1
|
Wu W, Rajeshkumar T, Hong D, Zhu S, Huang Z, Chai F, Wang W, Yuan Q, Wei Y, Xie Z, Maron L, Wang S. Rare-Earth Metal Complexes Bearing Electrophilic Carbon and Strongly Polarized Metallacyclopropane Moiety: Synthesis and Diverse Reactivity toward Small Molecules. Inorg Chem 2024; 63:18365-18378. [PMID: 39287929 DOI: 10.1021/acs.inorgchem.4c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Metallacyclopropanes are highly strained and very reactive organometallics; the rare-earth metal complexes bearing both highly reactive electrophilic carbon and strongly polarized metallacyclopropanes are extremely rare. This type of rare-earth metal complexes (κ2-L)RE(η2-C2B10H10)·(THF)3 [L = 1-(2-N-C5H10NCH2CH2)-3-(2,6-iPr2C6H3N═CH)-C8H4N, RE = Lu(1a), Yb(1b), Er(1c), Y(1d), Dy(1e)] bearing the indol-2-yl electrophilic carbon and carboryne-based strongly polarized metallacyclopropanes have been synthesized. Structures of complexes 1 are further confirmed by single-crystal X-ray diffraction and DFT theoretical calculations. It is found that complexes 1 have remarkable reactivity toward different polar unsaturated small molecules, elemental sulfur, and selenium to provide different products (2-15) through the selective reactions of the RE-Ccage, and RE-C2-ind bonds with the given small molecules, respectively. The reactivities of these complexes are different from those of the reported rare-earth metallacyclopropenes and d-block metal-carborynes.
Collapse
Affiliation(s)
- Weikang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Shan Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Zeming Huang
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, P. R. China
| | - Fuxiang Chai
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Weigang Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Qingbing Yuan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Yun Wei
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, Anhui, P. R. China
| | - Zuowei Xie
- Department of Chemistry, The Chinese University of Hong Kong, Shatin NT, Hong Kong 999077, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Shaowu Wang
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Coordinated Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, Anhui, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
2
|
Chen X, Wan S, Wang Q, Gong Y. A Thorium(IV) metallacyclopropyne complex. Nat Commun 2024; 15:7130. [PMID: 39164248 PMCID: PMC11336175 DOI: 10.1038/s41467-024-51167-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Actinide metallacyclic chemistry has been of interest due to its involvement in various chemical processes. However, fundamental understanding on the key species, actinide metallacyclic complexes, is limited to metallacyclopropenes whereas little is known about the actinide metallacyclopropynes presumably due to their unusual high reactivity. Herein, we report the preparation of a thorium metallacyclopropyne complex (η2-C ≡ C)ThCl3- in the gas phase by using electrospray ionization mass spectrometry, and it is generated via a single-ligand strategy through sequential losses of CO2 and HCl from the monopropynoate precursor (HC ≡ CCO2)ThCl4- upon collision-induced dissociation. Alternatively, the dual-ligand strategy involving consecutive losses of two CO2 and one C2H2 from the dipropynoate precursor (HC ≡ CCO2)2ThCl3- works as well. According to the reactivity experiments and theoretical calculations, (η2-C ≡ C)ThCl3- possesses a dianionic ligand C22- coordinated to the Th(IV) center in a side-on fashion. Further bonding analysis demonstrates the presence of a triple bond between the two C atoms, and the Th 5 f orbitals are significantly involved in the Th-(C ≡ C) bonding. A Th metallacyclopropyne structure is thus established for (η2-C ≡ C)ThCl3-.
Collapse
Affiliation(s)
- Xiuting Chen
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Songpeng Wan
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Wang
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Gong
- Key Laboratory of Thorium Energy, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China.
| |
Collapse
|
3
|
Deng C, Liang J, Wang Y, Huang W. Reduction of Thorium Tris(amido)arene Complexes: Reversible Double and Single C-C Couplings. Inorg Chem 2024; 63:9676-9686. [PMID: 38696837 DOI: 10.1021/acs.inorgchem.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The reduction chemistry of thorium complexes is less explored compared to that of their uranium counterparts. Here, we report the synthesis, characterization, and reduction chemistry of two thorium(IV) complexes, (AdTPBN3)ThCl (1) and (DtbpTPBN3)ThCl(THF) (4) [RTPBN3 = 1,3,5-[2-(RN)C6H4]3C6H3; R = 1-adamantyl (Ad) or 3,5-di-tert-butylphenyl (Dtbp); THF = tetrahydrofuran], supported by tripodal tris(amido)arene ligands with different N-substituents. Reduction of 1 with excessive potassium in n-pentane yielded a double C-C coupling product, [(AdTPBN3)ThK(Et2O)2]2 (3), featuring a unique tetraanionic tricyclic core. On the other hand, reduction of 4 with 1 equiv of KC8 in hexanes/1,2-dimethoxyethane (DME) afforded a single C-C coupling product, [(DtbpTPBN3)Th(DME)]2 (5), with a dianionic bis(cyclohexadienyl) core. The solid- and solution-state structures of dinuclear thorium(IV) complexes 3 and 5 were established by X-ray crystallography and NMR spectroscopy. In addition, reactivity studies show that 3 and 5 can behave as thorium(II) and thorium(III) synthons to reduce organic halides. For instance, 3 and 5 are able to reduce 4 and 2 equiv of benzyl chloride, respectively, to regenerate 1 and 4 with concomitant formation of dibenzyl. Reversible C-C couplings under redox conditions provide an alternative approach to exploiting the potential of thorium arene complexes in redox chemistry.
Collapse
Affiliation(s)
- Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
4
|
Hsueh FC, Rajeshkumar T, Kooij B, Scopelliti R, Severin K, Maron L, Zivkovic I, Mazzanti M. Bonding and Reactivity in Terminal versus Bridging Arenide Complexes of Thorium Acting as Th II Synthons. Angew Chem Int Ed Engl 2023; 62:e202215846. [PMID: 36576035 DOI: 10.1002/anie.202215846] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (μ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.
Collapse
Affiliation(s)
- Fang-Che Hsueh
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Bastiaan Kooij
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Rosario Scopelliti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Laboratory of Supramolecular Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse Cedex 4, France
| | - Ivica Zivkovic
- Laboratory for Quantum Magnetism, Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
5
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
6
|
Li XB, Wu QY, Wang CZ, Lan JH, Zhang M, Gibson JK, Chai ZF, Shi WQ. Reduction of Np(VI) with hydrazinopropionitrile via water-mediated proton transfer. Phys Chem Chem Phys 2022; 24:17782-17791. [PMID: 35848639 DOI: 10.1039/d2cp01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effectively adjusting and controlling the valence state of neptunium (Np) is essential in its separation during spent fuel reprocessing. Hydrazine and its derivatives as free-salts can selectively reduce Np(VI) to Np(V). Reduction mechanisms of Np(VI) with hydrazine and four derivatives have been explored using multiple theoretical methods in our previous works. Herein, we examine the reduction mechanism of Np(VI) with hydrazinopropionitrile (NCCH2N2H3) which exhibits faster kinetics than most other hydrazine derivatives probably due to its σ-π hyperconjugation effect. Free radical ion pathways I, II and III involving the three types of hydrazine H atoms were found that correspond to the experimentally established mechanism of reduction of two Np(VI) via initial oxidation to [NCCH2N2H3]+˙, followed by conversion to NCCH2N2H (+2H3O+) and ultimately to CH3CN + N2. Potential energy profiles suggest that the second redox stage is rate-determining for all three pathways. Pathway I with water-mediated proton transfer is energetically preferred for hydrazinopropionitrile. Analyses using the approaches of localized molecular orbitals (LMOs), quantum theory of atoms in molecules (QTAIM), and intrinsic reaction coordinate (IRC) elucidate the bonding evolution for the structures on the reaction pathways. The results of the spin density reveal that the reduction of the first Np(VI) ion is the outer-sphere electron transfer, while that of the second Np(VI) ion is the hydrogen transfer. This work offers new insights into the nature of reduction of Np(VI) by hydrazinopropionitrile via water-mediated proton transfer, and provides a basis for designing free-salt reductants for Np separations.
Collapse
Affiliation(s)
- Xiao-Bo Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. .,Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Meng Zhang
- Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, College of Nuclear Science and Technology, Harbin Engineering University, Harbin, Heilongjiang, 150001, China
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, 94720, USA
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Wang S, Heng Y, Li T, Wang D, Hou G, Zi G, Walter MD. Intrinsic reactivity of [η 5-1,3-(Me 3Si) 2C 5H 3] 2U(η 4-C 4Ph 2) in small molecule activation. Dalton Trans 2022; 51:11072-11085. [PMID: 35796202 DOI: 10.1039/d2dt01730j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The uranium metallacyclocumulene, [η5-1,3-(Me3Si)2C5H3]2U(η4-C4Ph2) (3) was isolated from the reaction mixture containing [η5-1,3-(Me3Si)2C5H3]2UCl2 (1), potassium graphite (KC8) and 1,4-diphenylbutadiyne (PhCC-CCPh) in good yield. The reactivity of 3 towards various small organic molecules was evaluated. For example, while complex 3 shows no reactivity towards alkynes and 2,2'-bipyridine, it may deliver the [η5-1,3-(Me3Si)2C5H3]2U(II) fragment in the presence of Ph2E2 (E = S, Se) and Ph3CN3, or react as a nucleophile in the presence of carbodiimides, isothiocyanates, aldehydes, ketones, and pyridine derivatives, forming five-, seven- or nine-membered heterometallacycles. On the contrary, addition of Ph2CS to 3 induces CS bond cleavage yielding the dithiolate complex [η5-1,3-(Me3Si)2C5H3]2U[S2(C12H5Ph5)] (14). In contrast, the closely related, but sterically more encumbered uranium metallacyclocumulene [η5-1,2,4-(Me3Si)3C5H2]2U(η4-C4Ph2) (4) features a more limited reactivity which is restricted to mono- and double insertions with small unsaturated organic molecules such as isothiocyanates, ketones and nitriles.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Dongwei Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
8
|
Kent G, Yu X, Wu G, Autschbach J, Hayton TW. Ring-opening of a Thorium Cyclopropenyl Complex Generates a Transient Thorium-bound Carbene. Chem Commun (Camb) 2022; 58:6805-6808. [DOI: 10.1039/d2cc01780f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of [Cp3ThCl] with in situ generated lithium-3,3-diphenylcyclopropene results in the formation of [Cp3Th(3,3-diphenylcyclopropenyl)] (1), in good yields. Thermolysis of 1 results in isomerization to the ring-opened product, [Cp3Th(3-phenyl-1H-inden-1-yl)]...
Collapse
|
9
|
Lv ZJ, Liu W, Zhu M, Chai Z, Wei J, Zhang WX. Insertion Chemistry of Lutetacyclopropene toward Unsaturated C-O/C-N Bonds. Chemistry 2021; 27:16498-16504. [PMID: 34608685 DOI: 10.1002/chem.202103065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/08/2022]
Abstract
Although the reaction chemistry of transition metallacyclopropenes has been well-established in the last decades, the reactivity of rare-earth metallacyclopropenes remains elusive. Herein, we report the reaction of lutetacyclopropene 1 toward a series of unsaturated molecules. The reaction of 1 with one equiv. of PhCOMe, Ar1 CHO (Ar1 =2,6-Me2 C6 H3 ), W(CO)6 , and PhCH=NPh provided oxalutetacyclopentenes, metallacyclic lutetoxycarbene, and azalutetacyclopentene via 1,2-insertion of C=O, C≡O, or C=N bonds into Lu-Csp2 bond, respectively. However, the reaction between 1 and Ar2 N=C=NAr2 (Ar2 =4-MeC6 H4 ) gave an acyclic lutetium complex with a diamidinate ligand by the coupling of one molecule of 1 with two carbodiimides, irrespective of the amount of carbodiimide employed. More interestingly, when 1 was treated with two equiv. of Ar1 CHO, the reductive coupling of two C=O bonds was discovered to give a lutetium pinacolate complex along with the release of tolan. Remarkably, the reactivity of 1 is significantly different from that of scandacyclopropenes; these metallacycles derived from 1 all represent the first cases in rare-earth organometallic chemistry.
Collapse
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Miaomiao Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P.R. China
| |
Collapse
|
10
|
Lv ZJ, Zhu M, Liu W, Chai Z, Wei J, Zhang WX. Reactivity of Lutetacyclopropene toward Benzyl, Benzoyl, and Trimethylsilyl Nitriles Affording Diversified Lutetium Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
11
|
Lv ZJ, Chai Z, Zhu M, Wei J, Zhang WX. Selective Coupling of Lanthanide Metallacyclopropenes and Nitriles via Azametallacyclopentadiene and η 2-Pyrimidine Metallacycle. J Am Chem Soc 2021; 143:9151-9161. [PMID: 34029479 DOI: 10.1021/jacs.1c03604] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exploring new lanthanide metallacycles and finding their unique chemistry different from the analogues of transition metals are of great interest and importance. In this work, we reported the synthesis, characterization, and reactivity toward nitriles of two lanthanide metallacyclopropenes: lutetacyclopropene 2a and dysprosacyclopropene 2b. The selective coupling of 2a and three molecules of PhCN was found for the first time to provide the unexpected fused lutetacycle 3a with one 1,6-dihydropyrimidine ring. Mechanistic studies by DFT calculations reveal that the triple insertion of PhCN into 2a proceeds through four key steps: the insertion of the first PhCN into 2a giving azalutetacyclopentadiene IM1, the insertion of the second PhCN into the Lu-N bond of IM1, the intramolecular electrocyclization providing a highly strained η2-pyrimidine metallacycle, and the insertion of the third PhCN into the Lu-Csp3 bond. Isolation and characterization of two active intermediates, azalutetacyclopentadiene IM1 and η2-pyrimidine dysprosacycle, provide critical evidence for the formation of 3a. Furthermore, IM1 was also reported to react with TMSCN, isocyanides, or W(CO)6 to furnish the fused [4,5] lutetacycles. The chemistry of two lanthanide metallacyclopropenes with nitriles is significantly different from these metallacyclopropenes of scandium and other metals. Most notably, the azalutetacyclopentadienes, η2-pyrimidine complex, and other metallacycles all represent the first examples in rare-earth organometallic chemistry; the formation of these new lutetacycles provides concrete evidence for understanding the mechanism of transition metal promoted or catalyzed [2+2+2] cycloaddition between alkynes and nitriles.
Collapse
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhengqi Chai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Miaomiao Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Uranium versus Thorium: Synthesis and Reactivity of [η 5 -1,2,4-(Me 3 C) 3 C 5 H 2 ] 2 U[η 2 -C 2 Ph 2 ]. Chemistry 2021; 27:6767-6782. [PMID: 33559922 PMCID: PMC8251885 DOI: 10.1002/chem.202100089] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 01/09/2023]
Abstract
The synthesis, electronic structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Addition of diphenylacetylene (PhC≡CPh) to the uranium phosphinidene metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U=P-2,4,6-tBu3 C6 H2 (1) yields the stable uranium metallacyclopropene, [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U[η2 -C2 Ph2 ] (2). Based on density functional theory (DFT) results the 5f orbital contributions to the bonding within the metallacyclopropene U-(η2 -C=C) moiety increases significantly compared to the related ThIV compound [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 Th[η2 -C2 Ph2 ], which also results in more covalent bonds between the [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 U2+ and [η2 -C2 Ph2 ]2- fragments. Although the thorium and uranium complexes are structurally closely related, different reaction patterns are therefore observed. For example, 2 reacts as a masked synthon for the low-valent uranium(II) metallocene [η5 -1,2,4-(Me3 C)3 C5 H2 ]2 UII when reacted with Ph2 E2 (E=S, Se), alkynes and a variety of hetero-unsaturated molecules such as imines, ketazine, bipy, nitriles, organic azides, and azo derivatives. In contrast, five-membered metallaheterocycles are accessible when 2 is treated with isothiocyanate, aldehydes, and ketones.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Wanjian Ding
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guohua Hou
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Guofu Zi
- Department of ChemistryBeijing Normal UniversityBeijing100875China
| | - Marc D. Walter
- Institut für Anorganische und Analytische ChemieTechnische Universität BraunschweigHagenring 3038106BraunschweigGermany
| |
Collapse
|
13
|
Modder DK, Palumbo CT, Douair I, Scopelliti R, Maron L, Mazzanti M. Single metal four-electron reduction by U(ii) and masked "U(ii)" compounds. Chem Sci 2021; 12:6153-6158. [PMID: 33996013 PMCID: PMC8098655 DOI: 10.1039/d1sc00668a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The redox chemistry of uranium is dominated by single electron transfer reactions while single metal four-electron transfers remain unknown in f-element chemistry. Here we show that the oxo bridged diuranium(iii) complex [K(2.2.2-cryptand)]2[{((Me3Si)2N)3U}2(μ-O)], 1, effects the two-electron reduction of diphenylacetylene and the four-electron reduction of azobenzene through a masked U(ii) intermediate affording a stable metallacyclopropene complex of uranium(iv), [K(2.2.2-cryptand)][U(η 2-C2Ph2){N(SiMe3)2}3], 3, and a bis(imido)uranium(vi) complex [K(2.2.2-cryptand)][U(NPh)2{N(SiMe3)2}3], 4, respectively. The same reactivity is observed for the previously reported U(ii) complex [K(2.2.2-cryptand)][U{N(SiMe3)2}3], 2. Computational studies indicate that the four-electron reduction of azobenzene occurs at a single U(ii) centre via two consecutive two-electron transfers and involves the formation of a U(iv) hydrazide intermediate. The isolation of the cis-hydrazide intermediate [K(2.2.2-cryptand)][U(N2Ph2){N(SiMe3)2}3], 5, corroborated the mechanism proposed for the formation of the U(vi) bis(imido) complex. The reduction of azobenzene by U(ii) provided the first example of a "clear-cut" single metal four-electron transfer in f-element chemistry.
Collapse
Affiliation(s)
- Dieuwertje K Modder
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Chad T Palumbo
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Iskander Douair
- LPCNO, Université de Toulouse, INSA Toulouse Toulouse 31077 France
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse Toulouse 31077 France
| | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| |
Collapse
|
14
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Experimental and Computational Studies on a Base-Free Terminal Uranium Phosphinidene Metallocene. Chemistry 2020; 26:16888-16899. [PMID: 32744750 PMCID: PMC7756876 DOI: 10.1002/chem.202003465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The first stable base‐free terminal uranium phosphinidene metallocene is presented; and its structure and reactivity have been studied in detail and compared to that of the corresponding thorium derivative. Salt metathesis reaction of the methyl iodide uranium metallocene Cp’’’2U(I)Me (2, Cp’’’=η5‐1,2,4‐(Me3C)3C5H2) with Mes*PHK (Mes*=2,4,6‐(Me3C)3C6H2) in THF yields the base‐free terminal uranium phosphinidene metallocene, Cp’’’2U=PMes* (3). In addition, density functional theory (DFT) studies suggest substantial 5f orbital contributions to the bonding within the uranium phosphinidene [U]=PAr moiety, which results in a more covalent bonding between the [Cp’’’2U]2+ and [Mes*P]2− fragments than that for the related thorium derivative. This difference in bonding besides steric reasons causes different reactivity patterns for both molecules. Therefore, the uranium derivative 3 may act as a Cp’’’2U(II) synthon releasing the phosphinidene moiety (Mes*P:) when treated with alkynes or a variety of hetero‐unsaturated molecules such as imines, thiazoles, ketazines, bipy, organic azides, diazene derivatives, ketones, and carbodiimides.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
15
|
Ma W, Douair I, Maron L, Ye Q. Incorporation of Boron into Uranium Metallacycles: Synthesis, Structure, and Reactivity of Boron-Containing Uranacycles Derived from Bis(alkynyl)boranes. Chemistry 2020; 26:13573-13577. [PMID: 32761976 DOI: 10.1002/chem.202003611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/08/2022]
Abstract
The reaction of uranacyclopropene complex (C5 Me5 )2 U[η2 -1,2-C2 (SiMe3 )2 ] with B-aryl bis(alkynyl)borane PhB(C≡CPh)2 led to the first six-membered uranium metallaboracycle, while the reaction with B-amino bis(alkynyl)borane (Me3 Si)2 NB(C≡CPh)2 afforded an unexpected uranaborabicyclo[2.2.0] complex via [2+2] cycloaddition. The reaction with CuCl revealed the non-innocent property of the rearranged bis(alkynyl)boron species towards oxidant. The reactions with isocyanide DippNC: (Dipp=2,6-iPr2 -C6 H3 ) and isocyanate tBuNCO afforded the novel uranaborabicyclo[3.2.0] complexes. All new complexes have been structurally characterized. DFT calculations were performed to provide more insights into the electronic structures and the reaction mechanism.
Collapse
Affiliation(s)
- Wangyang Ma
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Iskander Douair
- LPCNO, CNRS & INSA, Université Paul Sabatier, Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, Toulouse, France
| | - Qing Ye
- Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| |
Collapse
|
16
|
Bhoumik NC, Joy MTR, Ghosh S, Richmond MG, Kabir SE. Thermolysis of [HOs3(CO)8{µ3-Ph2PCH2P(Ph)C6H4}]: New Os2- and Os3- cluster products based on multiple C H bond activation of the bis(diphenylphosphino)methane ligand. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Lv ZJ, Huang Z, Shen J, Zhang WX, Xi Z. Well-Defined Scandacyclopropenes: Synthesis, Structure, and Reactivity. J Am Chem Soc 2019; 141:20547-20555. [DOI: 10.1021/jacs.9b11631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ze-Jie Lv
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhe Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Jinghang Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Zhang C, Wang Y, Hou G, Ding W, Zi G, Walter MD. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans 2019; 48:6921-6930. [DOI: 10.1039/c9dt01160a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A three-membered diphosphido thorium metallaheterocycle complex was prepared and its reactivity was investigated.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
19
|
Qin G, Wang Y, Shi X, Del Rosal I, Maron L, Cheng J. Monomeric thorium dihydrido complexes: versatile precursors to actinide metallacycles. Chem Commun (Camb) 2019; 55:8560-8563. [DOI: 10.1039/c9cc04013g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monomeric actinide dihydrido complex [(CpAr*)(Cp*)ThH2(THF)] (2) and actinide metallacyclopentyne [(CpAr*)(Cp*)Th(PhCH–CC–CHPh)] (4) were obtained for the first time.
Collapse
Affiliation(s)
- Guorui Qin
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yang Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xianghui Shi
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | | | - Laurent Maron
- LPCNO
- CNRS & INSA
- UPS
- Université de Toulouse
- 31077 Toulouse
| | - Jianhua Cheng
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
20
|
Pagano JK, Scott BL, Morris DE, Kiplinger JL. Synthesis, characterization, and reactivity of the first uranium metallocene 1,2-bis(diphenylphosphino)acetylene complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Abstract
All-carbon metallacycles of the d-transition metals have received widespread attention over the past three decades because of their exceptional intrinsic reactivity. However, in recent years, significant progress has also been made in the synthesis and characterization of actinide metallacyclopropenes, metallacyclopentadienes, and metallacyclocumulenes (metallacyclopentatrienes). Such actinide metallacycles are of interest because of their unique structural properties, their potential application in novel group transfer reactions and catalysis, as well as their ability to engage the 5f orbitals in metal-ligand bonding. This short review summarizes the latest developments in this area focusing on all-carbon actinide metallacycles, i.e., metallacyclopropenes, metallacyclopentadienes, and metallacyclocumulenes (metallacyclopentatrienes).
Collapse
Affiliation(s)
- Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
22
|
Andreychuk NR, Emslie DJ, Jenkins HA, Britten JF. Cyclometallation following coordination of anionic and neutral Lewis bases to a uranium(IV) dialkyl complex. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Andreychuk NR, Dickie T, Emslie DJH, Jenkins HA. Thorium(iv) alkyl and allyl complexes of a rigid NON-donor pincer ligand with flanking 1-adamantyl substituents. Dalton Trans 2018. [DOI: 10.1039/c8dt00421h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rigid new pincer pro-ligand, 4,5-bis(1-adamantylamino)-2,7-di-tert-butyl-9,9-dimethylxanthene, is described, with deprotonation and complexation to afford thorium(iv) chloro, alkyl, and allyl derivatives.
Collapse
Affiliation(s)
| | - Tara Dickie
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - David J. H. Emslie
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| | - Hilary A. Jenkins
- Department of Chemistry & Chemical Biology
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
24
|
Raeder J, Reiners M, Baumgarten R, Münster K, Baabe D, Freytag M, Jones PG, Walter MD. Synthesis and molecular structure of pentadienyl complexes of the rare-earth metals. Dalton Trans 2018; 47:14468-14482. [DOI: 10.1039/c8dt03123a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In combination with small and difficult to reduce rare-earth metals pdl′ undergoes CH-bond activations instead of sterically induced reductions to form dimeric complexes with a unique bridging six-membered metallacycle as the central structural motif.
Collapse
Affiliation(s)
- Jan Raeder
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Reiners
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Robert Baumgarten
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Katharina Münster
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Dirk Baabe
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Matthias Freytag
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Peter G. Jones
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| | - Marc D. Walter
- Technische Universität Braunschweig
- Institut für Anorganische und Analytische Chemie
- 38106 Braunschweig
- Germany
| |
Collapse
|
25
|
Ortu F, Formanuik A, Innes JR, Mills DP. New vistas in the molecular chemistry of thorium: low oxidation state complexes. Dalton Trans 2017; 45:7537-49. [PMID: 27094204 DOI: 10.1039/c6dt01111j] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although the molecular chemistry of thorium is dominated by the +4 oxidation state accounts of Th(iii) complexes have continued to increase in frequency since the first structurally characterised example was reported thirty years ago. The isolation of the first Th(ii) complexes in 2015 and exciting recent Th(iii) and Th(ii) reactivity studies both indicate that this long-neglected area is set to undergo a rapid expansion in research activity over the next decade, as previously seen since the turn of the millennium for analogous U(iii) small molecule activation chemistry. In this perspective article, we review synthetic routes to Th(iii) and Th(ii) complexes and summarise their distinctive physical properties. We provide a near-chronological discussion of these systems, focusing on structurally characterised examples, and cover complementary theoretical studies that rationalise electronic structures. All reactivity studies of Th(iii) and Th(ii) complexes that have been reported to date are described in detail.
Collapse
Affiliation(s)
- Fabrizio Ortu
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Alasdair Formanuik
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - James R Innes
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David P Mills
- School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| |
Collapse
|
26
|
Zhang C, Yang P, Zhou E, Deng X, Zi G, Walter MD. Reactivity of a Lewis Base Supported Thorium Terminal Imido Metallocene toward Small Organic Molecules. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00212] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Congcong Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Pikun Yang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Enwei Zhou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xuebin Deng
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
27
|
Zhang L, Fang B, Hou G, Zi G, Ding W, Walter MD. Experimental and Computational Studies of a Uranium Metallacyclocumulene. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00936] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lei Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Bo Fang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
28
|
Pagano JK, Erickson KA, Scott BL, Morris DE, Waterman R, Kiplinger JL. Synthesis and characterization of a new and electronically unusual uranium metallacyclocumulene, (C5Me5)2U(η4-1,2,3,4-PhC4Ph). J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2016.10.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
29
|
Zhang L, Hou G, Zi G, Ding W, Walter MD. Preparation of a uranium metallacyclocumulene and its reactivity towards unsaturated organic molecules. Dalton Trans 2017; 46:3716-3728. [DOI: 10.1039/c7dt00396j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Steric and electronic properties of the coordinated ligands exert a pronounced influence on the reactivity of the uranium metallacyclocumulene complexes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
30
|
Reiners M, Baabe D, Schweyen P, Freytag M, Jones PG, Walter MD. Teaching Ferrocenium How to Relax: A Systematic Study on Spin-Lattice Relaxation Processes in tert
-Butyl-Substituted Ferrocenium Derivatives. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600873] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Matthias Reiners
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Dirk Baabe
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter Schweyen
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie; Technische Universität Braunschweig; Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
31
|
Edelmann FT. Lanthanides and actinides: Annual survey of their organometallic chemistry covering the year 2015. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Zhang L, Hou G, Zi G, Ding W, Walter MD. Influence of the 5f Orbitals on the Bonding and Reactivity in Organoactinides: Experimental and Computational Studies on a Uranium Metallacyclopropene. J Am Chem Soc 2016; 138:5130-42. [PMID: 27070508 DOI: 10.1021/jacs.6b01391] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structure, and reactivity of a uranium metallacyclopropene were comprehensively studied. Reduction of (η(5)-C5Me5)2UCl2 (1) with potassium graphite (KC8) in the presence of bis(trimethylsilyl)acetylene (Me3SiC≡CSiMe3) allows the first stable uranium metallacyclopropene (η(5)-C5Me5)2U[η(2)-C2(SiMe3)2] (2) to be isolated. Magnetic susceptibility data confirm that 2 is a U(IV) complex, and density functional theory (DFT) studies indicate substantial 5f orbital contributions to the bonding of the metallacyclopropene U-(η(2)-C═C) moiety, leading to more covalent bonds between the (η(5)-C5Me5)2U(2+) and [η(2)-C2(SiMe3)2](2-) fragments than those in the related Th(IV) compound. Consequently, very different reactivity patterns emerge, e.g., 2 can act as a source for the (η(5)-C5Me5)2U(II) fragment when reacted with alkynes and a variety of heterounsaturated molecules such as imines, bipy, carbodiimide, organic azides, hydrazine, and azo derivatives.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig , Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Pedrick EA, Seaman LA, Scott JC, Griego L, Wu G, Hayton TW. Synthesis and Reactivity of a U(IV) Dibenzyne Complex. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elizabeth A. Pedrick
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Lani A. Seaman
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Joshua C. Scott
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Leonel Griego
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department
of Chemistry and
Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
34
|
Fang B, Hou G, Zi G, Ding W, Walter MD. Steric and Electronic Influences of Internal Alkynes on the Formation of Thorium Metallacycles: A Combined Experimental and Computational Study. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00945] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Fang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Zhang L, Fang B, Hou G, Ai L, Ding W, Walter MD, Zi G. Intrinsic reactivity of a uranium metallacyclopropene toward unsaturated organic molecules. Dalton Trans 2016; 45:16441-16452. [DOI: 10.1039/c6dt03005j] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A uranium metallacyclopropene shows a rich chemistry in the activation of small molecules by two electron transfer processes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Bo Fang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Lin Ai
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| |
Collapse
|
36
|
Fang B, Zhang L, Hou G, Zi G, Fang DC, Walter MD. Experimental and Computational Studies on an Actinide Metallacyclocumulene Complex. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00923] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bo Fang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lei Zhang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- Department
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
37
|
Zhou E, Ren W, Hou G, Zi G, Fang DC, Walter MD. Small Molecule Activation Mediated by a Thorium Terminal Imido Metallocene. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00454] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Enwei Zhou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wenshan Ren
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
38
|
CH Bond Activation of Hydrocarbons Mediated by Rare-Earth Metals and Actinides. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2015. [DOI: 10.1016/bs.adomc.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|