down-regulation of B-cell lymphoma 2 (BCL2) and nuclear factor kappa B (NF-κB) gene expressions, decreased vascular cell adhesion molecule 1 (VCAM-1) level, downregulation of phosphorylated-extracellular-regulated kinase 1 and 2 (p-ERK1/2) protein expression, DNA fragmentation and a recognizable peak at sub-G0/G1 indicating dead cells' population in cancer tissues. Combined treatment of ZnO-CA NPs with γ-irradiation improved these effects. In conclusion: ZnO-CA NPs exhibit in-vitro as well as in-vivo antitumor activity, which is augmented by exposure of mice to γ-irradiation. Further explorations are warranted previous to clinical application of ZnO-CA NPs.
Collapse
Affiliation(s)
- Hayam M. Sayed
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Mahmoud M. Said
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Nadia Y. S. Morcos
- Biochemistry Department, Faculty of
Science, Ain Shams University, Cairo, Egypt
| | - Mona A. El Gawish
- Radiation Biology Department, National
Center for Radiation Research and Technology, Egyptian Atomic Energy Authority,
Cairo, Egypt
| | - Amel F. M. Ismail
- Drug Radiation Research Department,
National Center for Radiation Research and Technology, Egyptian Atomic Energy
Authority, Cairo, Egypt
| |
Collapse
|
8
|
Lazić V, Živković LS, Sredojević D, Fernandes MM, Lanceros-Mendez S, Ahrenkiel SP, Nedeljković JM. Tuning Properties of Cerium Dioxide Nanoparticles by Surface Modification with Catecholate-type of Ligands. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9738-9746. [PMID: 32787065 DOI: 10.1021/acs.langmuir.0c01163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium dioxide (CeO2) finds applications in areas such as corrosion protection, solar cells, or catalysis, finding increasing applications in biomedicine. This work reports on surface-modified CeO2 particles in order to tune their applicability in the biomedical field. Stable aqueous CeO2 sol, consisting of 3-4 nm in size crystallites, was synthesized using forced hydrolysis. The coordination of catecholate-type of ligands (catechol, caffeic acid, tiron, and dopamine) to the surface-Ce atoms is followed with the appearance of absorption in the visible spectral range as a consequence of interfacial charge-transfer complex formation. The spectroscopic observations are complemented with the density functional theory calculations using a cluster model. The synthesized samples were characterized by X-ray diffraction analysis, transmission electron microscopy, and nitrogen adsorption-desorption isotherms. The ζ-potential measurements indicated that the stability of CeO2 sol is preserved upon surface modification. The pristine CeO2 nanoparticles (NPs) are nontoxic against pre-osteoblast cells in the entire studied concentration range (up to 1.5 mM). Hybrid CeO2 NPs, capped with dopamine or caffeic acid, display toxic behavior for concentrations ≥0.17 and 1.5 mM, respectively. On the other hand, surface-modified CeO2 NPs with catechol and tiron promote the proliferation of pre-osteoblast cells.
Collapse
Affiliation(s)
- Vesna Lazić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Ljiljana S Živković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Dušan Sredojević
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| | - Margarida M Fernandes
- Centre of Physics, University of Minho, 4710-057 Braga, Portugal
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - S Phillip Ahrenkiel
- South Dakota School of Mines and Technology, 501 E. Saint Joseph Street, Rapid City, South Dakota 57701, United States
| | - Jovan M Nedeljković
- Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia
| |
Collapse
|
9
|
Yu J, Cheng B, Ejima H. Effect of molecular weight and polymer composition on gallol-functionalized underwater adhesive. J Mater Chem B 2020; 8:6798-6801. [PMID: 32301472 DOI: 10.1039/d0tb00706d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite high demands from various industries, strong adhesion in a wet environment remains challenging. We investigated the underwater adhesion of gallol-functionalized polymers as a function of molecular weight and gallol content. By optimizing these parameters, the underwater adhesion strength of aluminium substrates exceeded 4 MPa. Therefore, the biomimetic molecular design of phenolic polymers is effective for the development of strong underwater adhesives.
Collapse
Affiliation(s)
- Jinhong Yu
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Japan.
| | | | | |
Collapse
|
10
|
Chen T, Yang H, Yang M, Liu F, Wu J, Yang S, Wang J. Controlling DOPA adsorption via interacting with polyelectrolytes: layer structure and corrosion resistance. SOFT MATTER 2020; 16:4912-4918. [PMID: 32393946 DOI: 10.1039/d0sm00420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein adsorption on polyelectrolyte (PE) surfaces has aroused intensive attraction, but there are still few investigations on tuning the protein adsorption at a solid surface by controllable layer structures and surface properties of PE adlayers. Furthermore, there is a lack of understanding regarding the correlation between molecular conformation and anticorrosion performance of composite materials. With this in mind, we synthesized a series of PEs and constructed 3,4-dihydroxy-l-phenylalanine (l-DOPA) adlayers on the PE surfaces, monitoring the whole adsorption process in situ. A highly charged cationic PE surface exhibits a low adhesion of DOPA molecules, leading to a loose structure, rough surface morphology, and strong solvation effects and, accordingly, this kind of multilayer provides a poor anticorrosion capacity. In comparison, amphiphilic and highly charged cationic PE surfaces are in favor of DOPA adsorption and the formation of compact and smooth multilayers due to cation-π and hydrophobic interactions between DOPA and PEs. Interestingly, one of the multilayers exhibits a remarkable enhancement of inhibition efficiency of about 460-fold compared with that of the bare substrate, which is much higher than that of other anticorrosion coatings reported previously. Our findings reveal the interaction mechanism between DOPA and PE surfaces to achieve the controllable adsorption of biomolecules, providing a promising way to optimize the layer structures to improve the anticorrosion capacity.
Collapse
Affiliation(s)
- Ting Chen
- CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Amini SM, Akbari A. Metal nanoparticles synthesis through natural phenolic acids. IET Nanobiotechnol 2019; 13:771-777. [PMID: 31625516 PMCID: PMC8676617 DOI: 10.1049/iet-nbt.2018.5386] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/27/2019] [Accepted: 07/08/2019] [Indexed: 10/24/2023] Open
Abstract
For being applied in medicine as therapeutic agents, nanostructures need to be biocompatible and eco-friendly. Plant-derived phenolic acids have been utilised for green synthesis of metallic or metallic oxide nanoparticles (NPs). The phenolic acids play role as both reducing agents and stabilisers in the process of NPs synthesis. Many experiments have been dedicated to develop efficient green synthesis techniques for producing metal NPs. Using phenolic acids represents a reproducible, simple, profitable, and cost-effective strategy to synthesise metal NPs. As a phytochemical for metal NPs synthesis, phenolic acids are antioxidants that represent many health benefits. However, limited studies have been dedicated to the synthesis and characterisation of NPs produced by phenolic acids. Thus, this review focused on phenolic acids mediated nanomaterial synthesis and its biomedical applications. It should be noted the mechanism of metal ion bioreduction, phenolic acids surface adsorption, characterisation, and toxicity of metal NPs made with different phenolic acids have been discussed in this review.
Collapse
Affiliation(s)
- Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Smičiklas ID, Lazić VM, Živković LS, Porobić SJ, Ahrenkiel SP, Nedeljković JM. Sorption of divalent heavy metal ions onto functionalized biogenic hydroxyapatite with caffeic acid and 3,4-dihydroxybenzoic acid. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 54:899-905. [PMID: 31045468 DOI: 10.1080/10934529.2019.1606575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 06/09/2023]
Abstract
The sorption ability of biogenic hydroxyapatite (BHAP) towards heavy metal ions (Pb, Cu, Ni, Cd, and Zn) is compared with functionalized BHAP powders with caffeic acid (CA) and 3,4-dihydroxybenzoic acid (3,4-DHBA). The functionalization of the BHAP with either CA or 3,4-DHBA is indicated by the appearance of the colored powders due to the formation of the interfacial charge transfer (ICT) complexes. The detailed characterization of as-prepared and functionalized BHAP samples was performed using transmission electron microscopy, reflection spectroscopy, thermogravimetric analysis and determination of zeta potential. All three sorbents clearly displayed preferential sorption of Pb ions when the total concentration of multi-component equimolar solutions of heavy metal ions is high. It should be emphasized that the sorption capacity of functionalized BHAP with either CA or 3,4-BHAP was found to be higher, up to 60%, compared to as-prepared BHAP without the decrease of selectivity towards Pb ions.
Collapse
Affiliation(s)
- Ivana D Smičiklas
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | - Vesna M Lazić
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | - Ljiljana S Živković
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | - Slavica J Porobić
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| | - S Phillip Ahrenkiel
- b South Dakota School of Mines and Technology , Rapid City , South Dakota , USA
| | - Jovan M Nedeljković
- a Vinča Institute of Nuclear Sciences , University of Belgrade , Belgrade , Serbia
| |
Collapse
|
13
|
Chen T, Yang M, Yang H, Wang R, Wang S, Zhang H, Zhang X, Zhao Z, Wang J. Construction of DOPA-SAM multilayers with corrosion resistance via controlled molecular self-assembly. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Foucaud Y, Lebègue S, Filippov LO, Filippova IV, Badawi M. Molecular Insight into Fatty Acid Adsorption on Bare and Hydrated (111) Fluorite Surface. J Phys Chem B 2018; 122:12403-12410. [PMID: 30481022 DOI: 10.1021/acs.jpcb.8b08969] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The adsorption of fatty acids with various chain structures on the (111) fluorite surface is investigated using density functional theory, including a correction for dispersive interactions. In the case of the acidic form, we observe that the molecular form is preferred over the dissociated one and the molecule adsorbs on a surface calcium atom with an energy of -78.2 kJ mol-1. Also, we show that the carboxylate anion adsorbs on the surface under two possible configurations, a bidentate binuclear one or a monodentate one, the bidentate binuclear being favored. At both 0 and 300 K, the chain length does not affect the geometry of the carboxyl group but it strongly impacts the global geometry of the molecule adsorption on the fluorite surface: the "flat" adsorption mode, i.e., when the molecule is parallel to the surface, is favored when the number of carbon atoms is equal to or higher than 6, due to dispersion forces. However, when the molecule is in hydrated condition, the chain folds up by itself to reduce the interactions with water while the carboxylate group adsorbs in monodentate configuration. In aqueous conditions, the chain length does not impact anymore the adsorption energies, the vertical adsorption mode being always favored.
Collapse
Affiliation(s)
- Yann Foucaud
- Laboratoire GeoRessources , Université de Lorraine, UMR 7359-CNRS , 2 rue du Doyen Marcel Roubault , 54 505 Vandœuvre-lès-Nancy Cedex, France
| | - Sébastien Lebègue
- Laboratoire Physique et Chimie Théoriques , Université de Lorraine, UMR 7019-CNRS , BP239, Boulevard des Aiguillettes , 54 506 Vandoeuvre-lès-Nancy Cedex, France
| | - Lev O Filippov
- Laboratoire GeoRessources , Université de Lorraine, UMR 7359-CNRS , 2 rue du Doyen Marcel Roubault , 54 505 Vandœuvre-lès-Nancy Cedex, France
| | - Inna V Filippova
- Laboratoire GeoRessources , Université de Lorraine, UMR 7359-CNRS , 2 rue du Doyen Marcel Roubault , 54 505 Vandœuvre-lès-Nancy Cedex, France
| | - Michaël Badawi
- Laboratoire Physique et Chimie Théoriques , Université de Lorraine, UMR 7019-CNRS , BP239, Boulevard des Aiguillettes , 54 506 Vandoeuvre-lès-Nancy Cedex, France
| |
Collapse
|
15
|
The Chemistry behind Catechol-Based Adhesion. Angew Chem Int Ed Engl 2018; 58:696-714. [DOI: 10.1002/anie.201801063] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/12/2018] [Indexed: 11/07/2022]
|
16
|
Saiz-Poseu J, Mancebo-Aracil J, Nador F, Busqué F, Ruiz-Molina D. Die chemischen Grundlagen der Adhäsion von Catechol. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801063] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- J. Saiz-Poseu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| | - J. Mancebo-Aracil
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Nador
- Instituto de Química del Sur-INQUISUR (UNS-CONICET); Universidad Nacional del Sur; Av. Alem 1253 8000 Bahía Blanca Buenos Aires Argentinien
| | - F. Busqué
- Dpto. de Química (Unidad Química Orgánica); UniversidadAutónoma de Barcelona, Edificio C-Facultad de Ciencias; 08193 Cerdanyola del Vallès Barcelona Spanien
| | - D. Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST; Campus UAB, Bellaterra 08193 Barcelona Spanien
| |
Collapse
|
17
|
Albert M, Clifford A, Zhitomirsky I, Rubel O. Adsorption of Maleic Acid Monomer on the Surface of Hydroxyapatite and TiO 2: A Pathway toward Biomaterial Composites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24382-24391. [PMID: 29961326 DOI: 10.1021/acsami.8b05128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Poly(styrene- alt-maleic acid) adsorption on hydroxyapatite and TiO2 (rutile) was studied using experimental techniques and complemented by ab initio simulations of adsorption of a maleic acid segment as a subunit of the copolymer. Ab initio calculations suggest that the maleic acid segment forms a strong covalent bonding to the TiO2 and hydroxyapatite surfaces. If compared to vacuum, the presence of a solvent significantly reduces the adsorption strength as the polarity of the solvent increases. The results of first-principles calculations are confirmed by the experimental measurements. We found that the adsorbed poly(styrene- alt-maleic acid) allowed efficient dispersion of rutile and formation of films by the electrophoretic deposition. Moreover, rutile can be codispersed and codeposited with hydroxyapatite to form composite films. The coatings showed an enhanced corrosion protection of metallic implants in simulated body fluid solutions, which opens new avenues for the synthesis, dispersion, and colloidal processing of advanced composite materials for biomedical applications.
Collapse
Affiliation(s)
- Mitchell Albert
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Amanda Clifford
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Igor Zhitomirsky
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| | - Oleg Rubel
- Department of Materials Science and Engineering , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4L8 , Canada
| |
Collapse
|
18
|
Dekanski D, Spremo-Potparević B, Bajić V, Živković L, Topalović D, Sredojević DN, Lazić V, Nedeljković JM. Acute toxicity study in mice of orally administrated TiO2 nanoparticles functionalized with caffeic acid. Food Chem Toxicol 2018; 115:42-48. [DOI: 10.1016/j.fct.2018.02.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/26/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
|
19
|
Sredojević DN, Kovač T, Džunuzović E, Ðorđević V, Grgur BN, Nedeljković JM. Surface-modified TiO2 powders with phenol derivatives: A comparative DFT and experimental study. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.08.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Kim K, Han JW. Effect of caffeic acid adsorption in controlling the morphology of gold nanoparticles: role of surface coverage and functional groups. Phys Chem Chem Phys 2016; 18:27775-27783. [DOI: 10.1039/c6cp04122a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The morphology of gold nanoparticles can be effectively controlled by tailoring the adsorption coverages, deprotonated forms, and functional groups of caffeic acid.
Collapse
Affiliation(s)
- Kyeounghak Kim
- Department of Chemical Engineering
- University of Seoul
- Seoul 130-743
- Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering
- University of Seoul
- Seoul 130-743
- Republic of Korea
| |
Collapse
|