1
|
Maurya MR, Nandi M, Kumar N, Avecilla F. Polymer Supported Nitrogen-Bridged Symmetrical Binuclear Dioxidomolybdenum(VI) Complexes and Their Homogeneous Analogues as Potential Catalysts for Efficient Synthesis of 2-Amino-3-Cyano-4H-Chromenes/Pyrans. Chemistry 2024; 30:e202400631. [PMID: 38491788 DOI: 10.1002/chem.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Reaction of 2-chloromethyl-1H-benzimidazole with known intermediates (i-iii), prepared from diaminoguanidine hydrochloride with salicylaldehyde, 5-bromosalicylaldehyde or 3,5-di-tert-butylsalicylaldehyde, in the presence of triethylamine (NEt3) led to the formation of benzimidazole appended new ligands, H4L1-H4L3 (I-III). The homogeneous nitrogen-bridged symmetrical binuclear complexes, [(MoVIO2)2(L1)(H2O)2] (1), [(MoVIO2)2(L2)(H2O)2] (2) and [(MoVIO2)2(L3)(MeOH)2] (3) have been isolated by reacting these ligands with [MoVIO2(acac)2] in a 1 : 2 molar ratio in refluxing methanol. Using 1 : 1 (ligand to Mo precursor) molar ratio under above reaction conditions resulted in the corresponding mononuclear complexes, [MoVIO2(H2L1)(MeOH)] (4), [MoVIO2(H2L2)(H2O)] (5) and [MoVIO2(H2L3)(MeOH)] (6). The binuclear heterogeneous compounds [(MoVIO2)2(L1)(DMF)2]@PS (PS-1), [(MoVIO2)2(L2)(DMF)2]@PS (PS-2) and [(MoVIO2)2(L3)(DMF)2]@PS (PS-3) have been obtained by immobilization of 1-3 onto chloromethylated polystyrene (PS) beads. All synthesized ligands, homogeneous as well as supported compounds have been characterized by elemental analyses and various spectroscopic methods. Single crystal X-ray diffraction study of complexes 1 and 3 confirms their nitrogen-bridged symmetrical binuclear structures while 4 is mononuclear. Heterogeneous compounds (PS-1-PS-3) have further been studied by microwave plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy along with energy dispersive spectroscopy. These compounds (homogeneous and heterogeneous) were explored for catalytic applications to one-pot multicomponent reactions (MCRs) for efficient synthesis of biologically active 2-amino-3-cyano-4H-chromenes/pyrans (21 examples). Optimising various reaction parameters helped in achieving as high as 97 % yields of products. Though, only half equivalent of the binuclear complexes (1-3) was required compared to mononuclear analogues (4-6) to achieve comparable yields, heterogeneous catalysts have an added advantage due to their stability and recyclability. Suitable reaction mechanism has also been proposed based on isolated intermediates.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruna, 15071, A Coruna, , Spain
| |
Collapse
|
2
|
Maurya MR, Chauhan A, Avecilla F. Synthesis, Characterization and Biomimetic Activity of Heterogenized Dioxidomolybdenum(VI) and Analogous Homogeneous Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Abhilasha Chauhan
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Fernando Avecilla
- Grupo NanoToxGen Centro de Investigacións Científicas Avanzadas (CICA) Departamento de Química, Facultade de Ciencias Universidade da Coruña Campus de A Coruña 15071 A Coruña Spain
| |
Collapse
|
3
|
Guleria A, Gandhi V, Kunwar A, Neogy S, Debnath AK, Adhikari S. PEGylated silicon oxide nanocomposites with blue photoluminescence prepared by a rapid electron-beam irradiation approach: Applications in IFE-based Cr (VI) sensing and cell-imaging. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Exploring Different Binders for a LiFePO4 Battery, Battery Testing, Modeling and Simulations. ENERGIES 2022. [DOI: 10.3390/en15072332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper focuses on the LiFePO4 (LFP) battery, a classical and one of the safest Li-ion battery technologies. To facilitate and make the cathode manufacture more sustainable, two Kynar® binders (Arkema, France) are investigated which are soluble in solvents with lower boiling points than the usual solvent for the classical PVDF binder. Li-LFP and graphite-Li half cells and graphite-LFP full cells are fabricated and tested in electrochemical impedance spectroscopy, cyclic voltammetry (CV) and galvanostatic charge-discharge cycling. The diffusion coefficients are determined from the CV plots, employing the Rendles-Shevchik equation, for the LFP electrodes with the three investigated binders and the graphite anode, and used as input data in simulations based on the single-particle model. Microstructural and surface composition characterization is performed on the LFP cathodes, pre-cycling and after 25 cycles, revealing the aging effects of SEI formation, loss of active lithium, surface cracking and fragmentation. In simulations of battery cycling, the single particle model is compared with an equivalent circuit model, concluding that the latter is more accurate to predict “future” cycles and the lifetime of the LFP battery by easily adjusting some of the model parameters as a function of the number of cycles on the basis of historical data of cell cycling.
Collapse
|
5
|
Kori DKK, Jadhav RG, Dhruv L, Das AK. A platinum nanoparticle doped self-assembled peptide bolaamphiphile hydrogel as an efficient electrocatalyst for the hydrogen evolution reaction. NANOSCALE ADVANCES 2021; 3:6678-6688. [PMID: 36132646 PMCID: PMC9419667 DOI: 10.1039/d1na00439e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/11/2021] [Indexed: 06/16/2023]
Abstract
Noble metal-based nanomaterials have shown great potential for catalytic application with higher selectivity and activity. Owing to their self-assembly properties with various molecular interactions, peptides play an essential role in the controlled synthesis of noble metal-based catalysts with high surface area. In this work, a phenylalanine (F) and tyrosine (Y) based peptide bolaamphiphile is prepared by solution-phase peptide synthesis. The peptide bolaamphiphile readily self-assembles into a hydrogel with a cross-linked nanofibrillar network. The platinum nanoparticles (Pt NPs) are in situ generated within the cross-linked nanofibrillar network of the hydrogel matrix of the peptide bolaamphiphile. Benefiting from the synergistic properties of the Pt nanoparticles doped on three-dimensional fibrous networks, Pt6@hydrogel shows efficient catalytic activity for the electrochemical hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution. The Pt6@hydrogel requires an overpotential of 45 mV at -10 mA cm-2 with a Tafel slope of 52 mV dec-1. The Pt6@hydrogel also shows electrocatalytic activity in basic and neutral pH solutions. The excellent activity and stability of Pt6@hydrogel for the HER shows great potential for energy conversion applications.
Collapse
Affiliation(s)
- Deepak K K Kori
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Rohit G Jadhav
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Likhi Dhruv
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| | - Apurba K Das
- Department of Chemistry and Centre for Advanced Electronics (CAE), Indian Institute of Technology Indore Indore 453552 India
| |
Collapse
|
6
|
Sundaresan R, Mariyappan V, Chen SM, Keerthi M, Ramachandran R. Electrochemical sensor for detection of tryptophan in the milk sample based on MnWO4 nanoplates encapsulated RGO nanocomposite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126889] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Tuo Y, Lu Q, Chen C, Liu T, Pan Y, Zhou Y, Zhang J. The facile synthesis of core-shell PtCu nanoparticles with superior electrocatalytic activity and stability in the hydrogen evolution reaction. RSC Adv 2021; 11:26326-26335. [PMID: 35479446 PMCID: PMC9037382 DOI: 10.1039/d1ra04001d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/18/2021] [Indexed: 11/21/2022] Open
Abstract
Pt is the most efficient electrocatalyst for the hydrogen evolution reaction (HER); however, it is a high cost material with scarce resources. In order to balance performance and cost in a Pt-based electrocatalyst, we prepared a series of PtCu bimetallic nanoparticles (NPs) with different Pt/Cu ratios through a facile synthetic strategy to optimize the utilization of Pt atoms. PtCu NPs demonstrate a uniform particle size distribution with exposed (111) facets that are highly active for the HER. A synergetic effect between Pt and Cu leads to electron transfer from Pt to Cu, which is favorable for the desorption of H intermediates. Therefore, the as-synthesized carbon black (CB) supported PtCu catalysts showed enhanced catalytic performance in the HER compared with a commercial Pt/C electrocatalyst. Typically, Pt1Cu3/CB showed excellent HER performance, with only 10 mV (acid) and 17 mV (alkaline) overpotentials required to achieve a current density of 10 mA cm-2. This is because the Pt1Cu3 NPs, with a small average particle size (7.70 ± 0.04 nm) and Pt-Cu core and Pt-rich shell structure, display the highest electrochemically active surface area (24.7 m2 gPt -1) out of the as-synthesized PtCu/CB samples. Furthermore, Pt1Cu3/CB showed good electrocatalytic stability, with current density drops of only 9.3% and 12.8% in acidic solution after 24 h and in alkaline solution after 9 h, respectively. This study may shed new light on the rational design of active and durable hydrogen evolution catalysts with low amounts of Pt.
Collapse
Affiliation(s)
- Yongxiao Tuo
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Qing Lu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Chen Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Tenglong Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China) Qingdao 266580 China .,State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 China
| |
Collapse
|
8
|
Guleria A, Tomy A, Baby CM, Gandhi V, Kunwar A, Debnath AK, Adhikari S. Electron beam mediated synthesis of photoluminescent organosilicon nanoparticles in TX-100 micellar medium and their prospective applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Liu Y, Zhang D, Zhang K, Dong W, Tian C, Mao B. Facile immobilization of polyoxometalates for low-cost molybdenum/tungsten phosphide nanoparticles on carbon black for efficient electrocatalytic hydrogen evolution. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1843024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yanhong Liu
- Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, P.R. China
| | - Dongxu Zhang
- Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Kewei Zhang
- Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Weixuan Dong
- Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin, P.R. China
| | - Baodong Mao
- Institute of Green Chemistry & Chemical Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, P.R. China
| |
Collapse
|
10
|
Bhavanari M, Lee KR, Su BJ, Dutta D, Hung YH, Tseng CJ, Su CY. MoS x on Nitrogen-Doped Graphene for High-Efficiency Hydrogen Evolution Reaction: Unraveling the Mechanisms of Unique Interfacial Bonding for Efficient Charge Transport and Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34825-34836. [PMID: 32644795 DOI: 10.1021/acsami.0c07152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Functional nanostructures with abundant exposed active sites and facile charge transport through conductive scaffolds to active sites are pivotal for developing an advanced and efficient electrocatalyst for water splitting. In the present study, by coating ∼3 nm MoSx on nitrogen-doped graphene (NG) pre-engrafted on a flexible carbon cloth (MNG) as a model system, an extremely low Tafel slope of 39.6 mV dec-1 with cyclic stability up to 5000 cycles is obtained. The specific fraction of N on the NG framework is also analyzed by X-ray photoelectron spectroscopy and X-ray absorption near edge spectroscopy with synchrotron radiation light sources, and it is found that the MoSx particles are selectively positioned on the specific graphitic N sites, forming the unique Mo-N-C bonding state. This Mo-N-C bonding is founded to facilitate highly effective charge transfer directly to the active sulfur sites on the edges of MoSx, leading to a highly improved hydrogen evolution reaction (HER) with excellent stability (95% retention @ 5000 cycles). The functional anchoring of MoSx by such bonding prevents particle aggregation, which plays a significant role in maintaining the stability and activity of the catalyst. Furthermore, it has been revealed that MNG samples with adequately high amounts of both pyridinic and graphitic N result in the best HER performance. This work helps in understanding the mechanisms and bonding interactions within various catalysts and the scaffold electrode.
Collapse
Affiliation(s)
- Mallikarjun Bhavanari
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| | - Kan-Rong Lee
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
- Department of Mechanical Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| | - Bing Jian Su
- National Synchrotron Radiation Research Centre, Hsinchu, 30076 Taiwan, ROC
| | - Dipak Dutta
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| | - Yu-Han Hung
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| | - Chung-Jen Tseng
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
- Department of Mechanical Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| | - Ching-Yuan Su
- Graduate Institute of Energy Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
- Department of Mechanical Engineering, National Central University, Taoyuan City, 32001 Taiwan, ROC
| |
Collapse
|
11
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
12
|
Sun B, Yang S, Guo Y, Xue Y, Tian J, Cui H, Song X. Fabrication of molybdenum and tungsten oxide, sulfide, phosphide (MoxW1-xO2/MoxW1-xS2/MoxW1-xP) porous hollow nano-octahedrons from metal-organic frameworks templates as efficient hydrogen evolution reaction electrocatalysts. J Colloid Interface Sci 2019; 547:339-349. [DOI: 10.1016/j.jcis.2019.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
|
13
|
Wang S, Teng Z, Wang C, Wang G. Stable and Efficient Nitrogen-Containing Carbon-Based Electrocatalysts for Reactions in Energy-Conversion Systems. CHEMSUSCHEM 2018; 11:2267-2295. [PMID: 29770593 DOI: 10.1002/cssc.201800509] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/21/2018] [Indexed: 05/14/2023]
Abstract
High activity and stability are crucial for the practical use of electrocatalysts in fuel cells, metal-air batteries, and water electrolysis, including the oxygen reduction reaction, hydrogen evolution reaction, oxygen evolution reaction, and oxidation reactions of formic acid and alcohols. Electrocatalysts based on nitrogen-containing carbon (N-C) materials show promise in catalyzing these reactions; however, there is no systematic review of strategies for the engineering of active and stable N-C-based electrocatalysts. Herein, a comprehensive comparison of recently reported N-C-based electrocatalysts regarding both electrocatalytic activity and long-term stability is presented. In the first part of this review, the relationships between the electrocatalytic reactions and selection of the element to modify the N-C-based materials are discussed. Afterwards, synthesis methods for N-C-based electrocatalysts are summarized, and strategies for the synthesis of highly stable N-C-based electrocatalysts are presented. Multiple tables containing data on crucial parameters for both electrocatalytic activity and stability are displayed in this review. Finally, constructing M-Nx moieties is proposed as the most promising engineering strategy for stable N-C-based electrocatalysts.
Collapse
Affiliation(s)
- Sicong Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Zhengyuan Teng
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Chengyin Wang
- College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Environmental Engineering and Monitoring, Yangzhou University, 180 Si-Wang-Ting Road, Yangzhou, 225002, PR China
| | - Guoxiu Wang
- Center for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| |
Collapse
|
14
|
Chen C, Wu A, Yan H, Xiao Y, Tian C, Fu H. Trapping [PMo 12O 40] 3- clusters into pre-synthesized ZIF-67 toward Mo x Co x C particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem Sci 2018; 9:4746-4755. [PMID: 29910925 PMCID: PMC5975546 DOI: 10.1039/c8sc01454j] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 04/22/2018] [Indexed: 12/27/2022] Open
Abstract
Bi-transition metal carbides (BTMCs) are promising in catalytic fields, but the synthesis of small-sized BTMCs remains a challenge. Here, Mo x Co x C (mainly below 20 nm in size) confined in uniform carbon polyhedrons (Mo x Co x C@C) was synthesized based on trapping [PMo12O40]3- (PMo12) clusters into pre-synthesized, uniform ZIF-67 (PMo/ZIF-67). The opening of the windows (0.34 nm) of ZIF-67 cages through heating is essential to allow the trapping of PMo12 into the cages. This trapping route provides a new method to successfully combine POMs and MOFs that can not be effectively combined via traditional POMOF-based (simultaneous assembly) routes. It also has advantages in controlling the uniformity and components of the materials. The size matching of PMo12 (1 nm) and the cages (1.16 nm) of ZIF-67 enables effective contact of the Co and Mo sources, thus giving small-sized Mo x Co x C protected by carbon via calcination. The optimized catalysts showed good performance for water splitting with a low η10 of 83 mV (295 mV) for the hydrogen (oxygen) evolution reaction, which is superior to those derived from ZIF-67 and precursors from POMOF-based routes. Our results also indicated that the HER activity is determined by the kind of BTMC, and the activity for the OER is relative to the oxygen-containing species formed during the initial OER test.
Collapse
Affiliation(s)
- Congfang Chen
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| | - Aiping Wu
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| | - Haijing Yan
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| | - Yinglu Xiao
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| | - Chungui Tian
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| | - Honggang Fu
- Key Laboratory of Functional Inorganic Material Chemistry , Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin , 150080 , China . ; ;
| |
Collapse
|
15
|
One-pot Synthesis of Mo2N/NC Catalysts with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.06.086] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Xing Z, Wang D, Li Q, Asiri AM, Sun X. Self-standing Ni-WN heterostructure nanowires array: A highly efficient catalytic cathode for hydrogen evolution reaction in alkaline solution. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|