1
|
Srinivasan MK, Premnath BJ, Parimelazhagan R, Namasivayam N. Synthesis, characterization, and evaluation of the anticancer properties of pH-responsive carvacrol-zinc oxide quantum dots on breast cancer cell line (MDA-MB-231). Cell Biochem Funct 2024; 42:e4062. [PMID: 38807490 DOI: 10.1002/cbf.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Ramya Parimelazhagan
- Department of Biochemistry, Faculty of Medicine, Sri Lakshmi Narayana Institute of Medical Sciences (SLIMS), Puducherry, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| |
Collapse
|
2
|
Size-Dependent Cytotoxic and Molecular Study of the Use of Gold Nanoparticles against Liver Cancer Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The size of nanomaterials influences physicochemical parameters, and variations in the size of nanomaterials can have a significant effect on their biological activities in cells. Due to the potential applicability of nanoparticles (NPs), the current work was designed to carry out a size-dependent study of gold nanoparticles (GNPs) in different dimensions, synthesized via a colloidal solution process. Three dissimilar-sized GNPs, GNPs-1 (10–15 nm), GNPs-2 (20–30 nm), and GNPs-3 (45 nm), were prepared and characterized via transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), hydrodynamic size, zeta potential, and UV-visible spectroscopy, and applied against liver cancer (HepG2) cells. Various concentrations of GNPs (1, 2, 5, 10, 50, and 100 µg/mL) were applied against the HepG2 cancer cells to assess the percentage of cell viability via MTT and NRU assays; reactive oxygen species (ROS) generation was also used. ROS generation was increased by 194%, 164%, and 153% for GNPs-1, GNPs-2, and GNPs-3, respectively, in the HepG2 cells. The quantitative polymerase chain reaction (qPCR) data for the HepG2 cells showed up-regulation in gene expression of apoptotic genes (Bax, p53, and caspase-3) when exposed to the different-sized GNPs, and defined their respective roles. Based on the results, it was concluded that GNPs of different sizes have the potential to induce cancer cell death.
Collapse
|
3
|
Anjum S, Hashim M, Malik SA, Khan M, Lorenzo JM, Abbasi BH, Hano C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers (Basel) 2021; 13:4570. [PMID: 34572797 PMCID: PMC8468934 DOI: 10.3390/cancers13184570] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is regarded as one of the most deadly and mirthless diseases and it develops due to the uncontrolled proliferation of cells. To date, varieties of traditional medications and chemotherapies have been utilized to fight tumors. However, their immense drawbacks, such as reduced bioavailability, insufficient supply, and significant adverse effects, make their use limited. Nanotechnology has evolved rapidly in recent years and offers a wide spectrum of applications in the healthcare sectors. Nanoscale materials offer strong potential for curing cancer as they pose low risk and fewer complications. Several metal oxide NPs are being developed to diagnose or treat malignancies, but zinc oxide nanoparticles (ZnO NPs) have remarkably demonstrated their potential in the diagnosis and treatment of various types of cancers due to their biocompatibility, biodegradability, and unique physico-chemical attributes. ZnO NPs showed cancer cell specific toxicity via generation of reactive oxygen species and destruction of mitochondrial membrane potential, which leads to the activation of caspase cascades followed by apoptosis of cancerous cells. ZnO NPs have also been used as an effective carrier for targeted and sustained delivery of various plant bioactive and chemotherapeutic anticancerous drugs into tumor cells. In this review, at first we have discussed the role of ZnO NPs in diagnosis and bio-imaging of cancer cells. Secondly, we have extensively reviewed the capability of ZnO NPs as carriers of anticancerous drugs for targeted drug delivery into tumor cells, with a special focus on surface functionalization, drug-loading mechanism, and stimuli-responsive controlled release of drugs. Finally, we have critically discussed the anticancerous activity of ZnO NPs on different types of cancers along with their mode of actions. Furthermore, this review also highlights the limitations and future prospects of ZnO NPs in cancer theranostic.
Collapse
Affiliation(s)
- Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Mariam Hashim
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Sara Asad Malik
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - Maha Khan
- Department of Biotechnology, Kinnaird College for Women, Jail Road, Lahore 54000, Pakistan; (M.H.); (S.A.M.); (M.K.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avenida de Galicia 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Ourense, Spain;
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | - Bilal Haider Abbasi
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 15320, Pakistan;
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Eure & Loir Campus, University of Orleans, 28000 Chartres, France;
| |
Collapse
|
4
|
Removal of dithioterethiol (DTT) from water by membranes of cellulose acetate (AC) and AC doped ZnO and TiO2 nanoparticles. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
5
|
Amuthavalli P, Hwang JS, Dahms HU, Wang L, Anitha J, Vasanthakumaran M, Gandhi AD, Murugan K, Subramaniam J, Paulpandi M, Chandramohan B, Singh S. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci Rep 2021; 11:8837. [PMID: 33893349 PMCID: PMC8065047 DOI: 10.1038/s41598-021-88164-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/17/2021] [Indexed: 02/02/2023] Open
Abstract
Microbes or parasites spread vector-borne diseases by mosquitoes without being affected themselves. Insecticides used in vector control produce a substantial problem for human health. This study synthesized zinc oxide nanoparticles (ZnO NPs) using Lawsonia inermis L. and were characterized by UV-vis, FT-IR, SEM with EDX, and XRD analysis. Green synthesized ZnO NPs were highly toxic against Anopheles stephensi, whose lethal concentrations values ranged from 5.494 ppm (I instar), 6.801 ppm (II instar), 9.336 ppm (III instar), 10.736 ppm (IV instar), and 12.710 ppm (pupae) in contrast to L. inermis treatment. The predation efficiency of the teleost fish Gambusia affinis and the copepod Mesocyclops aspericornis against A. stephensi was not affected by exposure at sublethal doses of ZnO NPs. The predatory potency for G. affinis was 45 (I) and 25.83% (IV), copepod M. aspericornis was 40.66 (I) and 10.8% (IV) while in an ZnO NPs contaminated environment, the predation by the fish G. affinis was boosted to 71.33 and 34.25%, and predation of the copepod M. aspericornis was 60.35 and 16.75%, respectively. ZnO NPs inhibited the growth of several microbial pathogens including the bacteria (Escherichia coli and Bacillus subtilis) and the fungi (Alternaria alternate and Aspergillus flavus), respectively. ZnO NPs decreased the cell viability of Hep-G2 with IC50 value of 21.63 µg/mL (R2 = 0.942; P < 0.001) while the concentration increased from 1.88 to 30 µg/mL. These outcomes support the use of L. inermis mediated ZnO NPs for mosquito control and drug development.
Collapse
Affiliation(s)
- Pandiyan Amuthavalli
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Lan Wang
- School of Life Science, Shanxi University, TaiyuanShanxi Province, 030006, China
| | - Jagannathan Anitha
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Murugan Vasanthakumaran
- Department of Zoology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, 641029, India
| | - Arumugam Dhanesh Gandhi
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India.
| | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Manickam Paulpandi
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Balamurugan Chandramohan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, India
| | - Shivangi Singh
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Koahsiung, Taiwan
| |
Collapse
|
6
|
Singh P, Singh RK, Kumar R. Journey of ZnO quantum dots from undoped to rare-earth and transition metal-doped and their applications. RSC Adv 2021; 11:2512-2545. [PMID: 35424186 PMCID: PMC8693809 DOI: 10.1039/d0ra08670c] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/05/2020] [Indexed: 12/20/2022] Open
Abstract
Currently, developments in the field of quantum dots (QDs) have attracted researchers worldwide. A large variety of QDs have been discovered in the few years, which have excellent optoelectronic, antibacterial, magnetic, and other properties. However, ZnO is the single known material that can exist in the quantum state and can hold all the above properties. There is a lot of work going on in this field and we will be shorthanded if we do not accommodate this treasure at one place. This manuscript will prove to be a milestone in this noble cause. Having a tremendous potential, there is a developing enthusiasm toward the application of ZnO QDs in diverse areas. Sol-gel method being the simplest is the widely-favored synthetic method. Synthesis via this method is largely affected by a number of factors such as the reaction temperature, duration of the reaction, type of solvent, pH of the solution, and the precipitating agent. Doping enhances the optical, magnetic, anti-bacterial, anti-microbial, and other properties of ZnO QDs. However, doping elements reside mostly on the surface of the QDs. The presence of doping elements inside the core is still a major challenge for doping techniques. In this review article, we have focused on pure, rare-earth, and transition metal-doped ZnO QD properties, and the various synthetic processes and applications. Quantum confinement effect is present in nearly every aspect of the QDs. The effect of quantum confinement has also been summarized in this manuscript. Furthermore, the doping of rare earth elements and transition metal, synthetic methods for different organic molecule-capped ZnO QDs, mechanisms for reactive oxygen species (ROS) generation, drug delivery system for cancer treatment, and many more application are discussed in this paper.
Collapse
Affiliation(s)
- Pushpendra Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| | - Rajan Kumar Singh
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan ROC
| | - Ranveer Kumar
- Department of Physics, Dr Harisingh Gour Central University Sagar 470003 M. P. India +91 9425635731
| |
Collapse
|
7
|
|
8
|
Costa WC, Sandri C, de Quadros S, Silva AL, Eccher J, Zimmermann LM, Mora JR, Bock H, Bechtold IH. Stabilization of ZnO quantum dots by preferred 1:2 interaction with a liquid crystal molecule. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Cytotoxicity and cell death induced by engineered nanostructures (quantum dots and nanoparticles) in human cell lines. J Biol Inorg Chem 2020; 25:325-338. [DOI: 10.1007/s00775-020-01764-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 10/24/2022]
|
10
|
Application of multi-dimensional (0D, 1D, 2D) nanostructures for the cytological evaluation of cancer cells and their bacterial response. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ahmed B, Solanki B, Zaidi A, Khan MS, Musarrat J. Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: insights into ZnONP uptake and nanocolloid-bacteria interface. Toxicol Res (Camb) 2019; 8:246-261. [PMID: 30997024 PMCID: PMC6417486 DOI: 10.1039/c8tx00267c] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/21/2018] [Indexed: 12/23/2022] Open
Abstract
This study was aimed to fill the critical gap of knowledge regarding the interaction between green zinc oxide nanoparticles (ZnONPs) and bacterial interface. Wurtzite phase ZnONPs with a band gap energy of 3.28 eV were produced by exploiting a simple and green biosynthesis method using an inexpensive precursor of A. indica leaf extract and zinc nitrate. ZnONPs were characterized using UV-Vis spectroscopy, XRD, FTIR, SEM, EDX, DLS, TEM, and zeta-potential analysis. The primary size obtained was 26.3 nm (XRD) and 33.5 ± 6.5 nm (TEM), whereas, the secondary size was found to be 287 ± 5.2 nm with -32.8 ± 1.8 mV ζ-potential denoting the physical colloid chemistry of ZnONPs. Crystallinity and the spherical morphology of ZnONPs were also evident with some sort of particle agglomeration. ZnONPs retained plant functional groups endorsing their hydrophilic character. The antibacterial and antibiofilm activity of ZnONPs was significant (p ≤ 0.05) and the MIC/MBC against most frequent clinical isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus ranged from 0.5 to 1.0 (MIC)/1.0 to 1.5 mg ml-1 (MBC). The dissolution of ZnONPs to Zn2+ ions in a nutrient medium increased as a result of interaction with the bacterial surface and metabolites. Substantial surface binding of ZnONPs followed by intracellular uptake disrupted the cell morphology and caused obvious injury to the cell membrane. Interrupted bacterial growth kinetics, loss of cell respiration, enhanced production of intracellular ROS, and the leakage of the cytoplasmic content unequivocally suggested a strong interaction of ZnONPs with the exterior cell surface and intracellular components, eventually leading to cell death and destruction of biofilms. Overall, the results elucidated eco-friendly production of ZnONPs expressing a prominent interfacial correlation with bacteria and hence, prospecting the use of green ZnONPs as effective nanoantibiotics.
Collapse
Affiliation(s)
- Bilal Ahmed
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Bushra Solanki
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Almas Zaidi
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| | - Javed Musarrat
- Department of Agricultural Microbiology , Aligarh Muslim University , Aligarh , India . ; Tel: +91-9045836145
| |
Collapse
|
12
|
Non-Toxic and Ultra-Small Biosilver Nanoclusters Trigger Apoptotic Cell Death in Fluconazole-Resistant Candida albicans via Ras Signaling. Biomolecules 2019; 9:biom9020047. [PMID: 30769763 PMCID: PMC6406502 DOI: 10.3390/biom9020047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/01/2023] Open
Abstract
Silver-based nanostructures are suitable for many biomedical applications, but to be useful therapeutic agents, the high toxicity of these nanomaterials must be eliminated. Here, we biosynthesize nontoxic and ultra-small silver nanoclusters (rsAg@NCs) using metabolites of usnioid lichen (a symbiotic association of algae and fungi) that exhibit excellent antimicrobial activity against fluconazole (FCZ)-resistant Candida albicans that is many times higher than chemically synthesized silver nanoparticles (AgNPs) and FCZ. The rsAg@NCs trigger apoptosis via reactive oxygen species accumulation that leads to the loss of mitochondrial membrane potential, DNA fragmentation, chromosomal condensation, and the activation of metacaspases. The proteomic analysis clearly demonstrates that rsAg@NCs exposure significantly alters protein expression. Most remarkable among the down-regulated proteins are those related to glycolysis, metabolism, free radical scavenging, anti-apoptosis, and mitochondrial function. In contrast, proteins involved in plasma membrane function, oxidative stress, cell death, and apoptosis were upregulated. Eventually, we also established that the apoptosis-inducing potential of rsAg@NCs is due to the activation of Ras signaling, which confirms their application in combating FCZ-resistant C. albicans infections.
Collapse
|
13
|
Wahab R, Khan F, Gupta A, Wiggers H, Saquib Q, Faisal M, Ansari SM. Microwave plasma-assisted silicon nanoparticles: cytotoxic, molecular, and numerical responses against cancer cells. RSC Adv 2019; 9:13336-13347. [PMID: 35520784 PMCID: PMC9063978 DOI: 10.1039/c8ra10185j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/24/2019] [Indexed: 12/27/2022] Open
Abstract
Silicon nanoparticles (SiNPs), which have a special place in material science due to their strong luminescent property and wide applicability in various physicochemical arenas synthesised via a microwave plasma-assisted process using an argon–silane mixture.
Collapse
Affiliation(s)
- Rizwan Wahab
- Zoology Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Farheen Khan
- Chemistry Department
- Faculty of Science
- Taibah University
- Yanbu
- Saudi Arabia
| | - Anoop Gupta
- Institute for Combustion and Gas Dynamics
- University of Duisburg-Essen
- Duisburg
- Germany
| | - Hartmut Wiggers
- Institute for Combustion and Gas Dynamics
- University of Duisburg-Essen
- Duisburg
- Germany
| | - Quaiser Saquib
- Zoology Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Mohammad Faisal
- Department of Botany & Microbiology
- College of Sciences
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Sabiha Mahmood Ansari
- Department of Botany & Microbiology
- College of Sciences
- King Saud University
- Riyadh 11451
- Saudi Arabia
| |
Collapse
|
14
|
Zhang L, Wu L, Si Y, Shu K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS One 2018; 13:e0209020. [PMID: 30566461 PMCID: PMC6300289 DOI: 10.1371/journal.pone.0209020] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/28/2018] [Indexed: 01/09/2023] Open
Abstract
The influence of nanomaterials on the ecological environment is becoming an increasingly hot research field, and many researchers are exploring the mechanisms of nanomaterial toxicity on microorganisms. Herein, we studied the effect of two different sizes of nanosilver (10 nm and 50 nm) on the soil nitrogen fixation by the model bacteria Azotobacter vinelandii. Smaller size AgNPs correlated with higher toxicity, which was evident from reduced cell numbers. Flow cytometry analysis further confirmed this finding, which was carried out with the same concentration of 10 mg/L for 12 h, the apoptotic rates were20.23% and 3.14% for 10 nm and 50 nm AgNPs, respectively. Structural damage to cells were obvious under scanning electron microscopy. Nitrogenase activity and gene expression assays revealed that AgNPs could inhibit the nitrogen fixation of A. vinelandii. The presence of AgNPs caused intracellular reactive oxygen species (ROS) production and electron spin resonance further demonstrated that AgNPs generated hydroxyl radicals, and that AgNPs could cause oxidative damage to bacteria. A combination of Ag content distribution assays and transmission electron microscopy indicated that AgNPs were internalized in A. vinelandii cells. Overall, this study suggested that the toxicity of AgNPs was size and concentration dependent, and the mechanism of antibacterial effects was determined to involve damage to cell membranes and production of reactive oxygen species leading to enzyme inactivation, gene down-regulation and death by apoptosis.
Collapse
Affiliation(s)
- Li Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Lingli Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
- * E-mail:
| | - Kunhui Shu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
15
|
Photo-catalytic Killing of HeLa Cancer Cells Using Facile Synthesized Pure and Ag Loaded WO 3 Nanoparticles. Sci Rep 2018; 8:15224. [PMID: 30323306 PMCID: PMC6189059 DOI: 10.1038/s41598-018-33434-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 09/26/2018] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy, the most commonly used therapeutic method for cancer, has the inherent constraint of low bioavailability. A number of physical cancer therapeutic treatments like radiation, ultrasound, photo-acoustic/photo thermal, microwave therapies are based on locating the afflicted sites with the help of imaging, but the serious drawbacks of these treatment options are that they damage the neighboring normal tissues and/or induce undesired cancer metastasis. In addition, these methods of treatment are very expensive and not in the reach of a common man especially in the developing countries. Therefore, innovative, less invasive and cost effective treatment methods with the help of less toxic drugs have been sought for treating cancer. In this work, photo-catalytic method of killing cancer cells, using the nanostructured silver loaded tungsten oxide (Ag/WO3) as photo-catalysts, in conjunction with broadband UV radiation is presented. Ag/WO3with two different mass ratios of Ag and WO3 (1% Ag/WO3 and 3% Ag/WO3) were synthesized, characterized and these nanostructured materials served as photo-catalysts in the process of killing cancer cells by photo-catalytic method. The advantage of loading Ag in WO3 is quite evident from the observed increase in the photo-catalytic killing of the HeLa cells. This photo-catalytic enhancement was effectively caused by the development of Schottky junction between Ag in WO3, which led to a substantial inhibition of photo-generated charge recombination and also by the stimulation of surface plasmon resonance in silver nanoparticles, which led to the enhanced visible light absorption by the material.
Collapse
|
16
|
Zhang HR, Liu YC, Chen ZF, Guo J, Peng YX, Liang H. Crystal Structures, Cytotoxicity, Cell Apoptosis Mechanism, and DNA Binding of Two 8-Hydroxylquinoline Zinc(II) Complexes. RUSS J COORD CHEM+ 2018. [DOI: 10.1134/s107032841805007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Xu Y, Wang X, Zhang WL, Lv F, Guo S. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 2018; 47:586-625. [DOI: 10.1039/c7cs00500h] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review critically summarizes recent progress in the categories, synthetic routes, properties, functionalization and applications of 2D materials-based quantum dots (QDs).
Collapse
Affiliation(s)
- Yuanhong Xu
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Xiaoxia Wang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Wen Ling Zhang
- College of Life Sciences
- Laboratory of Fiber Materials and Modern Textiles
- the Growing Base for State Key Laboratory
- Qingdao University
- Qingdao 266071
| | - Fan Lv
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| | - Shaojun Guo
- Department of Materials Science and Engineering
- College of Engineering
- Peking University
- Beijing 100871
- China
| |
Collapse
|
18
|
Toxicogenomics: A New Paradigm for Nanotoxicity Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:143-161. [PMID: 29453537 DOI: 10.1007/978-3-319-72041-8_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The wider applications of nanoparticles (NPs) has evoked a world-wide concern due to their possible risk of toxicity in humans and other organisms. Aggregation and accumulation of NPs into cell leads to their interaction with biological macromolecules including proteins, nucleic acids and cellular organelles, which eventually induce toxicological effects. Application of toxicogenomics to investigate molecular pathway-based toxicological consequences has opened new vistas in nanotoxicology research. Indeed, genomic approaches appeared as a new paradigm in terms of providing information at molecular levels and have been proven to be as a powerful tool for identification and quantification of global shifts in gene expression. Toxicological responses of NPs have been discussed in this chapter with the aim to provide a clear understanding of the molecular mechanism of NPs induced toxicity both in in vivo and in vitro test models.
Collapse
|
19
|
Wahab R, Khan F, Al-Khedhairy AA. Hematite iron oxide nanoparticles: apoptosis of myoblast cancer cells and their arithmetical assessment. RSC Adv 2018; 8:24750-24759. [PMID: 35542163 PMCID: PMC9082308 DOI: 10.1039/c8ra02613k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/09/2018] [Indexed: 11/21/2022] Open
Abstract
Hematite (α-Fe2O3) forms iron oxide nanoparticles (NPs) which are thermally stable and have various electrochemical and optochemical applications. Due to their wide applicability, the present work was designed to form the hematite phase of iron oxide (αFe2O3NPs) NPs prepared via a solution process. Their cytological performance was checked with C2C12 cells. The crystalline property of the NPs was examined with X-ray diffraction patterns (XRD) and it was found that the size of the particles formed ranged from 12 to 15 nm. Structural information was also identified via field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), which again confirmed that the size of each NP is about 12–15 nm. Surface topographical analysis was done via atomic force microscopy (AFM), which reveals that the size of the distance between two particles is in the range of 12 ± 3 nm. The C2C12 cells were cultured in a humidified environment with 5% CO2 and were checked via a microscope. The αFe2O3NPs were used for cytotoxic evaluation against C2C12 cells. A MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was utilized to check the viability of cells in a dose-dependent (100 ng mL−1, 500 ng mL−1 or 1000 ng mL−1) manner. The morphology of the cells under the influence of αFe2O3NPs for live and dead cells in a wet environment was confirmed via confocal laser scanning microscopy (CLSM). The apoptosis caused due to the αFe2O3NPs was evaluated in presence of caspases 3/7 with GAPDH genes, which confirmed the upregulation that is responsible in caspase 3/7 genes, with treatment of C2C12 at low (500 ng mL−1) and high (1000 ng mL−1) doses of αFe2O3NPs. Analytical studies were also performed to authenticate the obtained data for αFe2O3NPs using parameters such as precision, accuracy, linearity, limits of detection (LOD) and limit of quantitation (LOQ), quantitative recoveries and relative standard deviation (RSD). The analyses play a significant role in investigating the large effect of αFe2O3NPs on C2C12 cells. Hematite (α-Fe2O3) forms iron oxide nanoparticles (NPs) which are thermally stable and have various electrochemical and optochemical applications.![]()
Collapse
Affiliation(s)
- Rizwan Wahab
- Zoology Department
- College of Science
- King Saud University
- Riyadh 11451
- Saudi Arabia
| | - Farheen Khan
- Chemistry Department
- Faculty of Science
- Taibah University
- Yanbu
- Saudi Arabia
| | | |
Collapse
|
20
|
Verma SK, Jha E, Panda PK, Das JK, Thirumurugan A, Suar M, Parashar S. Molecular aspects of core-shell intrinsic defect induced enhanced antibacterial activity of ZnO nanocrystals. Nanomedicine (Lond) 2017; 13:43-68. [PMID: 29173091 DOI: 10.2217/nnm-2017-0237] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AIM To investigate molecular aspects of the antibacterial effect of size-dependent core-shell intrinsic defects of nanocrystalline ZnO synthesized through high energy ball milling technique. MATERIALS & METHODS Mechanically synthesized and characterized 7, 10 and 15 h milled ZnO nanoparticles were evaluated for antibacterial activity with molecular investigation by computational molecular docking. RESULTS Synthesized ZnO nanoparticles displayed shrinkage of core and increase of shell with reduction in size of bulk ZnO particles from 250 to 80, 40 and 20 nm and increase in zeta potential up to -19 mV in 7, 10 and 15 h nano ZnO. Antibacterial activity was found increased with decrease in size due to increased reactive oxygen species and membrane damage in bacteria. CONCLUSION Synthesized nano ZnO exhibit size-dependent antibacterial action as consequences of interactions with cell membrane proteins via hydrogen bond interaction with amino acid residues followed by internalization, membrane depolarization and induction of reactive oxygen species generation.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, 751024, India
| | - Ealisha Jha
- Memorial University of Newfoundland, Department of Physics & Physical Oceanography, St. John's, Newfoundland & Labrador, NL A1C 5S7 Canada
| | - Pritam Kumar Panda
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, 751024, India
| | - Jugal K Das
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, 751024, India
| | - Arun Thirumurugan
- Advanced Materials Laboratory, Department of Mechanical Engineering, Faculty of Mathematical & Physical Sciences, University of Chile, Santiago, Chile
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, Orissa, 751024, India
| | - Sks Parashar
- School of Applied Sciences, KIIT University, Bhubaneswar, Orissa, 751024, India
| |
Collapse
|
21
|
Verma SK, Panda PK, Jha E, Suar M, Parashar SKS. Altered physiochemical properties in industrially synthesized ZnO nanoparticles regulate oxidative stress; induce in vivo cytotoxicity in embryonic zebrafish by apoptosis. Sci Rep 2017; 7:13909. [PMID: 29066782 PMCID: PMC5655687 DOI: 10.1038/s41598-017-14039-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022] Open
Abstract
This study investigates the in vivo cytotoxicity of ZnO nanoparticles synthesized at industrial scale with embryonic Zebrafish. Industrial synthesis of ZnO nanoparticles was mimicked at lab scale by high energy ball milling technique by milling bulk ZnO particles for 15 h. Synthesized 7 h and 10 h ZnO nanoparticles showed significant alteration of size, zeta potential and optical properties in comparison to Bulk ZnO. Mortality and hatching rate in Zebrafish embryos were influenced by these alterations. Size and charge dependent effect of ZnO nanoparticles exposure on physiology and development of Zebrafish embryos were evident by malfunctioned organ development and abnormal heartbeat rate. Similar dependency on quenching of ROS due to influential hydrogen bond interaction with glycine residue of Sod1 oxidative stress protein and increased apoptosis were observed in cells. The study revealed the mechanism of cytotoxicity in exposed embryonic Zebrafish as an effect of accumulation and internalization inside cells instigating to generation of hypoxic condition and interference with the normal adaptive stress regulation signaling pathways leading towards enhanced apoptosis. The study revealed hidden size and charge dependent in vivo cytotoxicity mechanism of ZnO nanoparticles in Zebrafish embryos insight of the environmental and clinical importance of attention on industrially synthesized ZnO nanoparticles.
Collapse
Affiliation(s)
- Suresh K Verma
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India
| | | | - Ealisha Jha
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, 751024, Bhubaneswar, India.
| | - S K S Parashar
- School of Applied Sciences, KIIT University, 751024, Bhubaneswar, India.
| |
Collapse
|
22
|
Das D, Datta AK, Kumbhakar DV, Ghosh B, Pramanik A, Gupta S, Mandal A. Assessment of photocatalytic potentiality and determination of ecotoxicity (using plant model for better environmental applicability) of synthesized copper, copper oxide and copper-doped zinc oxide nanoparticles. PLoS One 2017; 12:e0182823. [PMID: 28796823 PMCID: PMC5552101 DOI: 10.1371/journal.pone.0182823] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/25/2017] [Indexed: 11/29/2022] Open
Abstract
NPS SYNTHESIS, CHARACTERIZATION AND AZO-DYE DEGRADATION A facile cost effective wet chemical method of synthesis is proposed for Cu-NPs, CuO-NPs and Cu-doped ZnO-NPs. The nanomaterials are opto-physically characterized for nano standard quality. Cu-doped ZnO-NPs based catalytic system is found to possess most efficient photocatalytic activity in degradation of two organic azo-dyes namely methyl red (MR) and malachite green (MG) that are released as industrial effluents in eco-environment intercollegium. Two possible photocatalytic degradation pathways are proposed to understand the mechanism of interaction prevailing during the mineralization of MR and MG dyes. Such study provides insight for waste water management. The uniqueness of the present work is 1) possible routes of MG dye degradation by Cu-doped ZnO-NPs and subsequent intermediate by-products are novel and pioneered of its kind. 2) two new intermediate byproducts are identified suggesting prevalence of multiple MR degradation pathways by Cu-doped ZnO-NPs. ASSESSMENT OF ECOTOXICITY For assessment of residual NPs impact on environment, eco-toxicological assay is performed using plant system (Sesamum indicum L.) as model. The study encompasses seed germination, seedling morphology, quantification of endogenous H2O2 and MDA generation, estimation of DNA double strand break and analysis of cell cycle inhibition. Results highlight reduced ecotoxicity of Cu-doped ZnO-NPs compared to the other synthesized nanomaterials thereby suggesting better environmental applicability in waste water purification.
Collapse
Affiliation(s)
- Debadrito Das
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Animesh Kumar Datta
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Divya Vishambhar Kumbhakar
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Bapi Ghosh
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Ankita Pramanik
- Department of Botany, Cytogenetics, Genetics and Plant Breeding Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Sudha Gupta
- Department of Botany, Pteridology and Palaeobotany Section, Kalyani University, Kalyani, Nadia, West Bengal, India
| | - Aninda Mandal
- Department of Botany, A.B.N. Seal College, Cooch Behar, West Bengal, India
| |
Collapse
|
23
|
Alsudir S, Lai EPC. Selective detection of ZnO nanoparticles in aqueous suspension by capillary electrophoresis analysis using dithiothreitol and L-cysteine adsorbates. Talanta 2017; 169:115-122. [PMID: 28411799 DOI: 10.1016/j.talanta.2017.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 10/19/2022]
Abstract
The UV detection sensitivity of ZnO nanoparticles in capillary electrophoresis (CE) analysis was selectively enhanced, by 27 or 19 folds, after adsorption of dithiothreitol (DTT) or cysteine (Cys) in 10mM sodium phosphate buffer. Adsorption equilibrium was reached within 90min for DTT but only 10min for Cys. The adsorption process was best modeled by the Langmuir isotherm, indicating the formation of a monolayer of DTT or Cys on the surface of ZnO nanoparticles. The selectivity of DTT and Cys towards ZnO nanoparticles was tested using alumina (Al2O3), ceria (CeO2), silica (SiO2) and titania (TiO2) nanoparticles. No changes in the CE-UV peak area of either adsorbates or nanoparticles were observed, indicating a lack of adsorption. Dynamic light scattering (DLS) provided similar evidence of the selectivity of both adsorbates towards ZnO. Cys also improved the colloidal stability of ZnO nanoparticles by breaking down the aggregates, as evidenced by a reduction of their average hydrodynamic diameter. This new analytical approach provides a simple and rapid methodology to detect ZnO nanoparticles selectively by CE-UV analysis with enhanced sensitivity.
Collapse
Affiliation(s)
- Samar Alsudir
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Edward P C Lai
- Ottawa-Carleton Chemistry Institute, Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada.
| |
Collapse
|
24
|
Tiwari S, Vinchurkar M, Rao VR, Garnier G. Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Sci Rep 2017; 7:43905. [PMID: 28252113 PMCID: PMC5333162 DOI: 10.1038/srep43905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 01/31/2017] [Indexed: 11/27/2022] Open
Abstract
Distinguishing a specific biomarker from a biofluid sample containing a large variety of proteins often requires the selective preconcentration of that particular biomarker to a detectable level for analysis. Low-cost, paper-based device is an emerging opportunity in diagnostics. In the present study, we report a novel Zinc oxide nanorods functionalized paper platform for the preconcentration of Myoglobin, a cardiac biomarker. Zinc oxide nanorods were grown on a Whatman filter paper no. 1 via the standard hydrothermal route. The growth of Zinc oxide nanorods on paper was confirmed by a combination of techniques consisting of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS,) scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDX) analysis. The Zinc oxide nanorods modified Whatman filter paper (ZnO-NRs/WFP) was further tested for use as a protein preconcentrator. Paper-based ELISA was performed for determination of pre-concentration of cardiac marker protein Myoglobin using the new ZnO-NRs/WFP platform. The ZnO-NRs/WFP could efficiently capture the biomarker even from a very dilute solution (Myoglobin < 50 nM). Our ELISA results show a threefold enhancement in protein capture with ZnO-NRs/WFP compared to unmodified Whatman filter paper, allowing accurate protein analysis and showing the diagnostic concept.
Collapse
Affiliation(s)
- Sadhana Tiwari
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.,BioPRIA, Chemical Engineering department, Monash University, Clayton VIC 3800, Australia
| | - Madhuri Vinchurkar
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - V Ramgopal Rao
- Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Gil Garnier
- BioPRIA, Chemical Engineering department, Monash University, Clayton VIC 3800, Australia
| |
Collapse
|
25
|
Wang C, Lu J, Zhou L, Li J, Xu J, Li W, Zhang L, Zhong X, Wang T. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice. PLoS One 2016; 11:e0164434. [PMID: 27732669 PMCID: PMC5061426 DOI: 10.1371/journal.pone.0164434] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/26/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide nanoparticles (nano-ZnOs) are widely used and possess great potentials in agriculture and biomedicine. It is inevitable for human exposure to these nanoparticles. However, no study had been conducted to investigate the long term effects of nano-ZnOs. This study aimed at investigating effects of nano-ZnOs on development, zinc metabolism and biodistribution of minerals (Zn, Fe, Cu, and Mn) in mice from week 3 to 35. After the characteristics of nano-ZnOs were determined, they were added into the basal diet at 0, 50, 500 and 5000 mg/kg. Results indicated that added 50 and 500 mg/kg nano-ZnOs showed minimal toxicity. However, 5000 mg/kg nano-ZnOs significantly decreased body weight (from week 4 to 16) and increased the relative weights of the pancreas, brain and lung. Added 5000 mg/kg nano-ZnOs significantly increased the serum glutamic-pyruvic transaminase activity and zinc content, and significantly enhanced mRNA expression of zinc metabolism-related genes, including metallothionein 1(32.66 folds), metallothionein 2 (31.42 folds), ZIP8 (2.21folds), ZIP14 (2.45 folds), ZnT1 (4.76 folds), ZnT2 (6.19 folds) and ZnT4 (1.82 folds). The biodistribution determination showed that there was a significant accumulation of zinc in the liver, pancreas, kidney, and bones (tibia and fibula) after receiving 5000 mg/kg nano-ZnO diet, while no significant effects on Cu, Fe, and Mn levels, except for liver Fe content and pancreas Mn level. Our results demonstrated that long term exposure to 50 and 500 mg/kg nano-ZnO diets showed minimal toxicity. However, high dose of nano-ZnOs (5000 mg/kg) caused toxicity on development, and altered the zinc metabolism and biodistribution in mice.
Collapse
Affiliation(s)
- Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jianjun Lu
- Institute of Feed Science, College of Animal Science, Zhejiang University, Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou Zhejiang Province, People’s Republic of China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jun Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Jiaman Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Weijian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Xiang Zhong
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, People’s Republic of China
- * E-mail:
| |
Collapse
|
26
|
Regulation of MicroRNAs, and the Correlations of MicroRNAs and Their Targeted Genes by Zinc Oxide Nanoparticles in Ovarian Granulosa Cells. PLoS One 2016; 11:e0155865. [PMID: 27196542 PMCID: PMC4873213 DOI: 10.1371/journal.pone.0155865] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/05/2016] [Indexed: 11/19/2022] Open
Abstract
Zinc oxide (ZnO) nanoparticles (NPs) have been applied in numerous industrial products and personal care products like sunscreens and cosmetics. The released ZnO NPs from consumer and household products into the environment might pose potential health issues for animals and humans. In this study the expression of microRNAs and the correlations of microRNAs and their targeted genes in ZnO NPs treated chicken ovarian granulosa cells were investigated. ZnSO4 was used as the sole Zn2+ provider to differentiate the effects of NPs from Zn2+. It was found that ZnO-NP-5 μg/ml specifically regulated the expression of microRNAs involved in embryonic development although ZnO-NP-5 μg/ml and ZnSO4-10 μg/ml treatments produced the same intracellular Zn concentrations and resulted in similar cell growth inhibition. And ZnO-NP-5 μg/ml also specifically regulated the correlations of microRNAs and their targeted genes. This is the first investigation that intact NPs in ZnO-NP-5 μg/ml treatment specifically regulated the expression of microRNAs, and the correlations of microRNAs and their targeted genes compared to that by Zn2+. This expands our knowledge for biological effects of ZnO NPs and at the same time it raises the health concerns that ZnO NPs might adversely affect our biological systems, even the reproductive systems through regulation of specific signaling pathways.
Collapse
|