1
|
Rybakiewicz-Sekita R, Toman P, Ganczarczyk R, Drapala J, Ledwon P, Banasiewicz M, Skorka L, Matyjasiak A, Zagorska M, Pron A. D-A-D Compounds Combining Dithienopyrrole Donors and Acceptors of Increasing Electron-Withdrawing Capability: Synthesis, Spectroscopy, Electropolymerization, and Electrochromism. J Phys Chem B 2022; 126:4089-4105. [PMID: 35616402 PMCID: PMC9189846 DOI: 10.1021/acs.jpcb.2c01772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Five D-π-A-π-D compounds consisting of the same donor unit (dithieno[3,2-b:2',3'-d]pyrrole, DTP), the same π-linker (2,5-thienylene), and different acceptors of increasing electron-withdrawing ability (1,3,4-thiadiazole (TD), benzo[c][1,2,5]thiadiazole (BTD), 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (DPP), 1,2,4,5-tetrazine (TZ), and benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone (NDI)) were synthesized. DTP-TD, DTP-BTD, and DTP-DPP turned out to be interesting luminophores emitting either yellow (DTP-TD) or near-infrared (DTP-BTD and DTP-DPP) radiation in dichloromethane solutions. The emission bands were increasingly bathochromically shifted with increasing solvent polarity. Electrochemically determined electron affinities (|EA|s) were found to be strongly dependent on the nature of the acceptor changing from 2.86 to 3.84 eV for DTP-TD and DTP-NDI, respectively, while the ionization potential (IP) values varied only weakly. Experimental findings were strongly supported by theoretical calculations, which correctly predicted the observed solvent dependence of the emission spectra. Similarly, the calculated IP and EA values were in excellent agreement with the experiment. DTP-TD, DTP-BTD, DTP-TZ, and DTP-NDI could be electropolymerized to yield polymers of very narrow electrochemical band gap and characterized by redox states differing in color coordinates and lightness. Poly(DTP-NDI) and poly(DTP-TD) showed promising electrochromic behavior, not only providing a rich color palette in the visible but also exhibiting near-infrared (NIR) electrochromism.
Collapse
Affiliation(s)
- Renata Rybakiewicz-Sekita
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Institute
of Chemical Sciences, Cardinal Stefan Wyszynski
University in Warsaw, Woycickiego 1/3, 01-815 Warsaw, Poland
| | - Petr Toman
- Institute
of Macromolecular Chemistry, Academy of
Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic
| | - Roman Ganczarczyk
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Jakub Drapala
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Przemyslaw Ledwon
- Faculty
of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Marzena Banasiewicz
- Institute
of Physics, Polish Academy of Sciences, Al. Lotnikow 32/44, 02-668 Warsaw, Poland
| | - Lukasz Skorka
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Anna Matyjasiak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Malgorzata Zagorska
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Adam Pron
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
2
|
Fan D, Chen L, Wang C, Yin S, Mo Y. Inter-anion chalcogen bonds: Are they anti-electrostatic in nature? J Chem Phys 2021; 155:234302. [PMID: 34937369 DOI: 10.1063/5.0076872] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inter-anion hydrogen and halogen bonds have emerged as counterintuitive linkers and inspired us to expand the range of this unconventional bonding pattern. Here, the inter-anion chalcogen bond (IAChB) was proposed and theoretically analyzed in a series of complexes formed by negatively charged bidentate chalcogen bond donors with chloride anions. The kinetic stability of IAChB was evidenced by the minima on binding energy profiles and further supported by ab initio molecular dynamic simulations. The block-localized wave function (BLW) method and its subsequent energy decomposition (BLW-ED) approach were employed to elucidate the physical origin of IAChB. While all other energy components vary monotonically as anions get together, the electrostatic interaction behaves exceptionally as it experiences a Coulombic repulsion barrier. Before reaching the barrier, the electrostatic repulsion increases with the shortening Ch⋯Cl- distance as expected from classical electrostatics. However, after passing the barrier, the electrostatic repulsion decreases with the Ch⋯Cl- distance shortening and subsequently turns into the most favorable trend among all energy terms at short ranges, representing a dominating force for the kinetic stability of inter-anions. For comparison, all energy components exhibit the same trends and vary monotonically in the conventional counterparts where donors are neutral. By comparing inter-anions and their conventional counterparts, we found that only the electrostatic energy term is affected by the extra negative charge. Remarkably, the distinctive (nonmonotonic) electrostatic energy profiles were reproduced using quantum mechanical-based atomic multipoles, suggesting that the crucial electrostatic interaction in IAChB can be rationalized within the classical electrostatic theory just like conventional non-covalent interactions.
Collapse
Affiliation(s)
- Dan Fan
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Li Chen
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Changwei Wang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shiwei Yin
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, USA
| |
Collapse
|
3
|
Bulumulla C, Gunawardhana R, Gamage PL, Miller JT, Kularatne RN, Biewer MC, Stefan MC. Pyrrole-Containing Semiconducting Materials: Synthesis and Applications in Organic Photovoltaics and Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32209-32232. [PMID: 32584535 DOI: 10.1021/acsami.0c07161] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic semiconducting materials derived from π-electron-rich pyrroles have garnered attention in recent years for the development of organic semiconductors. Although pyrrole is the most electron-rich five-membered heteroaromatic ring, it has found few applications in organic photovoltaics and organic field-effect transistors due to synthetic challenges and instability. However, computational modeling assisted screening processes have indicated that relatively stable materials containing pyrrolic units can be synthesized without compromising their inherent electron-donating properties. In this work, we provide a complete, up-to-date review of pyrrole-containing semiconducting materials used for organic photovoltaics and organic field-effect transistors and highlight recent advances in the synthesis of these materials.
Collapse
Affiliation(s)
- Chandima Bulumulla
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ruwan Gunawardhana
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Prabhath L Gamage
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Justin T Miller
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Ruvanthi N Kularatne
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Guan YS, Zhong G, Hu Y, Cannella AF, Li C, Lee N, Jia Q, Lacy DC, Ren S. Magnetoelectric Radical Hydrocarbons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806263. [PMID: 30461087 DOI: 10.1002/adma.201806263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The molecular radicals, systems with unpaired electrons of open-shell electronic structures, set the stage for a multidisciplinary science frontier relevant to the cooperative magnetic exchange interaction and magnetoelectric effect. Here ferroelectricity together with magnetic spin exchange coupling in molecular radical hydrocarbon solids is reported, representing a new class of magnetoelectrics. Electronic correlation through radical-radical interactions plays a decisive role in the coupling between magnetic and charge orders. A substantial photoconductance and visible-light photovoltaic effect are found in radical hydrocarbons. The ability to simultaneously control and retrieve the changes in magnetic and electrical responses opens up a new breadth of applications, such as radical magnetoelectrics, magnets, and optoelectronics.
Collapse
Affiliation(s)
- Ying-Shi Guan
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in eNergy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Guohua Zhong
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yong Hu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in eNergy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Anthony F Cannella
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Changning Li
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in eNergy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Namhoon Lee
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in eNergy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - David C Lacy
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Shenqiang Ren
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
- Research and Education in eNergy, Environment & Water (RENEW) Institute, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
5
|
Atomic force microscope characterization of self-assembly behaviors of cyclo[8] pyrrole on solid substrates. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Miao K, Chae GJ, Wu X, Shu Q, Zhu X, Sun B, Fan J, Cho S. Diketopyrrolopyrrole-based polymer with a semi-fluorinated side chain for high-performance organic thin-film transistors. RSC Adv 2016. [DOI: 10.1039/c6ra05318a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A semi-fluorinated DPP based polymer showed hole mobility about 3 times higher than did its non-fluorinated analogue.
Collapse
Affiliation(s)
- Kangjian Miao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Gil Jo Chae
- Department of Physics and EHSRC
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| | - Xiaoxue Wu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Qinghai Shu
- School of Material Science and Engineering
- Beijing Institute of Technology
- 100081 Beijing
- China
| | - Xin Zhu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Bangjin Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Jian Fan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices
- Institute of Functional Nano & Soft Materials (FUNSOM)
- Collaborative Innovation Center of Suzhou Nano Science and Technology
- Soochow University
- Suzhou
| | - Shinuk Cho
- Department of Physics and EHSRC
- University of Ulsan
- Ulsan 680-749
- Republic of Korea
| |
Collapse
|