1
|
Meng X, Wang Y, Conte AJ, Zhang S, Ryu J, Wie JJ, Pu Y, Davison BH, Yoo CG, Ragauskas AJ. Applications of biomass-derived solvents in biomass pretreatment - Strategies, challenges, and prospects. BIORESOURCE TECHNOLOGY 2023; 368:128280. [PMID: 36368492 DOI: 10.1016/j.biortech.2022.128280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Biomass pretreatment is considered a key step in the 2nd generation biofuel production from lignocellulosic biomass. Research on conventional biomass pretreatment solvents has mainly been focused on carbohydrate conversion efficiency, while their hazardousness and/or carbon intensity were not comprehensively considered. Recent sustainability issues request further consideration for eco-friendly and sustainable alternatives like biomass-derived solvents. Carbohydrate and lignin-derived solvents have been proposed and investigated as green alternatives in many biomass processes. In this review, the applications of different types of biomass pretreatment solvents, including organic, ionic liquid, and deep eutectic solvents, are thoroughly discussed. The role of water as a co-solvent in these pretreatment processes is also reviewed. Finally, current research challenges and prospects of utilizing biomass-derived pretreatment solvents for pretreatment are discussed. Given bioethanol's market potential and increasing public awareness about environmental concerns, it will be a priority adopting sustainable and green biomass pretreatment solvents in biorefinery.
Collapse
Affiliation(s)
- Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Yunxuan Wang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Austin J Conte
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Shuyang Zhang
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA
| | - Jiae Ryu
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Jeong Jae Wie
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea; Human-Tech Convergence Program, Hanyang University, Seoul 04763, Republic of Korea; Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Brian H Davison
- Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, State University of New York - College of Environmental Science and Forestry, Syracuse, NY 13210, USA; The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996-2200, USA; Biosciences Division, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Joint Institute for Biological Sciences, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA; Department of Forestry, Wildlife and Fisheries, Center of Renewable Carbon, The University of Tennessee, Institute of Agriculture, Knoxville, TN 37996-2200, USA.
| |
Collapse
|
2
|
Qian H, Fan Y, Chen J, He L, Sun Y, Li L. Enabling the complete valorization of hybrid Pennisetum: Directly using alkaline black liquor for preparing UV-shielding biodegradable films. Front Bioeng Biotechnol 2022; 10:1027511. [PMID: 36545683 PMCID: PMC9760701 DOI: 10.3389/fbioe.2022.1027511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The conversion of lignocellulosic biomass into various high-value chemicals has been a rapid expanding research topic in industry and agriculture. Among them, alkaline removal and utilization of lignin are important for the accelerated degradation of biomass. Modern biorefinery has been focusing the vision on the advancement of economical, green, and environmentally friendly processes. Therefore, it is indispensable to develop cost-effective and simple biomass conversion technologies to obtain high-value products. In this study, the black liquor (BL) obtained from the alkaline pretreatment of biomass was added to polyvinyl alcohol (PVA) solution and used to prepare degradable ultraviolet (UV) shielding films, achieving direct and efficient utilization of the aqueous phase from alkaline pretreatment. This method avoids the extraction step of lignin fraction from black liquor, which can be directly utilized as the raw materials of films preparation. In addition, the direct use of alkaline BL results in films with similar UV-shielding properties, higher physical strength, and similar thermal stability compared with films made by commercial alkaline lignin. Therefore, this strategy is proposed for alkaline-pretreated biorefineries as a simple way to convert waste BL into valuable products and partially recover unconsumed sodium hydroxide to achieve as much integration of biomass and near zero-waste biorefineries as possible.
Collapse
Affiliation(s)
- Haojiang Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Yafeng Fan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Linsong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China,*Correspondence: Lianhua Li,
| |
Collapse
|
3
|
Jin H, Shi H, Jia W, Sun Y, Sheng X, Guo Y, Li H, Sun H. Green solvents-based molecular weight controllable fractionation process for industrial alkali lignin at room temperature. Int J Biol Macromol 2022; 207:531-540. [PMID: 35296437 DOI: 10.1016/j.ijbiomac.2022.03.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 12/23/2022]
Abstract
The molecular weight is one of the most important factors influencing the utilization of industrial lignin obtained from chemical pulping process. In this paper, a facile operative green solvent system was successfully developed for molecular weight-controllable fractionation of industrial alkali lignin (IAL) at room temperature. The results showed that through adjusting the ratio of water, ethanol and γ-Valerolactone (GVL), the industrial lignin was fractionated into six levels with molecular weight stepwise controllable from low to high. The fractionation is a physical process according to FTIR and 2D-HSQC NMR analysis, and the chemical structure of lignin has not changed. Additionally, the polydispersity of fractionated lignin with higher molecular weight tends to be narrower. The content of hydroxyl and carboxyl group is higher for the fractionated lignin with lower molecular weight, which would be beneficial for the chemical reactivity in the down-stream application.
Collapse
Affiliation(s)
- Huiqi Jin
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiqiang Shi
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Wenchao Jia
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanning Sun
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xueru Sheng
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yanzhu Guo
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haiming Li
- Liaoning Key Laboratory of Lignocellulose chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Haidong Sun
- Liaoning Zhenxing Paper Manufacturing Co., Ltd, Panjin 124112, China
| |
Collapse
|
4
|
Imman S, Khongchamnan P, Wanmolee W, Laosiripojana N, Kreetachat T, Sakulthaew C, Chokejaroenrat C, Suriyachai N. Fractionation and characterization of lignin from sugarcane bagasse using a sulfuric acid catalyzed solvothermal process. RSC Adv 2021; 11:26773-26784. [PMID: 35480031 PMCID: PMC9037613 DOI: 10.1039/d1ra03237b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022] Open
Abstract
Conversion of lignocellulosic residue to bioenergy and biofuel is a promising platform for global sustainability. Fractionation is an initial step for isolating lignocellulosic components for subsequent valorization. The aim of this research is to develop the solvothermal fractionation of sugarcane bagasse to produce high purity lignin. The physio-chemical structure of isolated lignin from this process was determined. In this study, a central composite design-based response surface methodology (RSM) was used to optimize an acid promoter for isolating lignin from sugarcane bagasse using a solvothermal fractionation process. The reaction was carried out with sulfuric acid, at a concentration of 0.01-0.02 M and a reaction temperature of 180-200 °C for 30-90 min. The optimal conditions for the experiment were obtained at the acid concentration of 0.02 M with a temperature of 200 °C for 90 min in methyl isobutyl ketone (MIBK)/methanol/water (35% : 25% : 40% v/v%). The results showed that 88% of lignin removal was done in the solid phase, while 87% of lignin recovery was conducted in the organic phase. Furthermore, the changes in the physico-chemical characteristics of solid residue and lignin recovery were analyzed using various techniques. GPC analysis of recovered lignin from the organic fraction showed a lower M w (1374 g mol-1) and polydispersity index (1.75) compared to commercial organosolv lignin. The major lignin degradation temperature of commercial organosolv lignin was estimated to be 410 °C, whereas BGL showed two main degradations at 291 °C and 437 °C, which could point to potential relationships with the degradation of β-O-4 cross-links. The results indicated that recovered lignin was mostly cross-linked by β-O-4 cross-links. In addition, Py-GC/MS and 2D HSQC NMR gave more information regarding the compositional and structural features of recovered lignin. The development of the sulfuric acid catalyzed solvothermal process in this study provides efficient extraction of high-value organosolv lignin from sugarcane bagasse and the production of recovered lignin in the organic phase with low contamination from other contents. The lignin characteristic data can contribute to the development of lignin valorization in value-added applications.
Collapse
Affiliation(s)
- Saksit Imman
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Punjarat Khongchamnan
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Wanwitoo Wanmolee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA) Pathum Thani 12120 Thailand
| | - Navadol Laosiripojana
- The Joint Graduate School of Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi Prachauthit Road, Bangmod Bangkok 10140 Thailand
| | - Torpong Kreetachat
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| | - Chainarong Sakulthaew
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University Bangkok Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University Bangkok Thailand
| | - Nopparat Suriyachai
- School of Energy and Environment, University of Phayao Tambon Maeka, Amphur Muang Phayao 56000 Thailand
| |
Collapse
|
5
|
Chen C, Hu L. Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2002890. [PMID: 33108027 DOI: 10.1002/adma.202002890] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 05/26/2023]
Abstract
Ion transport and regulation are fundamental processes for various devices and applications related to energy storage and conversion, environmental remediation, sensing, ionotronics, and biotechnology. Wood-based materials, fabricated by top-down or bottom-up approaches, possess a unique hierarchically porous fibrous structure that offers an appealing material platform for multiscale ion regulation. The ion transport behavior in these materials can be regulated through structural and compositional engineering from the macroscale down to the nanoscale, imparting wood-based materials with multiple functions for a range of emerging applications. A fundamental understanding of ion transport behavior in wood-based structures enhances the capability to design high-performance ion-regulating devices and promotes the utilization of sustainable wood materials. Combining this unique ion regulation capability with the renewable and cost-effective raw materials available, wood and its derivatives are the natural choice of materials toward sustainability.
Collapse
Affiliation(s)
- Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
- Center for Materials Innovation, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
6
|
Effects of Organic Solvents on the Organosolv Pretreatment of Degraded Empty Fruit Bunch for Fractionation and Lignin Removal. SUSTAINABILITY 2021. [DOI: 10.3390/su13126757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Empty fruit bunch (EFB), which is one of the primary agricultural wastes generated from the palm oil plantation, is generally discharged into the open environment or ends up in landfills. The utilization of this EFB waste for other value-added applications such as activated carbon and biofuels remain low, despite extensive research efforts. One of the reasons is that the EFB is highly vulnerable to microbial and fungi degradation under natural environment owning to its inherent characteristic of high organic matter and moisture content. This can rapidly deteriorate its quality and results in poor performance when processed into other products. However, the lignocellulosic components in degraded EFB (DEFB) still largely remain intact. Consequently, it could become a promising feedstock for production of bio-products after suitable pretreatment with organic solvents. In this study, DEFB was subjected to five different types of organic solvents for the pretreatment, including ethanol, ethylene glycol, 2-propanol, acetic acid and acetone. The effects of temperature and residence time were also investigated during the pretreatment. Organosolv pretreatment in ethylene glycol (50 v/v%) with the addition of NaOH (3 v/v%) as an alkaline catalyst successfully detached 81.5 wt.% hemicellulose and 75.1 wt.% lignin. As high as 90.4 wt.% cellulose was also successfully retrieved at mild temperature (80 °C) and short duration (45 min), while the purity of cellulose in treated DEFB was recorded at 84.3%. High-purity lignin was successfully recovered from the pretreatment liquor by using sulfuric acid for precipitation. The amount of recovered lignin from alkaline ethylene glycol liquor was 74.6% at pH 2.0. The high recovery of cellulose and lignin in DEFB by using organosolv pretreatment rendered it as one of the suitable feedstocks to be applied in downstream biorefinery processes. This can be further investigated in more detailed studies in the future.
Collapse
|
7
|
Xu R, Liu K, Du H, Liu H, Cao X, Zhao X, Qu G, Li X, Li B, Si C. Falling Leaves Return to Their Roots: A Review on the Preparation of γ-Valerolactone from Lignocellulose and Its Application in the Conversion of Lignocellulose. CHEMSUSCHEM 2020; 13:6461-6476. [PMID: 32961026 DOI: 10.1002/cssc.202002008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Indexed: 06/11/2023]
Abstract
γ-Valerolactone (GVL), derived from renewable lignocellulosic biomass, has been considered as a cost-competitive and green platform chemical. With the increasingly prominent environmental problems, a deep understanding of the preparation and transformation of GVL is highly needed. Based on the latest progress made with GVL, preparation and applications of GVL are summarized and discussed in this Review. In particular, the state-of-the-art in catalytic production of GVL is described based on the use of noble-metal and non-noble-metal catalysts. The application of GVL for the valorization of lignocellulose would improve the yield of target products such as sugar monomers and furfural. Thus, GVL can be produced from lignocellulose and simultaneously it can also be used for the valorization of lignocellulose, just as in the sustainable and renewable cycle, "the falling leaves returns to their roots". This Review is expected to provide valuable reference and new proposal for the further development and better utilization of GVL.
Collapse
Affiliation(s)
- Rui Xu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Kun Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, 212 Rolls Hall, Auburn, Alabama 36849, USA
| | - Huayu Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Xuefei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, No.35 Tsinghua East Road, Haidian District, Beijing, 100083, P. R. China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao, 266101, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, No. 9 at 13 Avenue, TEDA, Tianjin, 300457, P. R. China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
8
|
Liu X, Zhu R, Chen T, Song P, Lu F, Xu F, Ralph J, Zhang X. Mild Acetylation and Solubilization of Ground Whole Plant Cell Walls in EmimAc: A Method for Solution-State NMR in DMSO- d6. Anal Chem 2020; 92:13101-13109. [PMID: 32885955 DOI: 10.1021/acs.analchem.0c02124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lignocellulosic biomass is mainly composed of polysaccharides and lignin. The complexity and diversity of the plant cell wall polymers makes it difficult to isolate the components in pure form for characterization. Many current approaches to analyzing the structure of lignocellulose, which involve sequential extraction and characterization of the resulting fractions, are time-consuming and labor-intensive. The present study describes a new and facile system for rationally derivatizing and dissolving coarsely ground plant cell wall materials. Using ionic liquids (EmimAc) and dichloroacetyl chloride as a solvent/reagent produced mildly acetylated whole cell walls without significant degradation. The acetylated products were soluble in DMSO-d6 from which they can be characterized by solution-state two-dimensional nuclear magnetic resonance (2D NMR) spectrometry. A distinct advantage of the procedure is that it realizes the dissolution of whole lignocellulosic materials without requiring harsh ball milling, thereby allowing the acquisition of high-resolution 2D NMR spectra to revealing structural details of the main components (lignin and polysaccharides). The method is therefore beneficial to understanding the composition and structure of biomass aimed at its improved utilization.
Collapse
Affiliation(s)
- Xin Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Ruonan Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Tianying Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Pingping Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Fachuang Lu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - John Ralph
- Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.,Department of Energy, Great Lakes Bioenergy Research Center, The Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, United States
| |
Collapse
|
9
|
Wu P, Li L, Sun Y, Song B, Yu Y, Liu H. Near complete valorisation of Hybrid pennisetum to biomethane and lignin nanoparticles based on gamma-valerolactone/water pretreatment. BIORESOURCE TECHNOLOGY 2020; 305:123040. [PMID: 32114303 DOI: 10.1016/j.biortech.2020.123040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 05/15/2023]
Abstract
This study is the first to integrate gamma-valerolactone/water (GVL/water) pretreatment with anaerobic digestion (AD) for biogas production and lignin nanoparticles (LNPs) synthesis. The hydrothermal treatment was conducted at 135 to 180 °C with GVL at 0 to 90%. After pretreatment, the compositions of hybrid pennisetum were changed with the removal of lignin, hemicellulose, and cellulose to different extent. Subsequent anaerobic digestion achieved a maximal specific methane yield of 228.00 ± 4.37 mL/g VS, compared with that at 165.11 ± 1.99 mL/g VS for the control. The highest actual methane yield (150 mL/g RM) was achieved by pretreatment with GVL/water (50/50) at 150 °C for 90 min. LNPs at 200 to 2000 nm were synthesized from the liquid waste with a yield at ~4 mg/mL. The mass balance of this integrated method was discussed. In general, the maximal valorisation of hybrid pennisetum was achieved based on a catalyst-free of GVL/water pretreatment.
Collapse
Affiliation(s)
- Peiwen Wu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Bing Song
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand.
| | - Yun Yu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huping Liu
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gamma-valerolactone (GVL) was found to be an effective, sustainable alternative in the lignocellulose defragmentation for carbohydrate isolation and, more specifically, for lignin dissolution. In this study, it was adapted as a green pretreatment reagent for milled pinewood biomass. The pretreatment evaluation was performed for temperature (140–180 °C) and reaction time (2–4 h) using 80% aqueous GVL to obtain the highest enzymatic digestibility of 92% and highest lignin yield of 33%. Moreover, the results revealed a positive correlation (R2 = 0.82) between the lignin removal rate and the crystallinity index of the treated biomass. Moreover, under the aforementioned conditions, lignin with varying molecular weights (150–300) was obtained by derivatization followed by reductive cleavage (DFRC). 2D heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC-NMR) spectrum analysis and gel permeation chromatography (GPC) also revealed versatile lignin properties with relatively high β-O-4 linkages (23.8%–31.1%) as well as average molecular weights of 2847–4164 with a corresponding polydispersity of 2.54–2.96, indicating this lignin to be a heterogeneous feedstock for value-added applications of biomass. All this suggested that this gamma-valerolactone based pretreatment method, which is distinctively advantageous in terms of its effectiveness and sustainability, can indeed be a competitive option for lignocellulosic biorefineries.
Collapse
|
11
|
Zheng W, Liu X, Zhu L, Huang H, Wang T, Jiang L. Pretreatment with γ-Valerolactone/[Mmim]DMP and Enzymatic Hydrolysis on Corncob and Its Application in Immobilized Butyric Acid Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11709-11717. [PMID: 30296065 DOI: 10.1021/acs.jafc.8b04323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Corncob is a widely available raw material with high carbohydrate and low lignin content. To improve corncob conversion to the fermentable sugars, a novel method encompassing pretreatment using the γ-valerolactone (GVL)/1-methyl-3-methylimidazolium dimethylphosphite ([Mmim]DMP) system integrated with cellulase hydrolysis was developed and optimized. It is confirmed that lignin was extracted efficiently after combined pretreatment and that the subsequent enzymatic saccharification efficiency could be significantly enhanced, resulting in the yield of 94.9% glucose from cellulose and 53.3% xylose from xylan, respectively. Furthermore, the above fermentable sugars were used as carbon source for Clostridium tyrobutyricum immobilized in macroporous Ca-alginate-lignin beads with the extracted lignin as the active ingredient to evaluate the fermentability of butyric acid. The results showed that high butyrate productivity of 0.47 g/L/h and yield of 0.45 g/g were obtained after 10 repeated batches of fermentation, demonstrating an effective process for the production of butyric acid from abundant corncob waste-biomass.
Collapse
Affiliation(s)
- Wenxiu Zheng
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , PR China
| | - Xujie Liu
- College of Biotechnology and Pharmaceutical Engineering , Nanjing Tech University , Nanjing 210009 , PR China
| | - Liying Zhu
- College of Chemical and Molecular Engineering , Nanjing Tech University , Nanjing 210009 , PR China
| | - He Huang
- College of Pharmaceutical Sciences , Nanjing Tech University , Nanjing 210009 , PR China
| | - Tianfu Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments , Chinese Academy of Sciences , Urumqi 830011 , PR China
| | - Ling Jiang
- College of Food Science and Light Industry , Nanjing Tech University , Nanjing 210009 , PR China
| |
Collapse
|
12
|
Luo Y, Li Z, Zuo Y, Su Z, Hu C. Effects of γ-Valerolactone/H 2O Solvent on the Degradation of pubescens for Its Fullest Utilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6094-6103. [PMID: 29799753 DOI: 10.1021/acs.jafc.8b01563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Solvent-thermal conversion of biomass was promising for obtaining value-added chemicals. However, little was known about the interactions between solvents and biomass in the process, which hindered the effective utilization of biomass. The effects of γ-valerolactone (GVL) and H2O on enhancing pubescens degradation via the cleavage of inter- and intramolecular linkages were studied. At 160 °C, H2O selectively promoted the cleavage of the intermolecular linkages by forming hydrogen bonds, making mainly contributions to hemicellulose dissolution, while GVL and H2O promoted lignin dissolution by forming hydrogen bonds with -OCH3 group of lignin. H2O promoted the cleavage of β-(1,4)-glycosidic bonds in hemicellulose derived oligomers to xylose, while the oxygen in the ring of GVL might interact with hydroxyl groups of xylose unit to enhance the dehydration of xylose to furfural, whereas GVL with H2O promoted the depolymerization of lignin to oligomers mainly including β-O-4' and β-β' linkages connecting to G and S units.
Collapse
Affiliation(s)
- Yiping Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P. R. China
- Chengdu Institute of Biology , Chinese Academy of Sciences , Chengdu , Sichuan 610041 , P. R. China
| | - Zheng Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P. R. China
| | - Yini Zuo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu , Sichuan 610064 , P. R. China
| |
Collapse
|
13
|
Jiang Z, Zhao P, Hu C. Controlling the cleavage of the inter- and intra-molecular linkages in lignocellulosic biomass for further biorefining: A review. BIORESOURCE TECHNOLOGY 2018; 256:466-477. [PMID: 29478782 DOI: 10.1016/j.biortech.2018.02.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/08/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
The abundant intermolecular linkages among cellulose, hemicellulose and lignin significantly limit the utilization of the most promising renewable biomass. Process control with solvents, catalysts and temperature is of significant importance providing ways to break the above linkages, and benefiting to the further conversion of the main biomass components to small molecular products. This article discusses the effect of catalyst under hydrothermal and organosolv treatment emphasizing the cleavage of the intermolecular linkage. Acidic catalysts show good performance on cleaving the linkages between carbohydrates and lignin. Basic catalysts promoted the dissolution of lignin component. Hydrogenolysis assisted conversion of lignin can efficiently break the intermolecular linkages to yield lignin-derived bio-oil, especially in co-solvent reaction system. Besides, the effects of single solvent and co-solvent systems, as well as the cleavage of the intramolecular linkages to yield target chemicals are also included. Several further study strategies are proposed.
Collapse
Affiliation(s)
- Zhicheng Jiang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Pingping Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Kassanov B, Wang J, Fu Y, Chang J. Cellulose enzymatic saccharification and preparation of 5-hydroxymethylfurfural based on bamboo hydrolysis residue separation in ionic liquids. RSC Adv 2017. [DOI: 10.1039/c7ra05020h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionic liquid/ethanol was used in bamboo hydrolysis residue (BHR) to separate lignin and cellulose.
Collapse
Affiliation(s)
- Bekbolat Kassanov
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Ju Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Yan Fu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Jie Chang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| |
Collapse
|
15
|
Zhao X, Huang Z, Zhang Y, Yang M, Chen D, Huang K, Hu H, Huang A, Qin X, Feng Z. Efficient solid-phase synthesis of acetylated lignin and a comparison of the properties of different modified lignins. J Appl Polym Sci 2016. [DOI: 10.1002/app.44276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xiaohong Zhao
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
- College of Chemistry and Biology Engineering; Hezhou University; Hezhou 542899 China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences; Nanning 530007 China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences; Nanning 530007 China
| | - Mei Yang
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences; Nanning 530007 China
| | - Dong Chen
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences; Nanning 530007 China
| | - Kai Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences; Nanning 530007 China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| | - Aimin Huang
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| | - Xingzhen Qin
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| | - Zhenfei Feng
- School of Chemistry and Chemical Engineering; Guangxi University; Nanning 530004 China
| |
Collapse
|
16
|
Liu J, Wang J, Fu Y, Chang J. Synthesis and characterization of phenol–furfural resins using lignin modified by a low transition temperature mixture. RSC Adv 2016. [DOI: 10.1039/c6ra17877d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An efficient and green method for the modification of lignin by a low transition temperature mixture was used in the synthesis of phenol–furfural resins.
Collapse
Affiliation(s)
- Jun Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Ju Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Yan Fu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| | - Jie Chang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- PR China
| |
Collapse
|