1
|
Shi L, Chen M, Zhao G, Wang X, Fan M, Liu R, Xie F. Environmental Applications of Electromembrane Extraction: A Review. MEMBRANES 2023; 13:705. [PMID: 37623766 PMCID: PMC10456692 DOI: 10.3390/membranes13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Electromembrane extraction (EME) is a miniaturized extraction technique that has been widely used in recent years for the analysis and removal of pollutants in the environment. It is based on electrokinetic migration across a supported liquid membrane (SLM) under the influence of an external electrical field between two aqueous compartments. Based on the features of the SLM and the electrical field, EME offers quick extraction, effective sample clean-up, and good selectivity, and limits the amount of organic solvent used per sample to a few microliters. In this paper, the basic devices (membrane materials and types of organic solvents) and influencing factors of EME are first introduced, and the applications of EME in the analysis and removal of environmental inorganic ions and organic pollutants are systematically reviewed. An outlook on the future development of EME for environmental applications is also given.
Collapse
Affiliation(s)
- Linping Shi
- College of Chemistry, Zhengzhou University, Science Avenue #100, Zhengzhou 450001, China;
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Mantang Chen
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ge Zhao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Xiaoyu Wang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Meijuan Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Ruihong Liu
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| | - Fuwei Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Street #2, Zhengzhou 450001, China; (G.Z.); (X.W.); (M.F.); (R.L.)
| |
Collapse
|
2
|
Ocaña-González JA, Aranda-Merino N, Pérez-Bernal JL, Ramos-Payán M. Solid supports and supported liquid membranes for different liquid phase microextraction and electromembrane extraction configurations. A review. J Chromatogr A 2023; 1691:463825. [PMID: 36731330 DOI: 10.1016/j.chroma.2023.463825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/09/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Liquid phase microextraction (LPME) and electromembrane microextraction (EME) can be considered as two of the most popular techniques in sample treatment today. Both techniques can be configurated as membrane-assisted techniques to carry out the extraction. These supports provide the required geometry and stability on the contact surface between two phases (donor and acceptor) and improve the reproducibility of sample treatment techniques. These solid support pore space, once is filled with organic solvents, act as a selective barrier acting as a supported liquid membrane (SLM). The SLM nature is a fundamental parameter, and its selection is critical to carry out successful extractions. There are numerous SLMs that have been successfully employed in a wide variety of application fields. The latter is due to the specificity of the selected organic solvents, which allows the extraction of compounds of a very different nature. In the last decade, solid supports and SLM have evolved towards "green" and environmentally friendly materials and solvents. In this review, solid supports implemented in LPME and EME will be discussed and summarized, as well as their applications. Moreover, the advances and modifications of the solid supports and the SLMs to improve the extraction efficiencies, recoveries and enrichment factors are discussed. Hollow fiber and flat membranes, including microfluidic systems, will be considered depending on the technique, configuration, or device used.
Collapse
Affiliation(s)
- Juan Antonio Ocaña-González
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Noemí Aranda-Merino
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - Juan Luis Pérez-Bernal
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain
| | - María Ramos-Payán
- Department of Analytical Chemistry, Faculty of Chemistry, University of Seville, c/Prof. García González s/n, 41012 Seville, Spain.
| |
Collapse
|
3
|
|
4
|
Eie LV, Pedersen-Bjergaard S, Hansen FA. Electromembrane extraction of polar substances - Status and perspectives. J Pharm Biomed Anal 2022; 207:114407. [PMID: 34634529 DOI: 10.1016/j.jpba.2021.114407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
In this article, the scientific literature on electromembrane extraction (EME) of polar substances (log P < 2) is reviewed. EME is an extraction technique based on electrokinetic migration of analyte ions from an aqueous sample, across an organic supported liquid membrane (SLM), and into an aqueous acceptor solution. Because extraction is based on voltage-assisted partitioning, EME is fundamentally suitable for extraction of polar and ionizable substances that are challenging in many other extraction techniques. The article provides an exhaustive overview of papers on EME of polar substances. From this, different strategies to improve the mass transfer of polar substances are reviewed and critically discussed. These strategies include different SLM chemistries, modification of supporting membranes, sorbent additives, aqueous solution chemistry, and voltage/current related strategies. Finally, the future applicability of EME for polar substances is discussed. We expect EME in the coming years to be developed towards both very selective targeted analysis, as well as untargeted analysis of polar substances in biomedical applications such as metabolomics and peptidomics.
Collapse
Affiliation(s)
- Linda Vårdal Eie
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Stig Pedersen-Bjergaard
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway; Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Frederik André Hansen
- Department of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.
| |
Collapse
|
5
|
Islam AKMM, Noh HH, Ro JH, Kim D, Oh MS, Son K, Kwon H. Optimization and validation of a method for the determination of acidic pesticides in cabbage and spinach by modifying QuEChERS procedure and liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1173:122667. [PMID: 33915385 DOI: 10.1016/j.jchromb.2021.122667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/26/2023]
Abstract
A quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was developed and combined with liquid chromatography-tandem mass spectrometry to analyze 12 acidic pesticides in cabbage and spinach. The extraction solvents, phase partition salts and sorbents effect was studied to optimize the method followed by dilution before sample injection. The extraction involved 5% formic acid in acetonitrile, and the liquid-liquid partition was salt-induced. Carbopack Z, a high surface area graphitized carbon black, was a new sorbent used in the clean-up. The results show that Carbopack Z effectively removes interferences with little loss of acidic pesticides. All tested pesticide recoveries were satisfactory when Carbopack Z was combined with C18 in the clean-up at optimized condition. After clean-up, the extract was subjected to 10-fold dilution to sufficiently reduce the matrix effect (<20%). The limit of quantification (LOQ) was 1-5 ng/g, and the mean recovery was between 95 and 110% with a relative standard deviation <20% (between 2% and 10%) for the spiking of three concentrations: 5, 50, and 500 ng/g. The extract was less pigmented in the modified QuEChERS method than its original version. Thus, the modified method is a useful alternative for investigating the acidic pesticide residues in cabbage and spinach.
Collapse
Affiliation(s)
- Abul Kasem Mohammad Mydul Islam
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyun Ho Noh
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jin-Ho Ro
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Danbi Kim
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Min-Seok Oh
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Kyungae Son
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hyeyoung Kwon
- Department of Agro-food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Iseo-myeon, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Planning and Coordination Bureau, Rural Development Administration, Deokjin-gu, Jeonju-si, Jeollabukdo, 54875, Republic of Korea.
| |
Collapse
|
6
|
Guo M, Liu S, Wang M, Lv Y, Shi J, Zeng Y, Ye J, Chu Q. Double surfactants-assisted electromembrane extraction of cyromazine and melamine in surface water, soil and cucumber samples followed by capillary electrophoresis with contactless conductivity detection. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:301-307. [PMID: 31525264 DOI: 10.1002/jsfa.10039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Cyromazine (CYR) and its main degradation product melamine (MEL) are attracting wide attention due to their potential hazards to the environment and humans. In this work, double surfactants-assisted electromembrane extraction (DS-EME) by Tween 20 and alkylated phosphate was firstly used for purification and extraction of CYR and MEL, and the extract was directly analyzed by capillary electrophoresis with capacitively coupled contactless conductivity detection. RESULTS Under the optimum conditions, two targets could be well separated from the main interferences, including common biogenic amines and inorganic cations within 14 min. This developed method was successfully applied to the analyses of surface water, soil and cucumber samples, and the average recoveries were in the range 93.3-112%. DS-EME provided a synergistic purification and enrichment effect for CYR and MEL by adding Tween 20 and alkylated phosphate into donor phase and supporting liquid membrane, respectively. Satisfactory limits of detection [0.2-1.5 ng mL-1 , signal-to-noise ratio (S/N) = 3] could be obtained in the tested sample matrices, and the corresponding enrichment factors were up to 115∼123 times. CONCLUSION This developed method provides an alternative for the simultaneous analysis of CYR and MEL in complex real-world samples. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengnan Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Shiyu Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Manman Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yifei Lv
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jialei Shi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yuan Zeng
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | | | - Qingcui Chu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Mahdavi P, Nojavan S, Asadi S. Sugaring-out assisted electromembrane extraction of basic drugs from biological fluids: Improving the efficiency and stability of extraction system. J Chromatogr A 2019; 1608:460411. [DOI: 10.1016/j.chroma.2019.460411] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/20/2019] [Accepted: 07/29/2019] [Indexed: 11/30/2022]
|
8
|
Boontongto T, Burakham R. Evaluation of metal-organic framework NH 2-MIL-101(Fe) as an efficient sorbent for dispersive micro-solid phase extraction of phenolic pollutants in environmental water samples. Heliyon 2019; 5:e02848. [PMID: 31763487 PMCID: PMC6861588 DOI: 10.1016/j.heliyon.2019.e02848] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 09/14/2019] [Accepted: 11/08/2019] [Indexed: 01/23/2023] Open
Abstract
This work proposes an application of amine-functionalized metal-organic framework (NH2-MIL-101(Fe)) as sorbent for dispersive micro-solid phase extraction (D-μSPE) of ten priority phenolic pollutants. The sorbent was simply synthesized under facile condition. The entire D-μSPE process was optimized by studying the effect of experimental parameters affecting the extraction recovery of the target analytes. The final extract was analyzed using high performance liquid chromatography with photodiode array detector. Under the optimum condition, the proposed procedure can be applied for wide linear calibration ranges between 1.25–5000 μg L−1 with the correlation coefficients of greater than 0.9900. The limits of detection (LODs) and limits of quantitation (LOQs) were in the ranges of 0.4–9.5 μg L−1 and 1.25–30 μg L−1, respectively. The precision evaluated in terms of the relative standard deviations (RSDs) of the intra- and inter-day determinations of the phenol compounds at their LOQ concentrations were below 13.9% and 12.2%, respectively. High enrichment factors up to 120 were reached. The developed method has been successfully applied to determine phenol residues in environmental water samples. The satisfactory recoveries obtained by spiking phenol standards at two different concentrations (near LOQs and 5 times as high as LOQs) ranged from 68.4–114.4%. The results demonstrate that the NH2-MIL-101(Fe) material is promising sorbent in the D-μSPE of phenolic pollutants.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
9
|
Zhang W, Ruan G, Li X, Jiang X, Huang Y, Du F, Li J. Novel porous carbon composites derived from a graphene-modified high-internal- phase emulsion for highly efficient separation and enrichment of triazine herbicides. Anal Chim Acta 2019; 1071:17-24. [DOI: 10.1016/j.aca.2019.04.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 10/27/2022]
|
10
|
Carasek E, Merib J, Mafra G, Spudeit D. A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
11
|
Hou X, Tang S, Guo X, Wang L, Liu X, Lu X, Guo Y. Preparation and application of guanidyl-functionalized graphene oxide-grafted silica for efficient extraction of acidic herbicides by Box-Behnken design. J Chromatogr A 2018; 1571:65-75. [PMID: 30150113 DOI: 10.1016/j.chroma.2018.08.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/12/2022]
Abstract
A highly selective and efficient extraction material was synthesized through the functionalization of guanidyl onto the graphene oxide-grafted silica via a simple chemical modification, which was designed and proposed to improve the enrichment capacity for acidic herbicides. The extraction material was confirmed by scanning electron microscopy, Fourier transform infrared spectrometry, X-ray photoelectron spectrometry, thermal gravimetric analyzer and zeta potential analysis. Theoretical adsorption energies, static- and dynamic-state binding experiments, and comparative experiments with various adsorbents were investigated to elucidate the adsorption mechanism. The introduction of guanidyl endowed the sorbent with stronger Lewis base property and electron-donating ability, hence, excellent extraction recoveries for acidic herbicides could be obtained. Besides, electrostatic and π-π interactions were considered as two major driving impetuses in the adsorption process. Single-factor experiment and response surface methodology were utilized for the optimization of extraction and desorption conditions. Under the optimized conditions, the wide linearities were obtained with correlation coefficients ranging from 0.9904 to 0.9980, and the method detection limits were in the range of 0.5-2 μg L-1. The relative standard deviation values of the recoveries of five different extractions were 3.0-7.1%. Coupled with high performance liquid chromatography, the as-proposed method was successfully applied to detect five acidic herbicides in Lycium barbarum (Goji). It turned out that the proposed method provided a promising perspective for the selective extraction and determination of polar acidic compounds in complex samples.
Collapse
Affiliation(s)
- Xiudan Hou
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Sheng Tang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xingxiang Guo
- Shanghai Institute of Technology, School of Chemical and Environmental Engineering, Shanghai 200000, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xia Liu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
12
|
Sedehi S, Tabani H, Nojavan S. Electro-driven extraction of polar compounds using agarose gel as a new membrane: Determination of amino acids in fruit juice and human plasma samples. Talanta 2018; 179:318-325. [DOI: 10.1016/j.talanta.2017.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/05/2017] [Accepted: 11/06/2017] [Indexed: 11/30/2022]
|
13
|
Fakhari AR, Mohammadi Kosalar H, Asadi S, Hasheminasab KS. Surfactant-assisted electromembrane extraction combined with cyclodextrin-modified capillary electrophoresis for the separation and quantification of Tranylcypromine enantiomers in biological samples. J Sep Sci 2018; 41:475-482. [DOI: 10.1002/jssc.201700488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Sajad Asadi
- Faculty of Chemistry; Shahid Beheshti University; Tehran Iran
| | - Kobra Sadat Hasheminasab
- Faculty of Chemistry; Shahid Beheshti University; Tehran Iran
- Soil and Water Research Institute; Agricultural Research, Education and Extension Organization (AREEO); Karaj Iran
| |
Collapse
|
14
|
Pedersen-Bjergaard S, Huang C, Gjelstad A. Electromembrane extraction-Recent trends and where to go. J Pharm Anal 2017; 7:141-147. [PMID: 29404030 PMCID: PMC5790682 DOI: 10.1016/j.jpha.2017.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 11/28/2022] Open
Abstract
Electromembrane extraction (EME) is an analytical microextraction technique, where charged analytes (such as drug substances) are extracted from an aqueous sample (such as a biological fluid), through a supported liquid membrane (SLM) comprising a water immiscible organic solvent, and into an aqueous acceptor solution. The driving force for the extraction is an electrical potential (dc) applied across the SLM. In this paper, EME is reviewed. First, the principle for EME is explained with focus on extraction of cationic and anionic analytes, and typical performance data are presented. Second, papers published in 2016 are reviewed and discussed with focus on (a) new SLMs, (b) new support materials for the SLM, (c) new sample additives improving extraction, (d) new technical configurations, (e) improved theoretical understanding, and (f) pharmaceutical new applications. Finally, important future research objectives and directions are defined for further development of EME, with the aim of establishing EME in the toolbox of future analytical laboratories.
Collapse
Affiliation(s)
- Stig Pedersen-Bjergaard
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway.,Faculty of Health and Medical Sciences, School of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Chuixiu Huang
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| | - Astrid Gjelstad
- School of Pharmacy, University of Oslo, P.O. Box 1068 Blindern, 0316 Oslo, Norway
| |
Collapse
|
15
|
Fashi A, Khanban F, Yaftian MR, Zamani A. The cooperative effect of reduced graphene oxide and Triton X-114 on the electromembrane microextraction efficiency of Pramipexole as a model analyte in urine samples. Talanta 2017; 162:210-217. [DOI: 10.1016/j.talanta.2016.09.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/29/2022]
|
16
|
Šlampová A, Šindelář V, Kubáň P. Application of a macrocyclic compound, bambus[6]uril, in tailor-made liquid membranes for highly selective electromembrane extractions of inorganic anions. Anal Chim Acta 2017; 950:49-56. [DOI: 10.1016/j.aca.2016.11.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 10/20/2022]
|
17
|
Fashi A, Khanban F, Yaftian MR, Zamani A. Improved electromembrane microextraction efficiency of chloramphenicol in dairy products: the cooperation of reduced graphene oxide and a cationic surfactant. RSC Adv 2016. [DOI: 10.1039/c6ra20479a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cooperation effect of reduced graphene oxide in the SLM and CTAB in the donor solution improves the EME performance.
Collapse
Affiliation(s)
- Armin Fashi
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Fatemeh Khanban
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Mohammad Reza Yaftian
- Phase Equilibria Research Laboratory
- Department of Chemistry
- Faculty of Science
- University of Zanjan
- Zanjan
| | - Abbasali Zamani
- Environmental Science Research Laboratory
- Department of Environmental Science
- Faculty of Science
- University of Zanjan
- Zanjan
| |
Collapse
|