1
|
Ouyang P, Yang J, Zhong Q, Yuan Y, Gao Y, Wang H, Yang ST. Toxicity of VO 2 micro/nanoparticles to nitrogen-fixing bacterium Azotobacter vinelandii. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133553. [PMID: 38266589 DOI: 10.1016/j.jhazmat.2024.133553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.
Collapse
Affiliation(s)
- Peng Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Jinwei Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
2
|
Li JB, Li D, Liu YY, Cao A, Wang H. Cytotoxicity of vanadium dioxide nanoparticles to human embryonic kidney cell line: Compared with vanadium(IV/V) ions. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104378. [PMID: 38295964 DOI: 10.1016/j.etap.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Vanadium dioxide (VO2) is a class of thermochromic material with potential applications in various fields. Massive production and wide application of VO2 raise the concern of its potential toxicity to human, which has not been fully understood. Herein, a commercial VO2 nanomaterial (S-VO2) was studied for its potential toxicity to human embryonic kidney cell line HEK293, and two most common vanadium ions, V(IV) and V(V), were used for comparison to reveal the related mechanism. Our results indicate that S-VO2 induces dose-dependent cellular viability loss mainly through the dissolved V ions of S-VO2 outside the cell rather than S-VO2 particles inside the cell. The dissolved V ions of S-VO2 overproduce reactive oxygen species to trigger apoptosis and proliferation inhibition via several signaling pathways of cell physiology, such as MAPK and PI3K-Akt, among others. All bioassays indicate that the differences in toxicity between S-VO2, V(IV), and V(V) in HEK293 cells are very small, supporting that the toxicity is mainly due to the dissolved V ions, in the form of V(V) and/or V(IV), but the V(V)'s behavior is more similar to S-VO2 according to the gene expression analysis. This study reveals the toxicity mechanism of nanosized VO2 at the molecular level and the role of dissolution of VO2, providing valuable information for safe applications of vanadium oxides.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Dan Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
3
|
Capek J, Sepúlveda M, Bacova J, Rodriguez-Pereira J, Zazpe R, Cicmancova V, Nyvltova P, Handl J, Knotek P, Baishya K, Sopha H, Smid L, Rousar T, Macak JM. Ultrathin TiO 2 Coatings via Atomic Layer Deposition Strongly Improve Cellular Interactions on Planar and Nanotubular Biomedical Ti Substrates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5627-5636. [PMID: 38275195 PMCID: PMC10859894 DOI: 10.1021/acsami.3c17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.
Collapse
Affiliation(s)
- Jan Capek
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Marcela Sepúlveda
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Jana Bacova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jhonatan Rodriguez-Pereira
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Raul Zazpe
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Veronika Cicmancova
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
| | - Pavlina Nyvltova
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jiri Handl
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Petr Knotek
- Department
of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Kaushik Baishya
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Hanna Sopha
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| | - Lenka Smid
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Tomas Rousar
- Department
of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532
10 Pardubice, Czech
Republic
| | - Jan M. Macak
- Center
of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02 Pardubice, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 61200 Brno, Czech Republic
| |
Collapse
|
4
|
Tan SY, Chen XZ, Cao A, Wang H. Biodistribution of Vanadium Dioxide Particles in Mice by Consecutive Gavage Administration: Effects of Particle Size, Dosage, and Health Condition of Mice. Biol Trace Elem Res 2023; 201:2917-2926. [PMID: 35984600 DOI: 10.1007/s12011-022-03395-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022]
Abstract
The newly developed vanadium dioxide (VO2), a material with excellent reversible and multi-stimuli responsible phase transition property, has been widely used in high-performance and energy-saving smart devices. The rapid growth of the VO2-based emerging technologies and the complex biological effect of vanadium to organisms urge a better understanding of the behavior of VO2 in vivo for safety purpose. Herein, we study the absorption, distribution, and excretion of two commercial VO2 (nanoscale SVO2 and bulk MVO2) in mice after consecutive gavage administration for up to 28 days. The absorption of both types of VO2 is as low as less than 1.5% of the injected dose within 28 days, while MVO2 is several times more difficult to be absorbed than SVO2. Almost all unabsorbed VO2 is excreted through feces. For the absorbed vanadium, bone is the organ with the largest accumulation, followed by liver, kidney, and spleen. The vanadium content in organs shows a size-, dosage-, and animal health condition-dependent manner, and increases gradually to a saturation value along with the consecutive administration. Generally, smaller particle size and higher dosage lead to higher vanadium contents in organs, and more vanadium accumulates in bone and liver in diabetic mice than in normal mice. After the treatment is stopped, the accumulated vanadium in organs decreases a lot within 14 days, even reaches to the background level in some organs, but the content of vanadium in the bone remains high after 14 days post-exposure. These findings provide basic information for the safety assessment and safe applications of VO2-based materials.
Collapse
Affiliation(s)
- Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Xing-Zhu Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Allabergenov B, Yun S, Choi B. Metal-Insulator Transition Detection of Vanadium Dioxide Thin Films by Visible Light Reflection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47841-47852. [PMID: 36223756 DOI: 10.1021/acsami.2c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vanadium dioxide (VO2)-based thin films have received considerable attention in recent years due to their superior performance in creating next-generation color-rendering materials. The near-room-temperature metal-insulator transition of VO2 promises the advantage of active color tuning in the visible wavelength range. Although various results of dynamic color generation combined with plasmonic nanostructures are currently being investigated, so far, very few studies have addressed the visible-light optical performance of pure VO2 thin films prepared on conventional substrates. This article shows in detail the phase-transition behavior of VO2 thin films in the visible wavelength range of 400-750 nm prepared on glass with subsequent annealing at temperatures of 350, 400, 450, and 500 °C. The results show an anomalous phase transition reducing the overall RGB reflectivity correlated with the crystallization behavior of the VO2 phase and scattering effect. The sample annealed at 350 °C shows the smallest phase transition at 47 °C, correlating with a crystallite size of 7 nm. The blue band reflectivity anomaly after annealing at 450 °C was considered an effect of the secondary reflection. The results of this research could play a huge role in the production of active-switching photonic devices, color-managed reflectors, and temperature indicators.
Collapse
Affiliation(s)
- Bunyod Allabergenov
- Division of Electronics and Information System, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
- Department of Transport Systems, Urgench State University (UrSU), Urgench 220100, Uzbekistan
| | - Sanghun Yun
- Division of Electronics and Information System, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| | - Byeongdae Choi
- Division of Electronics and Information System, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, South Korea
| |
Collapse
|
6
|
Li JB, Xi WS, Tan SY, Liu YY, Wu H, Liu Y, Cao A, Wang H. Effects of VO 2 nanoparticles on human liver HepG2 cells: Cytotoxicity, genotoxicity, and glucose and lipid metabolism disorders. NANOIMPACT 2021; 24:100351. [PMID: 35559810 DOI: 10.1016/j.impact.2021.100351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/26/2021] [Accepted: 08/16/2021] [Indexed: 06/15/2023]
Abstract
The rapid development of smart materials stimulates the production of vanadium dioxide (VO2) nanomaterials. This significantly increases the population exposure to VO2 nanomaterials via different pathways, and thus urges us to pay more attentions to their biosafety. Liver is the primary accumulation organ of nanomaterials in vivo, but the knowledge of effects of VO2 nanomaterials on the liver is extremely lacking. In this work, we comprehensively evaluated the effects of a commercial VO2 nanoparticle, S-VO2, in a liver cell line HepG2 to illuminate the potential hepatic toxicity of VO2 nanomaterials. The results indicated that S-VO2 was cytotoxic and genotoxic to HepG2 cells, mainly by inhibiting the cell proliferation. Apoptosis was observed at higher dose of S-VO2, while DNA damage was detected at all tested concentrations. S-VO2 particles were internalized by HepG2 cells and kept almost intact inside cells. Both the particle and dissolved species of S-VO2 contributed to the observed toxicities. They induced the overproduction of ROS, and then caused the mitochondrial dysfunction, ATP synthesis interruption, and DNA damages, consequently arrested the cell cycle in G2/M phase and inhibited the proliferation of HepG2 cells. The S-VO2 exposure also resulted in the upregulations of glucose uptake and lipid content in HepG2 cells, which were attributed to the ROS production and autophagy flux block, respectively. Our findings offer valuable insights into the liver toxicity of VO2 nanomaterials, benefiting their safely practical applications.
Collapse
Affiliation(s)
- Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Shi-Ying Tan
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
7
|
Xi WS, Li JB, Liu YY, Wu H, Cao A, Wang H. Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following long-term exposure. Toxicology 2021; 459:152859. [PMID: 34273449 DOI: 10.1016/j.tox.2021.152859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced and widely applied due to their excellent metal-insulator transition property, making it extremely urgent to evaluate their safety, especially for low-dose long-term respiratory occupational exposure. Here, we report a comprehensive cytotoxicity and genotoxicity study on VO2 NPs to lung cell lines A549 and BEAS-2B following a long-term exposure. A commercial VO2 NP, S-VO2, was used to treat BEAS-2B (0.15-0.6 μg/mL) and A549 (0.3-1.2 μg/mL) cells for four exposure cycles, and each exposure cycle lasted for 4 consecutive days; then various bioassays were performed after each cycle. Significant proliferation inhibition was observed in both cell lines after long-term exposure of S-VO2 at low doses that did not cause apparent acute cytotoxicity; however, the genotoxicity of S-VO2, characterized by DNA damage and micronuclei, was only observed in A549 cells. These adverse effects of S-VO2 were exposure time-, dose- and cell-dependent, and closely related to the solubility of S-VO2. The oxidative stress in cells, i.e., enhanced reactive oxygen species (ROS) generation and suppressed reduced glutathione, was the main toxicity mechanism of S-VO2. The ROS-associated mitochondrial damage and DNA damage led to the genotoxicity, and cell proliferation retard, resulting in the cellular viability loss. Our results highlight the importance and urgent necessity of the investigation on the long-term toxicity of VO2 NPs.
Collapse
Affiliation(s)
- Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Teng Q, Wang H. Effect of silicate bacteria on quartz flotation separation. SEP SCI TECHNOL 2020. [DOI: 10.1080/01496395.2020.1745238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Qing Teng
- College of Mining Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hongjun Wang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
9
|
Xi WS, Tang H, Liu YY, Liu CY, Gao Y, Cao A, Liu Y, Chen Z, Wang H. Cytotoxicity of vanadium oxide nanoparticles and titanium dioxide-coated vanadium oxide nanoparticles to human lung cells. J Appl Toxicol 2019; 40:567-577. [PMID: 31869448 DOI: 10.1002/jat.3926] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022]
Abstract
Due to excellent metal-insulator transition property, vanadium dioxide nanoparticles (VO2 NPs)-based nanomaterials are extensively studied and applied in various fields, and thus draw safety concerns of VO2 NPs exposure through various routes. Herein, the cytotoxicity of VO2 NPs (N-VO2 ) and titanium dioxide-coated VO2 NPs (T-VO2 ) to typical human lung cell lines (A549 and BEAS-2B) was studied by using a series of biological assays. It was found that both VO2 NPs induced a dose-dependent cytotoxicity, and the two cell lines displayed similar sensitivity to VO2 NPs. Under the same conditions, T-VO2 NPs showed slightly lower cytotoxicity than N-VO2 in both cells, indicating the surface coating of titanium dioxide mitigated the toxicity of VO2 NPs. Titanium dioxide coating changed the surface property of VO2 NPs and reduced the vanadium release of particles, and thus helped lowing the toxicity of VO2 NPs. The induced cell viability loss was attributed to apoptosis and proliferation inhibition, which were supported by the assays of apoptosis, mitochondrial membrane damage, caspase-3 level, and cell cycle arrest. The oxidative stress, i.e., enhanced reactive oxygen species generation and suppressed reduced glutathione , in A549 and BEAS-2B cells was one of the major mechanisms of the cytotoxicity of VO2 NPs. These findings provide safety guidance for the practical applications of vanadium dioxide-based materials.
Collapse
Affiliation(s)
- Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Huan Tang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Chun-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yanfeng Gao
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| | - Yuanfang Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhang Chen
- School of Materials Science and Engineering, Shanghai University, Shanghai, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, China
| |
Collapse
|
10
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wang J, Zhou H, Guo G, Tan J, Wang Q, Tang J, Liu W, Shen H, Li J, Zhang X. Enhanced Anti-Infective Efficacy of ZnO Nanoreservoirs through a Combination of Intrinsic Anti-Biofilm Activity and Reinforced Innate Defense. ACS APPLIED MATERIALS & INTERFACES 2017; 9:33609-33623. [PMID: 28884578 DOI: 10.1021/acsami.7b08864] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The increasing prevalence of implant-associated infections (IAIs) imposes a heavy burden on patients and medical providers. Bacterial biofilms are recalcitrant to antiseptic drugs and local immune defense and can attenuate host proinflammatory response to interfere with bacterial clearance. Zinc oxide nanoparticles (ZnO NPs) play a dual role in antibacterial and immunomodulatory activities but compromise the cytocompatibility because of their intracellular uptake. Here, ZnO NPs were immobilized on titanium to form homogeneous nanofilms (from discontinuous to continuous) through magnetron sputtering, and the possible antimicrobial activity and immunomodulatory effect of nano-ZnO films were investigated. Nano-ZnO films were found to prohibit sessile bacteria more than planktonic bacteria in vitro, and the antibacterial effect occurred in a dose-dependent manner. Using a novel mouse soft tissue IAI model, the in vivo results revealed that nano-ZnO films possessed outstanding antimicrobial efficacy, which could not be ascribed solely to the intrinsic anti-infective activity of nano-ZnO films observed in vitro. Macrophages and polymorphonuclear leukocytes (PMNs), two important factors in innate immune response, were cocultured with nano-ZnO and bacteria/lipopolysaccharide in vitro, and the nano-ZnO films could enhance the antimicrobial efficacy of macrophages and PMNs through promoting phagocytosis and secretion of inflammatory cytokines. This study provides insights into the anti-infective activity and mechanism of ZnO and consolidates the theoretical basis for future clinical applications of ZnO.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
| | - Geyong Guo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jiaqi Tan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Qiaojie Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jin Tang
- Department of Clinical Laboratory, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Wei Liu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Hao Shen
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| | - Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050, China
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Pokfulam, Hong Kong 999077, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University , Shanghai 200233, China
| |
Collapse
|
12
|
Li J, Guo G, Wang J, Zhou H, Shen H, Yeung KWK. Anti-biofouling function of amorphous nano-Ta 2O 5 coating for VO 2-based intelligent windows. NANOTECHNOLOGY 2017; 28:175705. [PMID: 28367838 DOI: 10.1088/1361-6528/aa6525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
From environmental and health perspectives, the acquisition of a surface anti-biofouling property holds important significance for the usability of VO2 intelligent windows. Herein, we firstly deposited amorphous Ta2O5 nanoparticles on VO2 film by the magnetron sputtering method. It was found that the amorphous nano-Ta2O5 coating possessed a favorable anti-biofouling capability against Pseudomonas aeruginosa as an environmental microorganism model, behind which lay the mechanism that the amorphous nano-Ta2O5 could interrupt the microbial membrane electron transport chain and significantly elevate the intracellular reactive oxygen species (ROS) level. A plausible relationship was established between the anti-biofouling activity and physicochemical nature of amorphous Ta2O5 nanoparticles from the perspective of defect chemistry. ROS-induced oxidative damage gave rise to microbial viability loss. In addition, the amorphous nano-Ta2O5 coating can endow VO2 with favorable cytocompatibility with human skin fibroblasts. This study may provide new insights into understanding the anti-biofouling and antimicrobial actions of amorphous transition metal oxide nanoparticles, which is conducive to expanding their potential applications in environmental fields.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, People's Republic of China. State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China. Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, The University of Hong Kong Shenzhen Hospital, Shenzhen 518053, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | | | | | | | |
Collapse
|
13
|
Li J, Zhou H, Wang J, Wang D, Shen R, Zhang X, Jin P, Liu X. Oxidative stress-mediated selective antimicrobial ability of nano-VO2 against Gram-positive bacteria for environmental and biomedical applications. NANOSCALE 2016; 8:11907-11923. [PMID: 27240639 DOI: 10.1039/c6nr02844f] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Vanadium dioxide (VO2) is a unique thermochromic material as a result of its semiconductor-metal transition, holding great promise for energy-saving intelligent windows. Herein, pure nano-VO2 from discrete nanoparticles to continuous films were successfully deposited on quartz glass by controlling the sputtering parameters. It was demonstrated that, for Gram-positive S. aureus and S. epidermidis, the nano-VO2 could effectively disrupt bacteria morphology and membrane integrity, and eventually cause death. By contrast, the nano-VO2 did not exhibit significant toxicity towards Gram-negative E. coli and P. aeruginosa. To our knowledge, this is the first report on a selective antimicrobial effect of nano-VO2 materials on Gram-positive bacteria. Based on the experimental results, a plausible mechanism was proposed for the antimicrobial selectivity, which might originate from the different sensitivity of Gram-positive and Gram-negative bacteria to intracellular reactive oxygen species (ROS) level. Elevated intracellular ROS levels exceed the threshold that bacteria can self-regulate to maintain cellular redox homeostasis and thus cause oxidative stress, which can be alleviated by the intervention of glutathione (GSH) antioxidant. In addition, nano-VO2 did not produce significant cytotoxicity (hemolysis) against human erythrocytes within 12 h. Meanwhile, potential cytotoxicity against HIBEpiC revealed a time- and dose-dependent behavior that might be controlled and balanced by careful design. The findings in the present work may contribute to understanding the antimicrobial behavior of nano-VO2, and to expanding the new applications of VO2-based nanomaterials in environmental and biomedical fields.
Collapse
Affiliation(s)
- Jinhua Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaijuan Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxing Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruxiang Shen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Xianlong Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ping Jin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China. and Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology, Nagoya 463-8560, Japan.
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|