1
|
Chen BZ, Yang ZJ, Wang WB, Hao TT, Yu PB, Dong Y, Yu WB. Chromosome-level genome assembly and annotation of Flueggea virosa (Phyllanthaceae). Sci Data 2024; 11:875. [PMID: 39138223 PMCID: PMC11322648 DOI: 10.1038/s41597-024-03681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024] Open
Abstract
Flueggea virosa (Roxb. ex Willd.) Royle, an evergreen shrub and small tree in the Phyllanthaceae family, holds significant potential in garden landscaping and pharmacological applications. However, the lack of genomic data has hindered further scientific understanding of its horticultural and medicinal values. In this study, we have assembled a haplotype-resolved genome of F. virosa for the first time. The two haploid genomes, named haplotype A genome and haplotype B genome, are 487.33 Mb and 477.53 Mb in size, respectively, with contig N50 lengths of 31.45 Mb and 32.81 Mb. More than 99% of the assembled sequences were anchored to 13 pairs of pseudo-chromosomes. Furthermore, 21,587 and 21,533 protein-coding genes were predicted in haplotype A and haplotype B genomes, respectively. The availability of this chromosome-level genome fills the gap in genomic data for F. virosa and provides valuable resources for molecular studies of this species, supporting future research on speciation, functional genomics, and comparative genomics within the Phyllanthaceae family.
Collapse
Affiliation(s)
- Bao-Zheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Zi-Jiang Yang
- Bioinformatics group, Wageningen University and Research, Wageningen, Netherlands
| | - Wei-Bin Wang
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Ting-Ting Hao
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Peng-Ban Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yang Dong
- Yunnan Provincial Key Laboratory of Biological Big Data, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Wen-Bin Yu
- Center for Integrative Conservation and Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China.
| |
Collapse
|
2
|
Akinboye AJ, Kim K, Choi S, Yang I, Lee JG. Alkaloids in food: a review of toxicity, analytical methods, occurrence and risk assessments. Food Sci Biotechnol 2023; 32:1133-1158. [PMID: 37362815 PMCID: PMC10290023 DOI: 10.1007/s10068-023-01295-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 04/09/2023] Open
Abstract
Alkaloids have been utilized by humans for years. They have diverse applications in pharmaceuticals. They have been proven to be effective in treating a number of diseases. They also form an important part of regular human diets, as they are present in food items, food supplements, diet ingredients and food contaminants. Despite their obvious importance, these alkaloids are toxic to humans. Their toxicity is dependent on a range of factors, such as specific dosage, exposure time and individual properties. Mild toxic effects include nausea, itching and vomiting while chronic effects include paralysis, teratogenicity and death. This review summarizes the published studies on the toxicity, analytical methods, occurrence and risk assessments of six major alkaloid groups that are present in food, namely, ergot, glycoalkaloids, purine, pyrrolizidine, quinolizidine and tropane alkaloids.
Collapse
Affiliation(s)
- Adebayo J. Akinboye
- Department of Food and Biotechnology, Dong-A University, Saha-gu, Busan, 49315 Korea
| | - Kiyun Kim
- Department of Food and Biotechnology, Dong-A University, Saha-gu, Busan, 49315 Korea
| | - Seyun Choi
- Department of Food and Biotechnology, Dong-A University, Saha-gu, Busan, 49315 Korea
| | - Inho Yang
- Department of Convergence Study on the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112 Korea
| | - Joon-Goo Lee
- Department of Food and Biotechnology, Dong-A University, Saha-gu, Busan, 49315 Korea
| |
Collapse
|
3
|
Richard K, Andrae-Marobela K, Tietjen I. An ethnopharmacological survey of medicinal plants traditionally used by the BaKalanga people of the Tutume subdistrict in Central Botswana to manage HIV/AIDS, HIV-associated conditions, and other health conditions. JOURNAL OF ETHNOPHARMACOLOGY 2023:116759. [PMID: 37301306 DOI: 10.1016/j.jep.2023.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE While access to antiretroviral therapy (ART) continues to improve worldwide, HIV infection and AIDS persist as serious health challenges, particularly in sub-Saharan Africa. Complementary and Alternative Medicines (CAM), as part of indigenous and pluralistic medical systems, are important contributors to primary health care worldwide. However, this knowledge remains relatively undocumented in many parts of sub-Saharan Africa such as the Tutume subdistrict of Central Botswana, where CAM is widely used including potentially for HIV/AIDS and HIV-associated conditions. AIM OF THE STUDY To explore the extent to which CAM is used by the BaKalanga Peoples of the Tutume subdistrict, we performed an exploratory community-based project to record medicinal plant use from this relatively undocumented region, with a particular focus on species used for management of HIV/AIDS and HIV-associated conditions. MATERIALS AND METHODS Using the snowball sampling technique, we recruited 13 Traditional Health Practitioners (THPs) and conducted in-depth interviews to explore medicinal plant uses and treatment regimens. Plant specimens were collected and bio-authenticated. RESULTS We documented 83 plant species used as CAM to treat or manage a variety of conditions including HIV/AIDS, HIV-associated conditions, and other health conditions. Plants from the family Leguminosae were most frequently reported, comprising 21 species (25.3%), followed by 5 from both Euphorbiaceae and Combretaceae families (6.0%). Four plants (4.8%) were used specifically to manage HIV (Lannea edulis (Sond.) Engl. root, Aloe zebrina Baker root, Myrothamnus flabellifolia Welw. whole plant, and Harpagophytum procumbens var. subulobatum (Engl.) tuber), while an additional 7 (8.4%) were reported specifically for treating combinations of HIV-related symptoms. Notably, 25 (30.1%) have not been reported previously as CAM and/or lack reported bioactivity data. CONCLUSIONS To our knowledge, this is the first detailed ethnobotanical survey of CAM used by the BaKalanga Peoples of the Tutume subdistrict to manage HIV/AIDS and HIV-associated and other health conditions.
Collapse
Affiliation(s)
- Khumoekae Richard
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada; The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Kerstin Andrae-Marobela
- Department of Biological Sciences, University of Botswana, Block 235/217, Gaborone, Botswana; Center for Scientific Research, Indigenous Knowledge & Innovation (CesrIKi), PO Box 70237, Gaborone, Botswana.
| | - Ian Tietjen
- Faculty of Health Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada; The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Nyagumbo E, Pote W, Shopo B, Nyirenda T, Chagonda I, Mapaya RJ, Maunganidze F, Mavengere WN, Mawere C, Mutasa I, Kademeteme E, Maroyi A, Taderera T, Bhebhe M. Medicinal plants used for the management of respiratory diseases in Zimbabwe: Review and perspectives potential management of COVID-19. PHYSICS AND CHEMISTRY OF THE EARTH (2002) 2022; 128:103232. [PMID: 36161239 PMCID: PMC9489988 DOI: 10.1016/j.pce.2022.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Respiratory diseases have in the recent past become a health concern globally. More than 523 million cases of coronavirus disease (COVID19), a recent respiratory diseases have been reported, leaving more than 6 million deaths worldwide since the start of the pandemic. In Zimbabwe, respiratory infections have largely been managed using traditional (herbal) medicines, due to their low cost and ease of accessibility. This review highlights the plants' toxicological and pharmacological evaluation studies explored. It seeks to document plants that have been traditionally used in Zimbabwe to treat respiratory ailments within and beyond the past four decades. Extensive literature review based on published papers and abstracts retrieved from the online bibliographic databases, books, book chapters, scientific reports and theses available at Universities in Zimbabwe, were used in this study. From the study, there were at least 58 plant families comprising 160 medicinal plants widely distributed throughout the country. The Fabaceae family had the highest number of medicinal plant species, with a total of 21 species. A total of 12 respiratory ailments were reportedly treatable using the identified plants. From a total of 160 plants, colds were reportedly treatable with 56, pneumonia 53, coughs 34, chest pain and related conditions 29, asthma 25, tuberculosis and spots in lungs 22, unspecified respiratory conditions 20, influenza 13, bronchial problems 12, dyspnoea 7, sore throat and infections 5 and sinus clearing 1 plant. The study identified potential medicinal plants that can be utilised in future to manage respiratory infections.
Collapse
Affiliation(s)
- Elliot Nyagumbo
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William Pote
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Bridgett Shopo
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| | - Trust Nyirenda
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Department of Anatomy and Physiology, Faculty of Medicine, National University of Science and Technology, Bulawayo, Zimbabwe
| | - Ignatius Chagonda
- Department of Agriculture Practice, Faculty of Agriculture, Midlands State University, Gweru, Zimbabwe
| | - Ruvimbo J Mapaya
- Department of Applied Bioscience and Biotechnology, Faculty of Science and Technology, Midlands State University, Gweru, Zimbabwe
| | - Fabian Maunganidze
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
| | - William N Mavengere
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Cephas Mawere
- Department of Biotechnology, School of Industrial Sciences and Technology, Harare Institute of Technology, Harare, Zimbabwe
| | - Ian Mutasa
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Emmanuel Kademeteme
- Department of Physiology, School of Medicine and Health Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
| | - Alfred Maroyi
- Department of Botany, University of Fort Hare, Alice, South Africa
| | - Tafadzwa Taderera
- Department of Biomedical Sciences, Physiology Unit, University of Zimbabwe, P.O. Box MP167, Mt Pleasant, Harare, Zimbabwe
| | - Michael Bhebhe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Midlands State University, Gweru, Zimbabwe
- Ethnobiology-based Drug discovery, Research and Development Trust, Gweru, Zimbabwe
| |
Collapse
|
5
|
Conformations and stability of capsaicin in bulk solvents: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Comparative Metabolic Profiling in Pulp and Peel of Green and Red Pitayas ( Hylocereus polyrhizus and Hylocereus undatus) Reveals Potential Valorization in the Pharmaceutical and Food Industries. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6546170. [PMID: 33778068 PMCID: PMC7980772 DOI: 10.1155/2021/6546170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/27/2020] [Accepted: 12/29/2020] [Indexed: 11/19/2022]
Abstract
Pitaya (Hylocereus genus) is a popular plant with exotic and nutritious fruit, which has widespread uses as a source of nutrients and raw materials in the pharmaceutical industry. However, the potential of pitaya peel as a natural source of bioactive compounds has not yet fully been explored. Recent advances in metabolomics have paved the way for understanding and evaluating the presence of diverse sets of metabolites in different plant parts. This study is aimed at exploring the diversity of primary and secondary metabolites in two commercial varieties of pitaya, i.e., green pitaya (Hylocereus undatus) and red pitaya (Hylocereus polyrhizus). A total of 433 metabolites were identified using a widely targeted metabolomic approach and classified into nine known diverse classes of metabolites, including flavonoids, amino acids and its derivatives, alkaloids, tannins, phenolic acids, organic acids, nucleotides and derivatives, lipids, and lignans. Red pitaya peel and pulp showed relatively high accumulation of metabolites viz. alkaloids, amino acids and its derivatives, and lipids. Differential metabolite landscape of pitaya fruit indicated the presence of key bioactive compounds, i.e., L-tyrosine, L-valine, DL-norvaline, tryptophan, γ-linolenic acid, and isorhamnetin 3-O-neohesperidoside. The findings in this study provide new insight into the broad spectrum of bioactive compounds of red and green pitaya, emphasizing the valorization of the biowaste pitaya peel as raw material for the pharmaceutical and food industries.
Collapse
|
7
|
Wang J, Guo D, Han D, Pan X, Li J. A comprehensive insight into the metabolic landscape of fruit pulp, peel, and seed in two longan (Dimocarpus longan Lour.) varieties. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1815767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Xuewen Pan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Jeon S, Lee J, Park S, Han S. Total synthesis of dimeric Securinega alkaloids (-)-flueggenines D and I. Chem Sci 2020; 11:10934-10938. [PMID: 34123190 PMCID: PMC8162258 DOI: 10.1039/d0sc03057k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
We describe the total synthesis of (-)-flueggenines D and I. This features the first total synthesis of dimeric Securinega alkaloids with a C(α)-C(δ') connectivity between two monomeric units. The key dimerization was enabled by a sequence that involves Stille reaction and conjugate reduction. The high chemofidelity of the Stille reaction enabled us to assemble two structurally complex fragments that could not be connected by other methods. Stereochemical flexibility and controllability at the δ'-junction of the dimeric intermediate render our synthetic strategy broadly applicable to the synthesis of other high-order Securinega alkaloids.
Collapse
Affiliation(s)
- Sangbin Jeon
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Jinwoo Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Sangbin Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| |
Collapse
|
9
|
Wu ZL, Huang XJ, Hu LJ, Zhang WY, Xie QJ, Jiang RW, Wang Y, Ye WC. Absolute Configurations and Stereochemical Inversion Mechanism of Epimeric Securinega Alkaloids from Flueggea suffruticosa. Org Lett 2020; 22:3673-3678. [PMID: 32319780 DOI: 10.1021/acs.orglett.0c01167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three pairs of Securinega alkaloid epimers with a piperidin-2-yl moiety (1-6) were isolated from Flueggea suffruticosa, and their structures including absolute configurations were definitely characterized. An interconvertible C-2' epimerization process within each pair of epimers was observed. The following comprehensive experimental and theoretical investigations demonstrated an unusual stereochemical inversion mechanism of an N-substituted carbon stereogenic center, which was evidenced to be a protic solvent mediated process involving a tandem 1,4-elimination/1,4-addition as the key step.
Collapse
Affiliation(s)
- Zhen-Long Wu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Xiao-Jun Huang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Li-Jun Hu
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wei-Yan Zhang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Qiu-Jie Xie
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ren-Wang Jiang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Ying Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
10
|
Zhu Z, Chen C, Jiang J, Zhang Q, Du Z, Wei S, Song X, Tang J, Lei J, Ke Z, Zou Y. Synthesis and biological evaluation of suffrutines A, B and their N-fused analogues. Org Chem Front 2020. [DOI: 10.1039/d0qo00050g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis, structure confirmation, stability and isomerization features of suffrutines A, B and their N-fused analogues were reported. Biological tests showed that the introduction of nitrogen atom might be beneficial to the anticancer activity.
Collapse
Affiliation(s)
- Zefeng Zhu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Chun Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Jingxing Jiang
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Qianzhong Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Co
- Ltd
- Zhongshan 528451
- P. R. China
| | - Shuxian Wei
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Xianheng Song
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Jie Tang
- Pharmacy Department of Nanchong Central Hospital and the Second Clinical Hospital of North Sichuan Medical College
- Nanchong
- P. R. China
| | - Jinping Lei
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Zhuofeng Ke
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| |
Collapse
|
11
|
Park J, Jeon S, Kang G, Lee J, Baik MH, Han S. Dimerization Strategies for the Synthesis of High-Order Securinega Alkaloids. J Org Chem 2018; 84:1398-1406. [DOI: 10.1021/acs.joc.8b02852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Joonoh Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seongmin Jeon
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jongsun Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
12
|
YANG GX, MA GL, LI H, HUANG T, XIONG J, HU JF. Advanced natural products chemistry research in China between 2015 and 2017. Chin J Nat Med 2018; 16:881-906. [DOI: 10.1016/s1875-5364(18)30131-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Indexed: 10/27/2022]
|
13
|
Bunteang S, Chanakul W, Hongthong S, Kuhakarn C, Chintakovid W, Sungchawek N, Akkarawongsapat R, Limthongkul J, Nantasaen N, Reutrakul V, Jaipetch T. Anti-HIV Activity of Alkaloids from Dasymaschalon echinatum. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bioassay-guided fractionation of the aerial parts of Dasymaschalon echinatum led to the isolation of five known aristolactams; aristolactam AII (1), aristolactam BII (2), piperolactam A (3), piperolactam C (4), and goniopedaline (5), together with two aphorphine alkaloids; duguevalline (6) and noraristolodione (7) and two amide derivatives; asperphenamate (8), and N -benzoyl-L-phenylalaninol (9). Alkaloids 2 and 7 were isolated for the first time from the Dasymaschalon genus. The anti-HIV 1 reverse transcriptase (RT) activity of all isolated compounds was determined. Except for aristolactam BII (2), this is the first report of the anti-HIV 1-RT activity of compounds 1 and 3-9. Compounds 1, 3, 5, 6 and 8 showed weak anti-HIV 1-RT inhibitory activity with IC50 ranging from 112.74 to 225.55μM.
Collapse
Affiliation(s)
- Samreang Bunteang
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Waraporn Chanakul
- Faculty of Science, Energy and Environment, KMUTNB, Rayong Campus, Ban-Kai, Rayong 21120, Thailand
| | - Sakchai Hongthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Watcharra Chintakovid
- Mahidol University and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand
| | - Natthapat Sungchawek
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Radeekorn Akkarawongsapat
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Jitra Limthongkul
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Narong Nantasaen
- The Forest Herbarium National Park, Wildlife and Plant Conservation Department, Ministry of Natural Resources and Environment, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Thaworn Jaipetch
- Mahidol University and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand
| |
Collapse
|
14
|
Natural occurrence of all eight stereoisomers of a neosecurinane structure from Flueggea virosa. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.06.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Jeon S, Han S. An Accelerated Intermolecular Rauhut–Currier Reaction Enables the Total Synthesis of (−)-Flueggenine C. J Am Chem Soc 2017; 139:6302-6305. [DOI: 10.1021/jacs.7b02751] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sangbin Jeon
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sunkyu Han
- Department
of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
16
|
Wang GY, Wang AT, Zhao BX, Lei XP, Zhang DM, Jiang RW, Wang Y, Ye WC. Norsecurinamines A and B, two norsecurinine-derived alkaloid dimers from the fruits of Flueggea virosa. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.06.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|