1
|
Malinowski R, Fiedurek K, Rytlewski P, Puszczykowska N, Kaczor D, Stasiek A. The structure and selected properties of poly(ε-caprolactone)-based biodegradable composites with high calcium carbonate concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161528. [PMID: 36638989 DOI: 10.1016/j.scitotenv.2023.161528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
The article refers to new polycaprolactone (PCL) composites with high concentration of calcium carbonate (CC). The objective of the present study was the manufacturing of PCL-based biodegradable composites, containing from 24 to 75 % of CC by mass, along with analyses of changes in selected properties of the obtained PCL composites, occurring upon various amounts of CC. Importantly, in the study relatively cheap and unmodified kind of CC has been used to determine the changeover cost of produced composites. Qualitative and quantitative analyses in addition to structure analysis of the obtained composites, including the distribution of the filler particles and their average dimensions were conducted. Furthermore, the mechanical and thermal properties, mass melt flow rate and the density have been determined. Finally, a commercially important economic analysis has been presented. A significant influence of CC on the mechanical properties of PCL was found. Specifically, the reduction of its relative elongation at break and impact strength, as well as the increase of its flexural modulus and bending strength. An increase in the thermal stability of the produced composites was also observed, however the characteristic temperatures of phase transitions as well as the degree of crystallinity did not change significantly. Considering the results of the density tests, an increase in the CC content resulted in a significant decrease in the unit price of the produced composites. This is of particular application importance, because a lower cost material with new properties could be obtained.
Collapse
Affiliation(s)
- Rafał Malinowski
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland.
| | - Kacper Fiedurek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Piotr Rytlewski
- Faculty of Materials Engineering, Kazimierz Wielki University, 30 Chodkiewicza Street, 85-064 Bydgoszcz, Poland
| | - Natalia Puszczykowska
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Daniel Kaczor
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| | - Andrzej Stasiek
- Łukasiewicz Research Network - Institute for Engineering of Polymer Materials and Dyes, 55 M. Skłodowska-Curie Street, 87-100 Toruń, Poland
| |
Collapse
|
2
|
Granel H, Bossard C, Collignon AM, Wauquier F, Lesieur J, Rochefort GY, Jallot E, Lao J, Wittrant Y. Osteogenic Effect of Fisetin Doping in Bioactive Glass/Poly(caprolactone) Hybrid Scaffolds. ACS OMEGA 2022; 7:22279-22290. [PMID: 35811886 PMCID: PMC9260777 DOI: 10.1021/acsomega.2c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Treating large bone defects or fragile patients may require enhancing the bone regeneration rate to overcome a weak contribution from the body. This work investigates the osteogenic potential of nutrient fisetin, a flavonoid found in fruits and vegetables, as a doping agent inside the structure of a SiO2-CaO bioactive glass-poly(caprolactone) (BG-PCL) hybrid scaffold. Embedded in the full mass of the BG-PCL hybrid during one-pot synthesis, we demonstrate fisetin to be delivered sustainably; the release follows a first-order kinetics with active fisetin concentration being delivered for more than 1 month (36 days). The biological effect of BG-PCL-fisetin-doped scaffolds (BG-PCL-Fis) has been highlighted by in vitro and in vivo studies. A positive impact is demonstrated on the adhesion and the differentiation of rat primary osteoblasts, without an adverse cytotoxic effect. Implantation in critical-size mouse calvaria defects shows bone remodeling characteristics and remarkable enhancement of bone regeneration for fisetin-doped scaffolds, with the regenerated bone volume being twofold that of nondoped scaffolds and fourfold that of a commercial trabecular bovine bone substitute. Such highly bioactive materials could stand as competitive alternative strategies involving biomaterials loaded with growth factors, the use of the latter being the subject of growing concerns.
Collapse
Affiliation(s)
- Henri Granel
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Cédric Bossard
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Anne-Margaux Collignon
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Fabien Wauquier
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| | - Julie Lesieur
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Gael Y. Rochefort
- Descartes
University of Paris Faculty of Dental Surgery, Laboratoires Pathologies,
Imagerie et Biothérapies Orofaciales,1 Rue Maurice Arnoux, Montrouge, Île-De-France 92120, France
| | - Edouard Jallot
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Jonathan Lao
- Université
Clermont Auvergne, Laboratoire De Physique De Clermont Ferrand, 4 Avenue Blaise Pascal, Clermont-Ferrand, Auvergne-Rhône-Alpes 63001, France
| | - Yohann Wittrant
- INRAE,
Human Nutrition Unit (UNH), ECREIN Team, TSA 50400, 28 Place Henri Dunant, Clermont-Ferrand, Auvergne-Rhone-Alpes 63001, France
| |
Collapse
|
3
|
Biranje SS, Sun J, Cheng L, Cheng Y, Shi Y, Yu S, Jiao H, Zhang M, Lu X, Han W, Wang Q, Zhang Z, Liu J. Development of Cellulose Nanofibril/Casein-Based 3D Composite Hemostasis Scaffold for Potential Wound-Healing Application. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3792-3808. [PMID: 35037458 DOI: 10.1021/acsami.1c21039] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Excessive bleeding in traumatic hemorrhage is the primary concern for natural wound healing and the main reason for trauma deaths. The three-dimensional (3D) bioprinting of bioinks offers the desired structural complexity vital for hemostasis activity and targeted cell proliferation in rapid and controlled wound healing. However, it is challenging to develop suitable bioinks to fabricate specific 3D scaffolds desirable in wound healing. In this work, a 3D composite scaffold is designed using bioprinting technology and synergistic hemostasis mechanisms of cellulose nanofibrils (TCNFs), chitosan, and casein to control blood loss in traumatic hemorrhage. Bioinks that consist of casein bioconjugated TCNF (with a casein content of 104.5 ± 34.1 mg/g) using the carbodiimide cross-linker chemistry were subjected to bioprinting for customizable 3D scaffold fabrication. Further, the 3D composite scaffolds were in situ cross-linked using a green ionic complexation approach. The covalent conjugation among TCNF, casein, and chitosan was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and X-ray diffraction (XRD) studies. The in vitro hemostasis activity of the 3D composite scaffold was analyzed by a human thrombin-antithrombin (TAT) assay and adsorption of red blood cells (RBCs) and platelets. The 3D composite scaffold had a better swelling behavior and a faster whole blood clotting rate at each time point than the 3D TCNF scaffold and commercial cellulose-based dressings. The TAT assay demonstrated that the 3D composite scaffold could form a higher content of thrombin (663.29 pg/mL) and stable blood clot compared to a cellulosic pad (580.35 pg/mL), 3D TCNF (457.78 pg/mL), and cellulosic gauze (328.92 pg/mL), which are essential for faster blood coagulation. In addition, the 3D composite scaffold had a lower blood clotting index (23.34%) than the 3D TCNF scaffold (41.93%), suggesting higher efficiencies for RBC entrapping to induce blood clotting. The in vivo cytocompatibility was evaluated by a 3D cell culture study, and results showed that the 3D composite scaffold could promote growth and proliferation of NIH 3T3 fibroblast cells, which is vital for wound healing. Cellulase-based in vitro deconstruction of the 3D composite scaffold showed significant weight loss (80 ± 5%) compared to the lysozyme hydrolysis (22 ± 5%) after 28 days of incubation, suggesting the biodegradation potential of the composite scaffold. In conclusion, this study proposes efficient prospects to develop a 3D composite scaffold from bioprinting of TCNF-based bioinks that can accelerate blood clotting and wound healing, suggesting its potential application in reducing blood loss during traumatic hemorrhage.
Collapse
Affiliation(s)
- Santosh Shivaji Biranje
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lu Cheng
- Reproduction Medicine Center, Affiliated Hospital of Jiangsu University, 438 Jiefang Road, Zhenjiang 212001, China
| | - Yu Cheng
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yifei Shi
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Sujie Yu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Meng Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Wenjia Han
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qianqian Wang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhen Zhang
- SCNU-TUE Joint Lab of Device Integrated Responsive Materials (DIRM), National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, China
- ScienceK Ltd., Huzhou 313000, China
| | - Jun Liu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
- Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
4
|
Guo Z, Poot AA, Grijpma DW. Advanced polymer-based composites and structures for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110388] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Dejob L, Toury B, Tadier S, Grémillard L, Gaillard C, Salles V. Electrospinning of in situ synthesized silica-based and calcium phosphate bioceramics for applications in bone tissue engineering: A review. Acta Biomater 2021; 123:123-153. [PMID: 33359868 DOI: 10.1016/j.actbio.2020.12.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023]
Abstract
The field of bone tissue engineering (BTE) focuses on the repair of bone defects that are too large to be restored by the natural healing process. To that purpose, synthetic materials mimicking the natural bone extracellular matrix (ECM) are widely studied and many combinations of compositions and architectures are possible. In particular, the electrospinning process can reproduce the fibrillar structure of bone ECM by stretching a viscoelastic solution under an electrical field. With this method, nano/micrometer-sized fibres can be produced, with an adjustable chemical composition. Therefore, by shaping bioactive ceramics such as silica, bioactive glasses and calcium phosphates through electrospinning, promising properties for their use in BTE can be obtained. This review focuses on the in situ synthesis and simultaneous electrospinning of bioceramic-based fibres while the reasons for using each material are correlated with its bioactivity. Theoretical and practical considerations for the synthesis and electrospinning of these materials are developed. Finally, investigations into the in vitro and in vivo bioactivity of different systems using such inorganic fibres are exposed.
Collapse
Affiliation(s)
- Léa Dejob
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France; Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Bérangère Toury
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France
| | - Solène Tadier
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Laurent Grémillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Claire Gaillard
- Univ Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, Villeurbanne F-69621, France
| | - Vincent Salles
- Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne F-69622, France.
| |
Collapse
|
6
|
Gong Y, Zhang Y, Cao Z, Ye F, Lin Z, Li Y. Development of CaCO 3 microsphere-based composite hydrogel for dual delivery of growth factor and Ca to enhance bone regeneration. Biomater Sci 2020; 7:3614-3626. [PMID: 31210206 DOI: 10.1039/c9bm00463g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Injectable scaffolds have attracted much attention because of their minimum surgical invasiveness. However, limited osteogenic induction property and low mechanical properties hampered their application in bone tissue engineering. CaCO3 microspheres, which possess osteoinductivity, rough surfaces and specific binding sites for BMP-2, were first fabricated; after BMP-2 uploading, microspheres were further entrapped in fibrin-glue hydrogel. CaCO3 microspheres were co-functionalized with casein and heparin. To obtain a high encapsulation of heparin and thus BMP-2 uploading, along with controlled release and simultaneous maintenance of the presence of vaterite which had osteogenic induction property, fabrication parameters were optimized and microspheres were characterized using XRD, FITR and SEM. The formed CaCO3 had a microsphere morphology of ∼1 μm. Both vaterite and calcite phases were present and the relative amount of calcite phase increased with the amount of heparin. Sample 25 mM_4-1Hep with the highest loading amount of heparin was selected as carrier for BMP-2 and BMP-2 loaded CaCO3 microspheres were further entrapped in fibrin-glue hydrogel (FC-B). For the as-prepared composite hydrogel, mechanical properties were characterized and the presence of CaCO3 significantly elevated the tensile strength; controlled release of BMP-2 was sustained until day 21. Based on ALP activity, alizarin red staining and RT-PCR, in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) was found to be significantly enhanced under induction of FC-B. Rabbit tibia bone defect model was applied to evaluate its in vivo performance. After implantation for 4 weeks, presence of composite hydrogel was observed in defects. After 8 weeks, bone defects of FC-B group were nearly completely healed. Using the fact that autologous scaffolds can be derived based on fibrin-glue hydrogel, the well-designed BMP-2 loaded fibrin-glue composite hydrogel demonstrated good potential in bone tissue engineering.
Collapse
Affiliation(s)
- Yihong Gong
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
| | | | | | | | | | | |
Collapse
|
7
|
Shi M, Zhang H, Song T, Liu X, Gao Y, Zhou J, Li Y. Sustainable Dual Release of Antibiotic and Growth Factor from pH-Responsive Uniform Alginate Composite Microparticles to Enhance Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22730-22744. [PMID: 31141337 DOI: 10.1021/acsami.9b04750] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrogel-based wound dressings provided a moist microenvironment and local release of bioactive molecules. Single drug loading along with fast release rates and usually in hydrogel sheets limited their performance. Hence, uniform alginate/CaCO3 composite microparticles (∼430 μm) with tunable compositions for sustainable release of drug and pH-sensitivity were successfully fabricated using microfluidic technology. Due to the presence of CaCO3 and the strong interactions with alginate molecules, lyophilized composite microparticles reverted to hydrogel state after rehydration. Regardless of microparticle states (hydrogel or lyophilized) and pH values (6.4 or 7.4), in vitro release rates of model drug were inversely related with CaCO3 concentrations and much lower than that for pure alginate microparticles. The release rate at pH 6.4 (simulating wound microenvironment) was always slower than that at pH 7.4 for the same type of microparticles. Rifamycin and basic fibroblast growth factor (bFGF) were independently encapsulated into AD-5-R and AD-40-F to achieve a fast release of rifamycin and a slower, more sustained release of bFGF, respectively; CD-F-R was a mixture of AD-5-R and AD-40-F at weight ratio 1/1. For AD-5-R and CD-F-R, inhibition zones of S. aureus were observed until day 5, showing a sustained antibacterial property. On the basis of in vitro wound healing model of NIH-3T3 cell micropattern on glass coverslips with a hole array, it was found that AD-40-F and CD-F-R significantly promoted cell proliferation and migration rates. In a full-thickness skin wound model of rats, CD-F-R microparticles significantly accelerated wound healing with higher granulation tissue thickness and better bioactivity to stimulate angiogenesis than the control group. Furthermore, CD-F-R microparticles demonstrated a good biocompatibility and biodegradability in vivo. Taken together, CD-F-R composite microparticles may ideally meet the requirements for different stages during wound healing and demonstrated a good potential to be used as dressing materials.
Collapse
Affiliation(s)
- Ming Shi
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Hao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Ting Song
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Xiaofang Liu
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Yunfen Gao
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital , Harvard Medical School , Cambridge , Massachusetts 02139 , United States
| | - Yan Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
- Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices , Sun Yat-sen University , Guangzhou 510006 , Guangdong , P.R. China
| |
Collapse
|
8
|
Binkley DM, Lee BEJ, Saem S, Moran-Mirabal J, Grandfield K. Fabrication of polycaprolactone electrospun nanofibers doped with silver nanoparticles formed by air plasma treatment. NANOTECHNOLOGY 2019; 30:215101. [PMID: 30716725 DOI: 10.1088/1361-6528/ab0444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Implanted devices are prone to bacterial infections, which can result in implant loosening and device failure. Mitigating these infections is important to both implant stability and patient health. The development of antibacterial implant coatings can decrease the presence of bacterial colonies, reducing the risk for bacterial-dependent implant failure. Here, we show that electrospun polycaprolactone (PCL) fibers doped with silver nanoparticles (NPs) from a silver nitrate precursor have the potential to decrease the prevalence of Streptococcus pneumoniae while supporting osteoblast attachment and proliferation. An air plasma reduction method of PCL electrospun fibers was used to prepare fibers doped with silver NPs. Fibers were characterized using scanning electron microscopy and transmission electron microscopy for qualitative evaluation of NP distribution and quantitative analysis of fiber diameters. Antibacterial testing against S. pneumoniae was performed with successful inhibition observed after 24 h of exposure. In vitro testing was completed using Saos-2 cells and suggests that the negative surface charge has the potential to increase mammalian cell viability even in the presence of fibers containing NPs. In conclusion, this study describes a novel method to produce bioresorbable implant coatings with the ability to reduce bacterial infections surrounding the implant surface while remaining biocompatible to the host.
Collapse
Affiliation(s)
- Dakota M Binkley
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, L8S 4L8, Canada
| | | | | | | | | |
Collapse
|
9
|
Ivanova AA, Syromotina DS, Shkarina SN, Shkarin R, Cecilia A, Weinhardt V, Baumbach T, Saveleva MS, Gorin DA, Douglas TEL, Parakhonskiy BV, Skirtach AG, Cools P, De Geyter N, Morent R, Oehr C, Surmeneva MA, Surmenev RA. Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation. RSC Adv 2018; 8:39106-39114. [PMID: 35558295 PMCID: PMC9090650 DOI: 10.1039/c8ra07386d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 11/21/2022] Open
Abstract
This article reports on a study of the mineralisation behaviour of CaCO3 deposited on electrospun poly(ε-caprolactone) (PCL) scaffolds preliminarily treated with low-temperature plasma. This work was aimed at developing an approach that improves the wettability and permeability of PCL scaffolds in order to obtain a superior composite coated with highly porous CaCO3, which is a prerequisite for biomedical scaffolds used for drug delivery. Since PCL is a synthetic polymer that lacks functional groups, plasma processing of PCL scaffolds in O2, NH3, and Ar atmospheres enables introduction of highly reactive chemical groups, which influence the interaction between organic and inorganic phases and govern the nucleation, crystal growth, particle morphology, and phase composition of the CaCO3 coating. Our studies showed that the plasma treatment induced the formation of O- and N-containing polar functional groups on the scaffold surface, which caused an increase in the PCL surface hydrophilicity. Mineralisation of the PCL scaffolds was performed by inducing precipitation of CaCO3 particles on the surface of polymer fibres from a mixture of CaCl2- and Na2CO3-saturated solutions. The presence of highly porous vaterite and nonporous calcite crystal phases in the obtained coating was established. Our findings confirmed that preferential growth of the vaterite phase occurred in the O2-plasma-treated PCL scaffold and that the coating formed on this scaffold was smoother and more homogenous than those formed on the untreated PCL scaffold and the Ar- and NH3-plasma-treated PCL scaffolds. A more detailed three-dimensional assessment of the penetration depth of CaCO3 into the PCL scaffold was performed by high-resolution micro-computed tomography. The assessment revealed that O2-plasma treatment of the PCL scaffold caused CaCO3 to nucleate and precipitate much deeper inside the porous structure. From our findings, we conclude that O2-plasma treatment is preferable for PCL scaffold surface modification from the viewpoint of use of the PCL/CaCO3 composite as a drug delivery platform for tissue engineering.
Collapse
Affiliation(s)
- Anna A Ivanova
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University 634050 Tomsk Russia +7 903 953 09 69
| | - Dina S Syromotina
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University 634050 Tomsk Russia +7 903 953 09 69
| | - Svetlana N Shkarina
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University 634050 Tomsk Russia +7 903 953 09 69
| | - Roman Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Institute for Applied Computer Science, Karlsruhe Institute of Technology Karlsruhe Germany
| | - Angelica Cecilia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Venera Weinhardt
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Centre for Organismal Studies, University of Heidelberg Heidelberg Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Mariia S Saveleva
- Skolkovo Institute of Science and Technology 3 Nobelya Str. Moscow 121205 Russian Federation
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology 3 Nobelya Str. Moscow 121205 Russian Federation
| | - Timothy E L Douglas
- UK Engineering Department, Lancaster University UK
- Materials Science Institute (MSI), Lancaster University UK
| | - Bogdan V Parakhonskiy
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Andre G Skirtach
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Pieter Cools
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Nathalie De Geyter
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - Rino Morent
- Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University Coupure Links 653 Ghent 9000 Belgium
| | - C Oehr
- Fraunhofer IGB Stuttgart Germany
| | - Maria A Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University 634050 Tomsk Russia +7 903 953 09 69
| | - Roman A Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University 634050 Tomsk Russia +7 903 953 09 69
| |
Collapse
|
10
|
Zhong L, Qu Y, Shi K, Chu B, Lei M, Huang K, Gu Y, Qian Z. Biomineralized polymer matrix composites for bone tissue repair: a review. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9324-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
12
|
Wen P, Wen Y, Zong MH, Linhardt RJ, Wu H. Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9161-9179. [PMID: 28949530 DOI: 10.1021/acs.jafc.7b02956] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electrospinning is a simple and versatile encapsulation technology. Since electrospinning does not involve severe conditions of temperature or pressure or the use of harsh chemicals, it has great potential for effectively entrapping and delivering bioactive compounds. Recently, electrospinning has been used in the food industry to encapsulate bioactive compounds into different biopolymers (carbohydrates and proteins), protecting them from adverse environmental conditions, maintaining the health-promoting properties, and achieving their controlled release. Electrospinning opens a new horizon in food technology with possible commercialization in the near future. This review summarizes the principles and the types of electrospinning processes. The electrospinning of biopolymers and their application in encapsulating of bioactive compounds are highlighted. The existing scope, limitations, and future prospects of electrospinning bioactive compounds are also presented.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Yan Wen
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety , Guangzhou 510640, China
| |
Collapse
|
13
|
Wang D, Xuan L, Zhong H, Gong Y, Shi X, Ye F, Li Y, Jiang Q. Incorporation of well-dispersed calcium phosphate nanoparticles into PLGA electrospun nanofibers to enhance the osteogenic induction potential. RSC Adv 2017. [DOI: 10.1039/c7ra01865g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PAA modified Zn-doped HAp-like calcium phosphate (PAA-CaP/Zn) nanoparticles were homogeneously distributed in PLGA electrospun nanofibers, and enhanced the osteogenic differentiation of rADSCs.
Collapse
Affiliation(s)
- Dandan Wang
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Liuyang Xuan
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Huixiang Zhong
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Yihong Gong
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Xuetao Shi
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- P. R. China
| | - Feng Ye
- Key Laboratory of Molecular Biology for Infectious Diseases
- Ministry of Education of China
- The Second Affiliated Hospital
- Chongqing Medical University
- Chongqing
| | - Yan Li
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| | - Qing Jiang
- Department of Biomedical Engineering
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument
- School of Engineering
- Sun Yat-sen University
- Guangzhou
| |
Collapse
|
14
|
Wang J, Cheng Y, Fan Z, Li S, Liu X, Shen X, Su F. Composites of poly(l-lactide-trimethylene carbonate-glycolide) and surface modified calcium carbonate whiskers as a potential bone substitute material. RSC Adv 2016. [DOI: 10.1039/c6ra07832j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Calcium carbonate whiskers are surface modified by grafting of poly(l-lactide) chains, and used to reinforce a biodegradable terpolymer matrix. Optimal properties are obtained for composites with a PLLA-g-CCW content of 2 wt%.
Collapse
Affiliation(s)
- Jielin Wang
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
- Institut Européen des Membranes
| | - Yilin Cheng
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
| | - Zhongyong Fan
- Department of Materials Science
- Fudan University
- Shanghai 200433
- China
| | - Suming Li
- Institut Européen des Membranes
- UMR CNRS 5635
- Université de Montpellier
- 34095 Montpellier Cedex 5
- France
| | - Xue Liu
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Xin Shen
- College of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| | - Feng Su
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|