1
|
Gauthier M, Whittingham JBM, Hasija A, Tetlow DJ, Leigh DA. Skeletal Editing of Mechanically Interlocked Molecules: Nitrogen Atom Deletion from Crown Ether-Dibenzylammonium Rotaxanes. J Am Chem Soc 2024; 146:29496-29502. [PMID: 39431981 PMCID: PMC11528408 DOI: 10.1021/jacs.4c09066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/31/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Removing the nitrogen atom from secondary amines while simultaneously linking the remaining fragments is a powerful form of late-stage skeletal editing. Here, we report its use for the deletion of the nitrogen atom of the dibenzylammonium template used to assemble crown ether rotaxanes. The reaction uses an anomeric amide that activates secondary amines to generate a carbon-carbon bond that replaces the amine nitrogen. Despite the potential for dethreading of the intermediate diradical pair, the nitrogen atom was successfully deleted from a series of rotaxane axles as long as the macrocycle could access coconformations that did not inhibit the reaction of the amine group. The skeletally edited interlocked molecules were obtained directly from the parent crown ether-dibenzylammonium rotaxanes in modest yields (23-36%) and characterized by NMR spectroscopy, mass spectrometry, and X-ray crystallography. One skeletally edited rotaxane shows a network of weak CH···O hydrogen bonds between the crown ether and benzylic methylene groups of the axle in the solid state, in place of the crown ether-ammonium binding motif used to assemble the parent, unedited, rotaxane.
Collapse
Affiliation(s)
- Maxime Gauthier
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | | | - Avantika Hasija
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - David A. Leigh
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
2
|
Akhtar N, Conthagamage UNK, Bucher SP, Abdulsalam ZA, Davis ML, Beavers WN, García-López V. Thiourea-based rotaxanes: anion transport across synthetic lipid bilayers and antibacterial activity against Staphylococcus aureus. MATERIALS ADVANCES 2024; 5:8534-8545. [PMID: 39386009 PMCID: PMC11457908 DOI: 10.1039/d4ma00794h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
We report the synthesis of two rotaxanes (1 and 2) whose rings have appended thiourea units for the selective recognition of Cl- anions. Rotaxane 1 transports Cl- across synthetic lipid bilayers more efficiently than 2, exhibiting EC50 values of 0.243 mol% versus 0.736 mol%, respectively. A control rotaxane (3) without the thiourea units and the individual axle (4) also showed Cl- transport, although with much lower efficiency (EC50 values of 4.044 mol% and 4.986 mol%). The unthreaded ring (5) showed the lowest transport activity. This trend highlights the advantage of the interlocked system with a ring containing thiourea units. We also investigated how the membrane composition of liposomes influences the transport activity of 1 and 2, observing higher Cl- transport in membranes with higher fluidity. Additionally, we demonstrated that rotaxane 1 can kill drug-resistant and osmotolerant Staphylococcus aureus when used in combination with NaCl or arachidonic acid. The latter is known to increase the fluidity of the membrane in S. aureus, highlighting cooperative behavior. This work provides new insights into how various structural features and the membrane environment influence the anion transport activity of rotaxanes, offering important design principles for optimizing future rotaxanes for biomedical and other applications.
Collapse
Affiliation(s)
- Nasim Akhtar
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | | | - Sara P Bucher
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Zuliah A Abdulsalam
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - Macallister L Davis
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| | - William N Beavers
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine Baton Rouge LA 70803 USA
| | - Víctor García-López
- Department of Chemistry, Louisiana State University Baton Rouge LA 70803 USA
| |
Collapse
|
3
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
4
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
5
|
Gauthier M, Fournel-Marotte K, Clavel C, Waelès P, Laurent P, Coutrot F. An Interlocked Figure-of-Eight Molecular Shuttle. Angew Chem Int Ed Engl 2023; 62:e202310643. [PMID: 37594476 DOI: 10.1002/anie.202310643] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Here is reported the synthesis and characterization of an interlocked figure-of-eight rotaxane molecular shuttle from a dibenzo-24-crown-8 (DB24C8) derivative. This latter bears two molecular chains, whose extremities are able to react together by click chemistry. One of the two substituting chain holds an ammonium function aimed at driving the self-entanglement through the complexation of the DB24C8 moiety. In the targeted figure-of-eight rotaxane, shuttling of the DB24C8 along the threaded axle from the best ammonium station to the weaker binding site triazolium was performed through deprotonation or deprotonation-then-carbamoylation of the ammonium. This way, two discrete co-conformational states were obtained, in which the folding and size of the two loops could be changed.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Karine Fournel-Marotte
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Caroline Clavel
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philippe Laurent
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
6
|
Khang TM, Nhien PQ, Cuc TTK, Weng CC, Wu CH, Wu JI, Hue BTB, Li YK, Lin HC. Dual and Sequential Locked/Unlocked Photochromic Effects on FRET Controlled Singlet Oxygen Processes by Contracted/Extended Forms of Diarylethene-Based [1]Rotaxane Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205597. [PMID: 36504441 DOI: 10.1002/smll.202205597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Manipulations of singlet oxygen (1 O2 ) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1 O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1 O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1 O2 productions and managements based on mechanically interlocked molecules for future bioapplications.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chang-Ching Weng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, 94000, Viet Nam
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| |
Collapse
|
7
|
Khang TM, Nhien PQ, Cuc TTK, Wu CH, Hue BTB, Wu JI, Li YK, Lin HC. Dual and sequential locked/unlocked photo-switching effects on FRET processes by tightened/loosened nano-loops of diarylethene-based [1]rotaxanes. Chem Commun (Camb) 2023; 59:466-469. [PMID: 36519452 DOI: 10.1039/d2cc06285b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The self-trapping nano-loop structures of [1]rotaxanes exhibited multiple Förster resonance energy transfer (FRET) patterns via dual and sequential locking/unlocking of pH-gated and UV exposure processes. As a tightened and constrained nano-loop in the acidic condition, dithienylethene (DTE) unit was locked in the highly bending open form to forbid ring closure upon UV irradiation.
Collapse
Affiliation(s)
- Trang Manh Khang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Pham Quoc Nhien
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. .,Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Vietnam
| | - Tu Thi Kim Cuc
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Chia-Hua Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| | - Bui Thi Buu Hue
- Department of Chemistry, College of Natural Sciences, Can Tho University, Can Tho City, Vietnam
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, USA
| | - Yaw-Kuen Li
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. .,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
8
|
Koehler V, Gauthier M, Yao C, Fournel-Marotte K, Waelès P, Kauffmann B, Huc I, Coutrot F, Ferrand Y. [3]Foldarotaxane-mediated synthesis of an improbable [2]rotaxane. Chem Commun (Camb) 2022; 58:8618-8621. [PMID: 35786713 DOI: 10.1039/d2cc03066g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The wrapping of an aromatic oligoamide helix around an active ester-containing [2]rotaxane enforced the sliding and the sequestration of the surrounding macrocycle around a part of the axle for which it has no formal affinity. The foldamer-mediated compartmentalization of the [2]rotaxane shuttle was subsequently used to prepare an improbable rotaxane.
Collapse
Affiliation(s)
- Victor Koehler
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France.
| | - Maxime Gauthier
- Supramolecular Machines and Archtectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Chenhao Yao
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France.
| | - Karine Fournel-Marotte
- Supramolecular Machines and Archtectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Philip Waelès
- Supramolecular Machines and Archtectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Brice Kauffmann
- Université de Bordeaux, CNRS, INSERM, UMS3033, IECB, 2 rue Robert Escarpit, 33600, Pessac, France
| | - Ivan Huc
- Department of Pharmacy, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Frédéric Coutrot
- Supramolecular Machines and Archtectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Yann Ferrand
- Institut de Chimie et Biologie des Membranes et Nano-objets CBMN (UMR5248), Université de Bordeaux, CNRS, IPB, 2 rue Robert Escarpit, 33600, Pessac, France.
| |
Collapse
|
9
|
Gauthier M, Coutrot F. Discrepancy Regarding the Dethreading of a Dibenzo‐24‐crown‐8 Macrocycle through a Perfluorobutyl End in [2]Pseudorotaxanes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team IBMM Univ Montpellier CNRS ENSCM Montpellier France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team IBMM Univ Montpellier CNRS ENSCM Montpellier France
| |
Collapse
|
10
|
Coutrot F, Waelès P, Gauthier M. Study of [2] and [3]Rotaxanes Obtained by Post‐Synthetic Aminolysis of a Kinetically Stable Though Activated Carbonate‐Containing Pseudorotaxane. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Frédéric Coutrot
- Institut des Biomolecules Max Mousseron Département de Chimie Montpellier FRANCE
| | - Philip Waelès
- IBMM: Institut des Biomolecules Max Mousseron chimie FRANCE
| | | |
Collapse
|
11
|
Chu CW, Stares DL, Schalley CA. Light-controlled interconversion between a [ c2]daisy chain and a lasso-type pseudo[1]rotaxane. Chem Commun (Camb) 2021; 57:12317-12320. [PMID: 34734947 DOI: 10.1039/d1cc04419b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A light-responsive self-complementary crown ether/ammonium conjugate bearing an arylazopyrazole photoswitch as a spacer can be switched between a [c2]daisy chain (E-isomer) and a lasso-type pseudo[1]rotaxane (Z-isomer) by light.
Collapse
Affiliation(s)
- Chih-Wei Chu
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Daniel L Stares
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 20, Berlin 14195, Germany.
| |
Collapse
|
12
|
Gauthier M, Waelès P, Coutrot F. Post-Synthetic Macrocyclization of Rotaxane Building Blocks. Chempluschem 2021; 87:e202100458. [PMID: 34811956 DOI: 10.1002/cplu.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Indexed: 11/06/2022]
Abstract
Although not often encountered, cyclic interlocked molecules are appealing molecular targets because of their restrained tridimensional structure which is related to both the cyclic and interlocked shapes. Interlocked molecules such as rotaxane building blocks may be good candidates for post-synthetic intramolecular cyclization if the preservation of the mechanical bond ensures the interlocked architecture throughout the reaction. This is obviously the case if the modification does not involve the cleavage of either the macrocycle's main chain or the encircled part of the axle. However, among the post-synthetic reactions, the chemical linkage between two reactive sites belonging to embedded elements of rotaxanes still consists of an underexploited route to interlocked cyclic molecules. This Review lists the rare examples of macrocyclization through chemical connection between reactive sites belonging to a surrounding macrocycle and/or an encircled axle of interlocked rotaxanes.
Collapse
Affiliation(s)
- Maxime Gauthier
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
13
|
Li D, Han Y, Sun J, Liu WL, Yan CG. Convenient construction of unique bis-[1]rotaxanes based on azobenzene-bridged dipillar[5]arenes. J INCL PHENOM MACRO 2021. [DOI: 10.1007/s10847-021-01115-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
Waelès P, Gauthier M, Coutrot F. Challenges and Opportunities in the Post-Synthetic Modification of Interlocked Molecules. Angew Chem Int Ed Engl 2021; 60:16778-16799. [PMID: 32894812 DOI: 10.1002/anie.202007496] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Several strategies have been successfully utilised to obtain a wide range of interlocked molecules. However, some interlocked compounds are still not obtained directly and/or efficiently from non-interlocked components because the requisites for self-assembly cannot always be enforced. To circumvent such a synthetic problem, a strategy that consists of synthesizing an isolable and storable interlocked building block in a step that precedes its modification is an appealing chemical route to more sophisticated interlocked molecules. Synthetic opportunities and challenges are closely linked to the fact that the mechanical bond might greatly affect the reactivity of a functionality of the encircled axle, but that the interlocked architecture needs to be preserved during the synthesis. Hence, the mechanical bond plays a fundamental role in the strategy employed. This Review focuses on the challenging post-synthetic modifications of interlocked molecules, sometimes through cleavage of the axle's main chain, but always with conservation of the mechanical bond.
Collapse
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Maxime Gauthier
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
15
|
Waelès P, Gauthier M, Coutrot F. Challenges and Opportunities in the Post‐Synthetic Modification of Interlocked Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202007496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Maxime Gauthier
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS Université de Montpellier ENSCM case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
16
|
Pairault N, Bessaguet A, Barat R, Frédéric L, Pieters G, Crassous J, Opalinski I, Papot S. Diastereoselective synthesis of [1]rotaxanes via an active metal template strategy. Chem Sci 2020; 12:2521-2526. [PMID: 34164020 PMCID: PMC8179266 DOI: 10.1039/d0sc05369d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite the impressive number of interlocked molecules described in the literature over the past 30 years, only a few stereoselective syntheses of mechanically chiral rotaxanes have been reported so far. In this study, we present the first diastereoselective synthesis of mechanically planar chiral [1]rotaxanes, that has been achieved using the active template Cu-mediated alkyne–azide cycloaddition reaction. This synthetic method has been applied to the preparation of a [1]rotaxane bearing a labile stopper that can then be substituted without disruption of the mechanical bond. This approach paves the way for the synthesis of a wide variety of mechanically planar chiral [1]rotaxanes, hence allowing the study of the properties and potential applications of this class of interlocked molecular architectures. The first diastereoselective synthesis of mechanically planar chiral [1]rotaxanes has been achieved using the active template Cu-mediated alkyne–azide cycloaddition reaction.![]()
Collapse
Affiliation(s)
- Noël Pairault
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Adrien Bessaguet
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Romain Barat
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Lucas Frédéric
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM F-91191 Gif-sur-Yvette France
| | - Grégory Pieters
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM F-91191 Gif-sur-Yvette France
| | - Jeanne Crassous
- Université de Rennes, Institut des Sciences Chimiques de Rennes, UMR CNRS 6226 Campus de Beaulieu Rennes 35042 France
| | - Isabelle Opalinski
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Sébastien Papot
- Université de Poitiers, UMR CNRS 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), Groupe "Systèmes Moléculaires Programmés" Rue Michel-Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| |
Collapse
|
17
|
Kassem S, Lee ATL, Leigh DA, Markevicius A, Tetlow DJ, Toriumi N. Site-to-site peptide transport on a molecular platform using a small-molecule robotic arm. Chem Sci 2020; 12:2065-2070. [PMID: 34163969 PMCID: PMC8179245 DOI: 10.1039/d0sc05906d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peptides attached to a cysteine hydrazide ‘transporter module’ are transported selectively in either direction between two chemically similar sites on a molecular platform, enabled by the discovery of new operating methods for a molecular transporter that functions through ratcheting. Substrate repositioning is achieved using a small-molecule robotic arm controlled by a protonation-mediated rotary switch and attachment/release dynamic covalent chemistry. A polar solvent mixtures were found to favour Z to E isomerization of the doubly-protonated switch, transporting cargo in one direction (arbitrarily defined as ‘forward’) in up to 85% yield, while polar solvent mixtures were unexpectedly found to favour E to Z isomerization enabling transport in the reverse (‘backward’) direction in >98% yield. Transport of the substrates proceeded in a matter of hours (compared to 6 days even for simple cargoes with the original system) without the peptides at any time dissociating from the machine nor exchanging with others in the bulk. Under the new operating conditions, key intermediates of the switch are sufficiently stabilized within the macrocycle formed between switch, arm, substrate and platform that they can be identified and structurally characterized by 1H NMR. The size of the peptide cargo has no significant effect on the rate or efficiency of transport in either direction. The new operating conditions allow detailed physical organic chemistry of the ratcheted transport mechanism to be uncovered, improve efficiency, and enable the transport of more complex cargoes than was previously possible. Peptides are transported in either direction between chemically similar sites on a molecular platform, substrate repositioning is achieved using a cysteine hydrazide transporter module and a small-molecule robotic arm controlled by a rotary switch.![]()
Collapse
Affiliation(s)
- Salma Kassem
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alan T L Lee
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - David A Leigh
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | - Daniel J Tetlow
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Naoyuki Toriumi
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
18
|
Young MJ, Akien GR, Evans NH. An amide hydrogen bond templated [1]rotaxane displaying a peptide motif - demonstrating an expedient route to synthetic mimics of lasso peptides. Org Biomol Chem 2020; 18:5203-5209. [PMID: 32597913 DOI: 10.1039/d0ob01190h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rapid synthesis of an amide hydrogen bond templated [1]rotaxane is reported - demonstrating a potential pathway to synthetic analogues of lasso peptides. The structures of the [1]rotaxane and its unthreaded isomer have been characterized by NMR spectroscopy and modelled using DFT calculations.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Geoffrey R Akien
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | - Nicholas H Evans
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
19
|
Waliczek M, Wierzbicka M, Arkuszewski M, Kijewska M, Jaremko Ł, Rajagopal P, Szczepski K, Sroczyńska A, Jaremko M, Stefanowicz P. Attempting to synthesize lasso peptides using high pressure. PLoS One 2020; 15:e0234901. [PMID: 32579565 PMCID: PMC7314030 DOI: 10.1371/journal.pone.0234901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Lasso peptides are unique in that the tail of the lasso peptide threads through its macrolactam ring. The unusual structure and biological activity of lasso peptides have generated increased interest from the scientific community in recent years. Because of this, many new types of lasso peptides have been discovered. These peptides can be synthesized by microorganisms efficiently, and yet, their chemical assembly is challenging. Herein, we investigated the possibility of high pressure inducing the cyclization of linear precursors of lasso peptides. Unlike other molecules like rotaxanes which mechanically interlock at high pressure, the threaded lasso peptides did not form, even at pressures the high pressure up to 14 000 kbar.
Collapse
Affiliation(s)
| | | | | | - Monika Kijewska
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
| | - Łukasz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Priyadharshni Rajagopal
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kacper Szczepski
- Faculty of Chemistry, University of Wrocław, Wroclaw, Poland
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | |
Collapse
|
20
|
Echavarren J, Gall MAY, Haertsch A, Leigh DA, Marcos V, Tetlow DJ. Active template rotaxane synthesis through the Ni-catalyzed cross-coupling of alkylzinc reagents with redox-active esters. Chem Sci 2019; 10:7269-7273. [PMID: 31588296 PMCID: PMC6686731 DOI: 10.1039/c9sc02457c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/15/2019] [Indexed: 12/24/2022] Open
Abstract
The synthesis of unsymmetrical axle [2]rotaxanes through a recently developed Ni-catalyzed C(sp3)-C(sp3) cross-coupling of redox-active esters (formed directly from carboxylic acids) and organozinc reagents (derived from alkyl bromides) is reported. The method also furnishes, as a minor product, the symmetrical axle [2]rotaxanes resulting from the homo-coupling of the organozinc half-thread. The rotaxanes are formed in up to 56% yield with the ratio of unsymmetrical rotaxane increasing with the cavity size of the macrocycle. In the absence of the redox-active ester neither rotaxane is formed, even though the homo-coupling rotaxane product does not incorporate the redox-active ester building block. A Ni(iii) intermediate is consistent with these observations, providing support for the previously postulated mechanism of the Ni-catalyzed cross-coupling reaction.
Collapse
Affiliation(s)
- Javier Echavarren
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Malcolm A Y Gall
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Adrian Haertsch
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - David A Leigh
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Vanesa Marcos
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| | - Daniel J Tetlow
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK .
| |
Collapse
|
21
|
Gibson HW, Huang F, Zhao R, Shao L, Zakharov LN, Slebodnick C, Rheingold AL. An Inhospitable Cryptand: The Importance of Conformational Freedom in Host-Guest Complexation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harry W. Gibson
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
| | - Feihe Huang
- Department of Chemistry; Virginia Tech; 24060 Blacksburg VA USA
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Run Zhao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Li Shao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance & Novel Materials; Zhejiang University; Hangzhou P R China
| | - Lev N. Zakharov
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| | | | - Arnold L. Rheingold
- Department of Chemistry; University of California; 92093-0358 San Diego, La Jolla CA USA
| |
Collapse
|
22
|
Yu JJ, Zhao LY, Shi ZT, Zhang Q, London G, Liang WJ, Gao C, Li MM, Cao XM, Tian H, Feringa BL, Qu DH. Pumping a Ring-Sliding Molecular Motion by a Light-Powered Molecular Motor. J Org Chem 2019; 84:5790-5802. [PMID: 30971085 DOI: 10.1021/acs.joc.9b00783] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Designing artificial molecular machines to execute complex mechanical tasks, like coupling rotation and translation to accomplish transmission of motion, continues to provide important challenges. Herein, we demonstrated a novel molecular machine comprising a second-generation light-driven molecular motor and a bistable [1]rotaxane unit. The molecular motor can rotate successfully even in an interlocked [1]rotaxane system through a photoinduced cis-to -trans isomerization and a thermal helix inversion, resulting in concomitant transitional motion of the [1]rotaxane. The transmission process was elucidated via 1H NMR, 1H-1H COSY, HMQC, HMBC, and 2D ROESY NMR spectroscopies, UV-visible absorption spectrum, and density functional theory calculations. This is the first demonstration of a molecular motor to rotate against the appreciably noncovalent interactions between dibenzo-24-crown-8 and N-methyltriazolium moieties comprising the rotaxane unit, showing operational capabilities of molecular motors to perform more complex tasks.
Collapse
Affiliation(s)
- Jing-Jing Yu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Li-Yang Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Zhao-Tao Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Gabor London
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands.,Institute of Organic Chemistry, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Magyar, tudósok körútja 2 , Budapest 1117 , Hungary
| | - Wen-Jing Liang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Chuan Gao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ming-Ming Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Xiao-Ming Cao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China.,Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, Faculty of Mathematics and Natural Sciences , University of Groningen , Nijenborgh 4 , AG Groningen 9747 , The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering , East China University of Science and Technology , 130 Meilong Road , Shanghai 200237 , China
| |
Collapse
|
23
|
Riss-Yaw B, Clavel C, Laurent P, Waelès P, Coutrot F. The Importance of Length and Flexibility of Macrocycle-Containing Molecular Translocators for the Synthesis of Improbable [2]Rotaxanes. Chemistry 2018; 24:13659-13666. [PMID: 29969523 DOI: 10.1002/chem.201802831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Indexed: 12/20/2022]
Abstract
This work reports on the use of molecular translocators to capture a dibenzo-24-crown-8 (DB24C8) and then release it onto targeted molecular axles to afford, after removal of the translocator, [2]rotaxanes that do not hold any template site. Various translocators were studied and successfully aided the synthesis, with more or less efficacy, of [2]rotaxanes of different lengths. During the releasing step, the DB24C8 macrocycle shuttles along the thread, and the localization of the macrocycle might be driven by steric repulsion on the translocator part and/or electronic attraction of the targeted part of the axle to be encircled, which depends on both the nature of the translocator and the targeted thread to be encircled.
Collapse
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Caroline Clavel
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Philippe Laurent
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Philip Waelès
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and Architectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université de Montpellier, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
24
|
Han Y, Xu LM, Nie CY, Jiang S, Sun J, Yan CG. Synthesis of diamido-bridged bis-pillar[5]arenes and tris-pillar[5]arenes for construction of unique [1]rotaxanes and bis-[1]rotaxanes. Beilstein J Org Chem 2018; 14:1660-1667. [PMID: 30013692 PMCID: PMC6036973 DOI: 10.3762/bjoc.14.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/16/2022] Open
Abstract
The pillar[5]arene mono- and di(oxyalkoxy)benzoic acids were successfully prepared in high yields by sequential alkylation of ω-bromoalkoxy-substituted pillar[5]arenes with methyl or ethyl p-hydroxybenzoate followed by a hydrolytic reaction under basic conditions. Under catalysis of HOBt/EDCl, the amidation reaction of pillar[5]arene mono(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes afforded diamido-bridged bis-pillar[5]arenes. 1H NMR and 2D NOESY spectra clearly indicated that [1]rotaxanes were formed by insertion of longer diaminoalkylene unit into the cavity of one pillar[5]arene with another pillar[5]arene acting as a stopper. The similar catalysed amidation reaction of pillar[5]arene di(oxybutoxy)benzoic acid with monoamido-functionalized pillar[5]arenes resulted in the diamido-bridged tris-pillar[5]arenes, which successfully form the unique bis-[1]rotaxanes bearing longer than diaminopropylene diamido bridges.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Li-Ming Xu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Cui-Yun Nie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Shuo Jiang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
25
|
Saura-Sanmartin A, Martinez-Cuezva A, Pastor A, Bautista D, Berna J. Light-driven exchange between extended and contracted lasso-like isomers of a bistable [1]rotaxane. Org Biomol Chem 2018; 16:6980-6987. [DOI: 10.1039/c8ob02234h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoactive hydrogen-bonded lasso having an amide-based [1]rotaxane structure has been constructed from acyclic precursors through a self-templating approach. The stability, structural integrity and switching are described.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Alberto Martinez-Cuezva
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | - Aurelia Pastor
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| | | | - Jose Berna
- Departamento de Química Orgánica
- Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
| |
Collapse
|
26
|
Riss-Yaw B, Morin J, Clavel C, Coutrot F. How Secondary and Tertiary Amide Moieties are Molecular Stations for Dibenzo-24-crown-8 in [2]Rotaxane Molecular Shuttles? Molecules 2017; 22:E2017. [PMID: 29160822 PMCID: PMC6150268 DOI: 10.3390/molecules22112017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 11/17/2017] [Indexed: 12/22/2022] Open
Abstract
Interlocked molecular machines like [2]rotaxanes are intriguing aesthetic molecules. The control of the localization of the macrocycle, which surrounds a molecular axle, along the thread leads to translational isomers of very different properties. Although many moieties have been used as sites of interactions for crown ethers, the very straightforwardly obtained amide motif has more rarely been envisaged as molecular station. In this article, we report the use of secondary and tertiary amide moieties as efficient secondary molecular station in pH-sensitive molecular shuttles. Depending on the N-substitution of the amide station, and on deprotonation or deprotonation-carbamoylation, the actuation of the molecular machinery differs accordingly to very distinct interactions between the axle and the DB24C8.
Collapse
Affiliation(s)
- Benjamin Riss-Yaw
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Justine Morin
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS, Université Montpellier, ENSCM, Case Courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095 Montpellier CEDEX 5, France.
| |
Collapse
|
27
|
Schröder HV, Wollschläger JM, Schalley CA. Redox-controlled self-inclusion of a lasso-type pseudo[1]rotaxane. Chem Commun (Camb) 2017; 53:9218-9221. [PMID: 28766588 DOI: 10.1039/c7cc05259f] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The self-inclusion behavior of a tetrathiafulvalene-containing lasso-type pseudo[1]rotaxane can be reversibly switched between threaded and non-threaded states by redox-stimuli. The switching mechanism was investigated by cyclic voltammetry in solution and monitored by ion mobility mass spectrometry in the gas phase.
Collapse
Affiliation(s)
- Hendrik V Schröder
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Jan M Wollschläger
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Christoph A Schalley
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
28
|
Waelès P, Fournel-Marotte K, Coutrot F. Distinguishing Two Ammonium and Triazolium Sites of Interaction in a Three-Station [2]Rotaxane Molecular Shuttle. Chemistry 2017; 23:11529-11539. [PMID: 28594431 DOI: 10.1002/chem.201701912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Indexed: 11/11/2022]
Abstract
This paper reports on the synthesis of a tri-stable [2]rotaxane molecular shuttle, in which the motion of the macrocycle is triggered by either selective protonation/deprotonation or specific carbamoylation/decarbamoylation of an alkylbenzylamine. The threaded axle is surrounded by a dibenzo[24]crown[8] (DB24C8) macrocycle and contains three sites of different binding affinities towards the macrocycle. An N-methyltriazolium moiety acts as a molecular station that has weak affinity for the DB24C8 macrocycle and is located in the centre of the molecular axle. Two other molecular stations, arylammonium and alkylbenzylammonium moieties, sit on either side of the triazolium moiety along the molecular axle and have stronger affinities for the DB24C8 macrocycle. These two ammonium moieties are covalently linked to two different stopper groups at each extremity of the thread: a tert-butylphenyl group and a substituted DB24C8 unit. Owing to steric hindrance, the former does not allow any π-π stacking interactions with the encircling DB24C8 macrocycle, whereas the latter residue does; therefore, this allows the discrimination of the two ammonium stations by the surrounding DB24C8 macrocycle in the fully protonated state. In the deprotonated state, the contrasting reactivity of the amine functional groups, as either a base or a nucleophile, allows for selective reactions that trigger the controlled shuttling of the macrocycle around the three molecular stations.
Collapse
Affiliation(s)
- Philip Waelès
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Karine Fournel-Marotte
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team, Institut des Biomolécules Max Mousseron (IBMM), Univ. Montpellier, UMR 5247 CNRS, ENSCM, case courrier 1706, Bâtiment Chimie (17), 3ème étage, Faculté des Sciences, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| |
Collapse
|
29
|
Saito F, Bode JW. Synthesis and stabilities of peptide-based [1]rotaxanes: molecular grafting onto lasso peptide scaffolds. Chem Sci 2017; 8:2878-2884. [PMID: 28553526 PMCID: PMC5427998 DOI: 10.1039/c7sc00021a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/14/2022] Open
Abstract
The chemical synthesis of peptide-based [1]rotaxanes (lasso peptides) was achieved by [2]rotaxane formation followed by two chemoselective ligation reactions. Our approach enabled incorporation of various peptide sequences into a common rotaxane structure. The synthetic lasso peptides were characterized by NMR, chromatography, and partial degradation by proteases. A linear peptide epitope grafted onto the rotaxane scaffold showed significantly improved proteolytic stability.
Collapse
Affiliation(s)
- Fumito Saito
- Laboratorium füer Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , Switzerland 8093 . ; http://www.bode.ethz.ch
| | - Jeffrey W Bode
- Laboratorium füer Organische Chemie , Department of Chemistry and Applied Biosciences , ETH Zürich , Zürich , Switzerland 8093 . ; http://www.bode.ethz.ch
| |
Collapse
|
30
|
Wang Y, Sun J, Liu Z, Nassar MS, Botros YY, Stoddart JF. Radically promoted formation of a molecular lasso. Chem Sci 2017; 8:2562-2568. [PMID: 28553488 PMCID: PMC5431688 DOI: 10.1039/c6sc05035b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/15/2017] [Indexed: 12/15/2022] Open
Abstract
Two potential viologen-based molecular lasso precursors-both composed of a 4,4'-bipyridinium (BIPY2+) unit as part of a rope appended to a cyclobis(paraquat-p-phenylene) (CBPQT4+) loop-that have been designed to mimic the threading/unthreading motion of lasso peptides, have been synthesised and characterised. Solution and solid-state experiments reveal that, when the BIPY2+ unit in the rope and the CBPQT4+ loop are connected by a bulky linker, no lasso-like conformational transformation is observed between the different redox states on account of steric effects. In sharp contrast, when the linker size is small, the molecule can be switched between (i) a free rope-like conformation in its fully oxidised state and (ii) a self-entangled lasso-like conformation under reducing conditions employing either chemical or electrochemical stimuli: the BIPY˙+ unit in the rope resides inside the cavity of the CBPQT2(˙+) loop, forming a pseudo[1]rotaxane. The switching process is reversible and stereochemically unambiguous. This research shows how tiny structural differences can induce significantly different self-complexing properties and sheds light on designing functional artificial actuators.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA . ; Tel: +1-847-491-3793
| | - Junling Sun
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA . ; Tel: +1-847-491-3793
| | - Zhichang Liu
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA . ; Tel: +1-847-491-3793
| | - Majed S Nassar
- Joint Center of Excellence in Integrated Nano-Systems (JCIN) , King Abdul-Aziz City for Science and Technology (KACST) , P. O. Box 6086 , Riyadh 11442 , Saudi Arabia
| | - Youssry Y Botros
- Joint Center of Excellence in Integrated Nano-Systems (JCIN) , King Abdul-Aziz City for Science and Technology (KACST) , P. O. Box 6086 , Riyadh 11442 , Saudi Arabia
- PanaceaNano, Inc. , 2265 East Foothill Boulevard , Pasadena , California 91107 , USA
| | - J Fraser Stoddart
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , USA . ; Tel: +1-847-491-3793
| |
Collapse
|
31
|
Riss-Yaw B, Clavel C, Laurent P, Coutrot F. The relationship between the conformational degree of freedom of template-containing threads and slippage in the formation of [2]rotaxane building blocks. Chem Commun (Camb) 2017; 53:10874-10877. [DOI: 10.1039/c7cc06598a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Slippage is correlated with the degree of freedom of the molecular thread to be encircled. The straighter the thread, the faster is the slippage.
Collapse
Affiliation(s)
- B. Riss-Yaw
- Supramolecular Machines and ARchitectures Team
- Institut des Biomolécules Max Mousseron (IBMM)
- Univ. Montpellier
- UMR 5247 CNRS
- ENSCM
| | - C. Clavel
- Supramolecular Machines and ARchitectures Team
- Institut des Biomolécules Max Mousseron (IBMM)
- Univ. Montpellier
- UMR 5247 CNRS
- ENSCM
| | - Ph. Laurent
- Supramolecular Machines and ARchitectures Team
- Institut des Biomolécules Max Mousseron (IBMM)
- Univ. Montpellier
- UMR 5247 CNRS
- ENSCM
| | - F. Coutrot
- Supramolecular Machines and ARchitectures Team
- Institut des Biomolécules Max Mousseron (IBMM)
- Univ. Montpellier
- UMR 5247 CNRS
- ENSCM
| |
Collapse
|
32
|
Du XS, Wang CY, Jia Q, Deng R, Tian HS, Zhang HY, Meguellati K, Yang YW. Pillar[5]arene-based [1]rotaxane: high-yield synthesis, characterization and application in Knoevenagel reaction. Chem Commun (Camb) 2017; 53:5326-5329. [DOI: 10.1039/c7cc02364b] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Quantitative synthesis of a pillararene-based [1]rotaxane has been achieved via a “self-threading-stoppering” approach, followed by its first application in organic catalysis.
Collapse
Affiliation(s)
- Xu-Sheng Du
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Chun-Yu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Qiong Jia
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Rong Deng
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hua-Sheng Tian
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Hou-Yu Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Kamel Meguellati
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
33
|
Han Y, Huo GF, Sun J, Xie J, Yan CG, Zhao Y, Wu X, Lin C, Wang L. Formation of a series of stable pillar[5]arene-based pseudo[1]-rotaxanes and their [1]rotaxanes in the crystal state. Sci Rep 2016; 6:28748. [PMID: 27350382 PMCID: PMC4923850 DOI: 10.1038/srep28748] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Abstract
A series of mono-amide-functionalized pillar[5]arenes with different lengths of N-ω-aminoalkyl groups as the side chain on the rim were designed and synthesized, which all formed pseudo[1]rotaxanes in the crystal state. And these pseudo[1]rotaxanes could be transformed into [1]rotaxanes or open forms in the crystal state. In addition, they were also studied in solution by (1)H NMR spectroscopy.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Gui-Fei Huo
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ju Xie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xuan Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Chen Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
34
|
Legigan T, Riss-Yaw B, Clavel C, Coutrot F. Active Esters as Pseudostoppers for Slippage Synthesis of [2]Pseudorotaxane Building Blocks: A Straightforward Route to Multi-Interlocked Molecular Machines. Chemistry 2016; 22:8835-47. [DOI: 10.1002/chem.201601286] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 01/26/2023]
Affiliation(s)
- Thibaut Legigan
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier - ENSCM; case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Benjamin Riss-Yaw
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier - ENSCM; case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Caroline Clavel
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier - ENSCM; case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Frédéric Coutrot
- Supramolecular Machines and ARchitectures Team; Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS; Université Montpellier - ENSCM; case courrier 1706; Bâtiment Chimie (17), 3ème étage, Faculté des Sciences; Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
35
|
Masai H, Terao J, Fujihara T, Tsuji Y. Rational Design for Rotaxane Synthesis through Intramolecular Slippage: Control of Activation Energy by Rigid Axle Length. Chemistry 2016; 22:6624-30. [PMID: 27027800 DOI: 10.1002/chem.201600429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 11/07/2022]
Abstract
We describe a new concept for rotaxane synthesis through intramolecular slippage using π-conjugated molecules as rigid axles linked with organic soluble and flexible permethylated α-cyclodextrins (PM α-CDs) as macrocycles. Through hydrophilic-hydrophobic interactions and flipping of PM α-CDs, successful quantitative conversion into rotaxanes was achieved without covalent bond formation. The rotaxanes had high activation barrier for their de-threading, so that they were kinetically isolated and derivatized even under conditions unfavorable for maintaining the rotaxane structures. (1) H NMR spectroscopy experiments clearly revealed that the restricted motion of the linked macrocycle with the rigid axle made it possible to control the kinetic stability by adjusting the length of the rigid axle in the precursor structure rather than the steric bulkiness of the stopper unit.
Collapse
Affiliation(s)
- Hiroshi Masai
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Jun Terao
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan.
| | - Tetsuaki Fujihara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| | - Yasushi Tsuji
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, 615-8510, Japan
| |
Collapse
|
36
|
Meng Z, Xiang JF, Chen CF. Directional Molecular Transportation Based on a Catalytic Stopper-Leaving Rotaxane System. J Am Chem Soc 2016; 138:5652-8. [PMID: 27078221 DOI: 10.1021/jacs.6b01852] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ratchet mechanism has proved to be a key principle in designing molecular motors and machines that exploit random thermal fluctuations for directional motion with energy input. To integrate ratchet mechanism into artificial systems, precise molecular design is a prerequisite to control the pathway of relative motion between their subcomponents, which is still a formidable challenge. Herein, we report a straightforward method to control the transportation barrier of a macrocycle by selectively detaching one of the two stoppers using a novel DBU-catalyzed stopper-leaving reaction in a rotaxane system. The macrocycle was first allowed to thread onto a semidumbbell axle from the open end and subsequently thermodynamically captured into a nonsymmetrical rotaxane. Then, it was driven energetically uphill until it reached a kinetically trapped state by destroying its interaction with ammonium site, and was finally quantitatively released from the other end when the corresponding stopper barrier was removed. Although the directional transportation at the present system was achieved by discrete chemical reactions for the sake of higher transportation efficiency, it represents a new molecular transportation model by the strategy of using stopper-leavable rotaxane.
Collapse
Affiliation(s)
- Zheng Meng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jun-Feng Xiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
37
|
Fu X, Zhang Q, Rao SJ, Qu DH, Tian H. One-pot synthesis of a [c2]daisy-chain-containing hetero[4]rotaxane via a self-sorting strategy. Chem Sci 2016; 7:1696-1701. [PMID: 28808537 PMCID: PMC5535066 DOI: 10.1039/c5sc04844c] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022] Open
Abstract
The construction and efficient synthesis of hetero[n]rotaxanes with high structural complexity are always attractive challenges. Herein, we demonstrate a facile one-pot preparation of a hetero[4]rotaxane, by employing a self-sorting strategy, which contains an interpenetrated dibenzo-24-crown-8 (DB24C8) based [c2]daisy chain structure and is ended with a benzo-21-crown-7 (B21C7) based rotaxane at each side. The key to the design involved encoding the selective threading using a steric hindrance-related "language", where highly selective self-assemblies occurred in a three-component self-sorting process, which included the threading of a benzylalkylammonium into a B21C7 and interpenetrated dimerized formation of a DB24C8 based [c2]daisy chain simultaneously; the precise pre-assembled system resulted in the efficient synthesis of hetero[4]rotaxane with a high-level of structural complexity under the "CuAAC" reaction.
Collapse
Affiliation(s)
- Xin Fu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Si-Jia Rao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| | - He Tian
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals , East China University of Science and Technology , 130 Meilong Road , Shanghai , 200237 , China .
| |
Collapse
|
38
|
Yu G, Suzaki Y, Osakada K. Ferrocene-containing [1]-, [2]-, [3]- and [4]rotaxanes synthesized from a common precursor. RSC Adv 2016. [DOI: 10.1039/c6ra05688a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
[1]-, [2]-, [3]- and [4]rotaxanes were synthesized by reaction of azide compounds with dialkylammonium with ferrocenyl and alkynyl terminal groups.
Collapse
Affiliation(s)
- Gilbert Yu
- Chemical Resources Laboratory R1-3
- Tokyo Institute of Technology
- Yokohama
- Japan
- Ateneo de Manila University
| | - Yuji Suzaki
- Chemical Resources Laboratory R1-3
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kohtaro Osakada
- Chemical Resources Laboratory R1-3
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
39
|
Arumugaperumal R, Srinivasadesikan V, Ramakrishnam Raju MV, Lin MC, Shukla T, Singh R, Lin HC. Acid/Base and H2PO4(-) Controllable High-Contrast Optical Molecular Switches with a Novel BODIPY Functionalized [2]Rotaxane. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26491-26503. [PMID: 26548660 DOI: 10.1021/acsami.5b07574] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A novel multifunctional mechanically interlocked switchable [2]rotaxane R4 containing two molecular stations and rotaxane arms terminated with boron-dipyrromethene (BODIPY) fluorophores and its derivatives were synthesized for the first time by CuAAC click reaction. The shuttling motion of macrocycle between the dibenzylammonium and triazolium recognition sites and the distance dependent photoinduced electron transfer process of R4 is demonstrated by utilizing external chemical stimuli (acid/base). Interestingly, the reversible self-assembly process of R4 was recognized by the acid-base molecular switch strategy. Notably, two symmetrical triazolium groups acted as molecular stations, H2PO4(-) receptors, and H-bonded donors. Both [2]rotaxane R4 and thread R2 demonstrated excellent optical responses and high selectivity toward H2PO4(-) ion. The specific motion and guest-host interactions of mechanically interlocked machines (MIMs) were also further explored by quantum mechanical calculations. The thread R2 also demonstrated to enable the detection of H2PO4(-) in RAW 264.7 cells successfully.
Collapse
Affiliation(s)
- Reguram Arumugaperumal
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Venkatesan Srinivasadesikan
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | | | - Ming-Chang Lin
- Center for Interdisciplinary Molecular Science, Department of Applied Chemistry, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Tarun Shukla
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Ravinder Singh
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| | - Hong-Cheu Lin
- Department of Materials Science and Engineering, National Chiao Tung University , Hsinchu 300, Taiwan
| |
Collapse
|
40
|
Xia D, Wei P, Shi B, Huang F. A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution. Chem Commun (Camb) 2015; 52:513-6. [PMID: 26530453 DOI: 10.1039/c5cc08038j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pillar[6]arene-based [2]pseudorotaxane was constructed in solution and studied in the solid state, and its photo-responsive self-assembly behavior in solution was investigated.
Collapse
Affiliation(s)
- Danyu Xia
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | |
Collapse
|