1
|
Hu Y, Willner I. Oligo-Adenine Derived Secondary Nucleic Acid Frameworks: From Structural Characteristics to Applications. Angew Chem Int Ed Engl 2024; 63:e202412106. [PMID: 39183707 DOI: 10.1002/anie.202412106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Oligo-adenine (polyA) is primarily known for its critical role in mRNA stability, translational status, and gene regulation. Beyond its biological functions, extensive research has unveiled the diverse applications of polyA. In response to environmental stimuli, single polyA strands undergo distinctive structural transitions into diverse secondary configurations, which are reversible upon the introduction of appropriate counter-triggers. In this review, we systematically summarize recent advances of noncanonical structures derived from polyA, including A-motif duplex, A-cyanuric acid triplex, A-coralyne-A duplex, and T ⋅ A-T triplex. The structural characteristics and mechanisms underlying these conformations under specific external stimuli are addressed, followed by examples of their applications in stimuli-responsive DNA hydrogels, supramolecular fibre assembly, molecular electronics and switches, biosensing and bioengineering, payloads encapsulation and release, and others. A detailed comparison of these polyA-derived noncanonical structures is provided, highlighting their distinctive features. Furthermore, by integrating their stimuli-responsiveness and conformational characteristics, advanced material development, such as pH-cascaded DNA hydrogels and supramolecular fibres exhibiting dynamic structural transitions adapting environmental cues, are introduced. An outlook for future developments is also discussed. These polyA derived, stimuli-responsive, noncanonical structures enrich the arsenal of DNA "toolbox", offering dynamic DNA frameworks for diverse future applications.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore, Republic of Singapore
| | - Itamar Willner
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
2
|
Sun P, Gou H, Che X, Chen G, Feng C. Recent advances in DNAzymes for bioimaging, biosensing and cancer therapy. Chem Commun (Camb) 2024; 60:10805-10821. [PMID: 39248025 DOI: 10.1039/d4cc03774j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
DNAzymes, a class of single-stranded catalytic DNA with good stability, high catalytic activity, and easy synthesis, functionalization and modification properties, have garnered significant interest in the realm of biosensing and bioimaging. Their integration with fluorescent dyes or chemiluminescent moieties has led to remarkable bioimaging outcomes, while DNAzyme-based biosensors have demonstrated robust sensitivity and selectivity in detecting metal ions, nucleic acids, proteins, enzyme activities, exosomes, bacteria and microorganisms. In addition, by delivering DNAzymes into tumor cells, the mRNA therein can be cleaved to regulate the expression of corresponding proteins, which has further propelled the application of DNAzymes in cancer gene therapy and synergistic therapy. This paper reviews the strategies for screening attractive DNAzymes such as SELEX and high-throughput sequencing, and briefly describes the amplification strategies of DNAzymes, which mainly include catalytic hairpin assembly (CHA), DNA walker, hybridization chain reaction (HCR), DNA origami, CRISPR-Cas12a, rolling circle amplification (RCA), and aptamers. In addition, applications of DNAzymes in bioimaging, biosensing, and cancer therapy are also highlighted. Subsequently, the possible challenges of these DNAzymes in practical applications are further pointed out, and future research directions are suggested.
Collapse
Affiliation(s)
- Pei Sun
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Hongquan Gou
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai 200072, P. R. China
| | - Xinran Che
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.
| |
Collapse
|
3
|
Wang W, Li X, Zeng K, Lu Y, Jia B, Lv J, Wu C, Wang X, Zhang X, Zhang Z. Improved Catalytic Activity of Spherical Nucleic Acid Enzymes by Hybridization Chain Reaction and Its Application for Sensitive Analysis of Aflatoxin B1. SENSORS (BASEL, SWITZERLAND) 2024; 24:2325. [PMID: 38610537 PMCID: PMC11014268 DOI: 10.3390/s24072325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.
Collapse
Affiliation(s)
- Wenjun Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Kun Zeng
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Yanyan Lu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Boyuan Jia
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Jianxia Lv
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China; (J.L.); (C.W.)
| | - Chenghao Wu
- National Narcotics Laboratory Beijing Regional Center, Beijing 100164, China; (J.L.); (C.W.)
| | - Xinyu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Xinshuo Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China (K.Z.); (Y.L.); (B.J.); (X.W.); (X.Z.)
| |
Collapse
|
4
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
5
|
Jiang J, Wang B, Luo L, Ying N, Shi G, Zhang M, Su H, Zeng D. A two-step electrochemical biosensor based on Tetrazyme for the detection of fibrin. Biotechnol Appl Biochem 2024; 71:193-201. [PMID: 37904286 DOI: 10.1002/bab.2531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/10/2023] [Indexed: 11/01/2023]
Abstract
In this study, an electrochemical biosensor was constructed for the detection of fibrin, specifically by a simple two-step approach, with a novel artificial enzyme (Tetrazyme) based on the DNA tetrahedral framework as signal probe. The multichannel screen-printed electrode with the activated surface cannot only remove some biological impurities, but also serve as a carrier to immobilize a large number of antigen proteins. The DNA tetrahedral nanostructure was employed to ensure the high sensitivity of the probe for biological analysis. The hemin was chimeric into the G-quadruplex to constitute the complex with peroxidase catalytic activity (hemin/G4-DNAzyme), subsequently, Tetrazyme was formed through combining of this complex and DNA tetrahedral nucleic acid framework. The artificial enzyme signal probe formed by the covalent combination of the homing peptide (Cys-Arg-Glu-Lys-Ala, CREKA), which is the aptamer of fibrin and the new artificial enzyme is fixed on the surface of the multichannel carbon electrode by CREKA-specific recognition, so as to realize the sensitive detection of fibrin. The feasibility of sensing platform was validated by cyclic voltammetry (CV) and amperometric i-t curve (IT) methods. Effects of Tetrazyme concentration, CREKA concentrations and hybridization time on the sensor were explored. Under the best optimal conditions of 0.6 μmol/L Tetrazyme, 80 μmol/L CREKA, and 2.5 h reaction time, the immunosensor had two linear detection ranges, 10-40 nmol/L, with linear regression equation Y = 0.01487X - 0.011 (R2 = 0.992), and 50-100 nmol/L, with linear regression equation Y = 0.00137X + 0.6405 (R2 = 0.998), the detection limit was 9.4 nmol/L, S/N ≥ 3. The biosensor could provide a new method with great potential for the detection of fibrin with good selectivity, stability, and reproducibility.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Bin Wang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Linghuan Luo
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Na Ying
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gaofan Shi
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Mengmeng Zhang
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Graduate, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haoyuan Su
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dongdong Zeng
- Department of Medical Devices, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
6
|
Zhang P, Zhuo Y, Chai YQ, Yuan R. Structural DNA tetrahedra and its electrochemical-related surface sensing. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
7
|
Mao X, Liu M, Li Q, Fan C, Zuo X. DNA-Based Molecular Machines. JACS AU 2022; 2:2381-2399. [PMID: 36465542 PMCID: PMC9709946 DOI: 10.1021/jacsau.2c00292] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/08/2022] [Indexed: 05/17/2023]
Abstract
Artificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion. This Perspective highlights the potential and strategies to construct artificial molecular machines using double-stranded DNA, functional nucleic acids, and DNA frameworks, which enable improved control over reaction pathways and motion behaviors. We also outline the challenges and opportunities of using DNA-based molecular machines for biophysics, biosensing, and biocomputing.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Liu Y, Zhu P, Huang J, He H, Ma C, Wang K. Integrating DNA nanostructures with DNAzymes for biosensing, bioimaging and cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Qin Z, Liu Y, Zhang L, Liu J, Su X. Programming Dissipation Systems by DNA Timer for Temporally Regulating Enzyme Catalysis and Nanostructure Assembly. ACS NANO 2022; 16:14274-14283. [PMID: 36102909 DOI: 10.1021/acsnano.2c04405] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Live cells precisely control their temporal pattern in energy dissipative processes such as catalysis and assembly. Here, we demonstrate a DNA-based artificial dissipative nonequilibrium system where the transient state is controlled by the processive digestion of λ-exonuclease (λ Exo). This enzyme reaction serves as an orthogonal and independent molecular timer allowing for the programmable regulation of the transient-state lifetime. This dissipation system is concatenated to enzyme catalysis and nanostructure assembly networks. Dynamic activation of enzyme catalysis and dynamic disassembly of DNA nanotubes (DNT) are realized, and the state lifetimes of these systems are accurately encoded by the DNA timer. This work demonstrates nontrivial dissipation systems with built-in molecular timers, which can be a useful tool for developing artificial reaction networks and nanostructures with enhanced complexities and intelligence.
Collapse
Affiliation(s)
- Zhaohui Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yu Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Linghao Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jiajia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
10
|
Cao Y, Li W, Pei R. Exploring the catalytic mechanism of multivalent G-quadruplex/hemin DNAzymes by modulating the position and spatial orientation of connected G-quadruplexes. Anal Chim Acta 2022; 1221:340105. [DOI: 10.1016/j.aca.2022.340105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/18/2022] [Indexed: 11/15/2022]
|
11
|
Chen X, Wang Y, Dai X, Ding L, Chen J, Yao G, Liu X, Luo S, Shi J, Wang L, Nechushtai R, Pikarsky E, Willner I, Fan C, Li J. Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents. J Am Chem Soc 2022; 144:6311-6320. [PMID: 35353520 DOI: 10.1021/jacs.1c13116] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinpei Dai
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjiang Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200127, China
| | - Rachel Nechushtai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
12
|
Chen F, Li G, Wu C, Wang W, Ma DL, Leung CH. A rapid and label-free DNA-based interference reduction nucleic acid amplification strategy for viral RNA detection. Biosens Bioelectron 2022; 198:113829. [PMID: 34840016 DOI: 10.1016/j.bios.2021.113829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022]
Abstract
Common reference methods for COVID-19 diagnosis include thermal cycling amplification (e.g. RT-PCR) and isothermal amplification methods (e.g. LAMP and RPA). However, they may not be suitable for direct detection in environmental and biological samples due to background signal interference. Here, we report a rapid and label-free interference reduction nucleic acid amplification strategy (IR-NAAS) that exploits the advantages of luminescent iridium(III) probes, time-resolved emission spectroscopy (TRES) and multi-branch rolling circle amplification (mbRCA). Using IR-NAAS, we established a luminescence approach for diagnosing COVID-19 RNAs sequences RdRp, ORF1ab and N with a linear range of 0.06-6.0 × 105 copies/mL and a detection limit of down to 7.3 × 104 copies/mL. Moreover, the developed method was successfully applied to detect COVID-19 RNA sequences from various environmental and biological samples, such as domestic sewage, and mice urine, blood, feces, lung tissue, throat and nasal secretions. Apart from COVID-19 diagnosis, IR-NAAS was also demonstrated for detecting other RNA viruses, such as H1N1 and CVA10, indicating that this approach has great potential approach for routine preliminary viral detection.
Collapse
Affiliation(s)
- Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China; Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China.
| |
Collapse
|
13
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
14
|
Liu J, Yan L, He S, Hu J. Engineering DNA quadruplexes in DNA nanostructures for biosensor construction. NANO RESEARCH 2021; 15:3504-3513. [PMID: 35401944 PMCID: PMC8983328 DOI: 10.1007/s12274-021-3869-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Accepted: 09/04/2021] [Indexed: 06/14/2023]
Abstract
DNA quadruplexes are nucleic acid conformations comprised of four strands. They are prevalent in human genomes and increasing efforts are being directed toward their engineering. Taking advantage of the programmability of Watson-Crick base-pairing and conjugation methodology of DNA with other molecules, DNA nanostructures of increasing complexity and diversified geometries have been artificially constructed since 1980s. In this review, we investigate the interweaving of natural DNA quadruplexes and artificial DNA nanostructures in the development of the ever-prosperous field of biosensing, highlighting their specific roles in the construction of biosensor, including recognition probe, signal probe, signal amplifier and support platform. Their implementation in various sensing scenes was surveyed. And finally, general conclusion and future perspective are discussed for further developments.
Collapse
Affiliation(s)
- Jingxin Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Li Yan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Shiliang He
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
| | - Junqing Hu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118 China
- Shenzhen Bey Laboratory, Shenzhen, 518132 China
| |
Collapse
|
15
|
Zhou G, Lu X, Yuan M, Li T, Li L. Enzymatic Cycle-Inspired Dynamic Biosensors Affording No False-Positive Identification. Anal Chem 2021; 93:15482-15492. [PMID: 34767335 DOI: 10.1021/acs.analchem.1c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is an urgent need for reliable biosensors to detect nucleic acid of interest in clinical samples. We propose that the accuracy of the present nucleic acid-sensing method can be advanced by avoiding false-positive identifications derived from nonspecific interactions (e.g., nonspecific binding, probe degradation). The challenge is to exploit biosensors that can distinguish false-positive from true-positive samples in nucleic acid screening. In the present study, by learning from the enzymatic cycle in nature, we raise an allostery tool displaying invertible positive/negative cooperativity for reversible or cyclic activity control of the biosensing probe. We demonstrate that the silencing and regeneration of a positive (or negative) allosteric effector can be carried out through toehold displacement or an enzymatic reaction. We, thus, have developed several dynamic biosensors that can repeatedly measure a single nucleic acid sample. The ability to distinguish a false-positive from a true-positive signal is ascribed to the nonspecific interaction presenting equivalent signal variations, while the specific target binding exhibits diverse signal variations according to repeated measurements. Given its precise identification, such consequent dynamic biosensors offer exciting opportunities in physiological and pathological diagnosis.
Collapse
Affiliation(s)
- Guobao Zhou
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Xing Lu
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Mengmeng Yuan
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| |
Collapse
|
16
|
Zhu N, Li X, Liu Y, Liu J, Wang Y, Wu X, Zhang Z. Dual amplified ratiometric fluorescence ELISA based on G-quadruplex/hemin DNAzyme using tetrahedral DNA nanostructure as scaffold for ultrasensitive detection of dibutyl phthalate in aquatic system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147212. [PMID: 33905933 DOI: 10.1016/j.scitotenv.2021.147212] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Dibutyl phthalate (DBP) is considered as one of the most widely used phthalate esters (PAEs), which has attracted worldwide concerns because of its potential threats to eco-environments and human health. Systematic investigations of DBP environmental occurrence contribute to the further risk assessment, which depends on effective and available analytical methods. In this study, an amplified ratiometric fluorescence ELISA was established for sensitive and high-throughput detection of DBP in the aquatic system based on a novel tetrahedral DNA nanostructure (TDN)-scaffolded-DNAzyme (Tetrazyme). Wherein, Tetrazyme was prepared by the precise folding of G-quadruplex sequence on three vertex angles of the TDN, together with hemin as the horseradish peroxidase (HRP)-mimicking enzyme. The rigid TDN avoided the local overcrowding effect to provide a reasonable spatial spacing on the interface for G-quadruplex sequence, increasing the collision chance between DNAzyme and substrates, improving the catalytic ability of DNAzyme effectively. Besides, streptavidin (SA) and biotin (bio) were used to anchor TDN and antibody, in which the specific binding of SA/bio could make more Tetrazyme conjugate on each signal element, resulting in the dual signal amplification. Meanwhile, the accuracy and precision were enhanced owing to the inherent built-in rectification to the environment from the dual output ratiometric fluorescence assay. Under the optimized conditions, the detection limit of this proposed method was 0.17 ng/mL (16 times lower than that of conventional ELISA using the same antibody) with a satisfactory accuracy (recoveries, 79.0%- 116.2%; CV, 2.1-6.5%). Overall, this platform provides a promising way for accurate, sensitive and rapid determination of DBP from environmental waters.
Collapse
Affiliation(s)
- Nuanfei Zhu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Xuesong Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ye Liu
- Zhenjiang Environment Monitoring Ctr, Zhenjiang 212013, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing 100085, China
| | - Xiangyang Wu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhen Zhang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Huang Q, Chen B, Shen J, Liu L, Li J, Shi J, Li Q, Zuo X, Wang L, Fan C, Li J. Encoding Fluorescence Anisotropic Barcodes with DNA Fameworks. J Am Chem Soc 2021; 143:10735-10742. [PMID: 34242004 DOI: 10.1021/jacs.1c04942] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence anisotropy (FA) holds great potential for multiplexed analysis and imaging of biomolecules since it can effectively discriminate fluorophores with overlapping emission spectra. Nevertheless, its susceptibility to environmental variation hampers its widespread applications in biology and biotechnology. In this study, we design FA DNA frameworks (FAFs) by scaffolding fluorophores in a fluorescent protein-like microenvironment. We find that the FA stability of the fluorophores is remarkably improved due to the sequestration effects of FAFs. The FA level of the fluorophores can be finely tuned when placed at different locations on an FAF, analogous to spectral shifts of protein-bound fluorophores. The high programmability of FAFs further enables the design of a spectrum of encoded FA barcodes for multiplexed sensing of nucleic acids and multiplexed labeling of live cells. This FAF system thus establishes a new paradigm for designing multiplexing FA probes for cellular imaging and other biological applications.
Collapse
Affiliation(s)
- Qiuling Huang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiajun Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
18
|
Zhang Y, Zhu L, Tian J, Zhu L, Ma X, He X, Huang K, Ren F, Xu W. Smart and Functionalized Development of Nucleic Acid-Based Hydrogels: Assembly Strategies, Recent Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100216. [PMID: 34306976 PMCID: PMC8292884 DOI: 10.1002/advs.202100216] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Indexed: 05/03/2023]
Abstract
Nucleic acid-based hydrogels that integrate intrinsic biological properties of nucleic acids and mechanical behavior of their advanced assemblies are appealing bioanalysis and biomedical studies for the development of new-generation smart biomaterials. It is inseparable from development and incorporation of novel structural and functional units. This review highlights different functional units of nucleic acids, polymers, and novel nanomaterials in the order of structures, properties, and functions, and their assembly strategies for the fabrication of nucleic acid-based hydrogels. Also, recent advances in the design of multifunctional and stimuli-responsive nucleic acid-based hydrogels in bioanalysis and biomedical science are discussed, focusing on the applications of customized hydrogels for emerging directions, including 3D cell cultivation and 3D bioprinting. Finally, the key challenge and future perspectives are outlined.
Collapse
Affiliation(s)
- Yangzi Zhang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Jingjing Tian
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Liye Zhu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xuan Ma
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food QualityDepartment of Nutrition and HealthChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA)College of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
- Beijing Laboratory for Food Quality and SafetyCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityNo. 17, Qinghua East RoadBeijing100083China
| |
Collapse
|
19
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
20
|
Sorrentino D, Ranallo S, Ricci F. Rational Control of the Activity of a Cu 2+-Dependent DNAzyme by Re-engineering Purely Entropic Intrinsically Disordered Domains. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9300-9305. [PMID: 33001621 DOI: 10.1021/acsami.0c09472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The function and activity of many proteins is finely controlled by the modulation of the entropic contribution of intrinsically disordered domains that are not directly involved in any recognition event. Inspired by this mechanism, we demonstrate here that we could finely regulate the catalytic activity of a model DNAzyme (i.e., a synthetic DNA sequence with enzyme-like properties) by rationally introducing intrinsically disordered nucleic acid portions in its original sequence. More specifically, we have re-engineered here the well-characterized Cu2+-dependent DNAzyme that catalyzes a self-cleavage reaction by introducing a poly(T) linker domain in its sequence. The linker is not directly involved in the recognition event and connects the two domains that fold to form the catalytic core. We demonstrate that the enzyme-like activity of this re-engineered DNAzyme can be modulated in a predictable and fine way by changing the length, and thus entropy, of such a linker domain. Given these attributes, the rational design of intrinsically disordered domains could expand the available toolbox to achieve a control of the activity of DNAzymes and, in analogy, ribozymes through a purely entropic contribution.
Collapse
Affiliation(s)
- Daniela Sorrentino
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Simona Ranallo
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesco Ricci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
21
|
Li D, Li X, Yang F, Yuan R, Xiang Y. Targeted Delivery of DNA Framework-Encapsulated Native Therapeutic Protein into Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54489-54496. [PMID: 33253532 DOI: 10.1021/acsami.0c17887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A protein-based therapy is significantly challenged by the successful delivery of native proteins into the targeted cancer cells. We address this challenge here using an all-sealed divalent aptamer tetrahedral DNA framework (asdTDF) delivery platform, in which the protein drug is encapsulated inside the cavity of the framework stoichiometrically via a reversible chemical bond. The ligase-assisted seal of the nicks results in highly enhanced TDF stability of the against nuclease digestion to effectively protect the therapeutic protein from degradation. In addition, the divalent aptamer sequences incorporated into the framework favor it with a target-specific and efficient delivery capability. Importantly, upon being readily delivered into the targeted cancer cells, endogenous glutathione can trigger the release of the native therapeutic protein from the TDF in a traceless fashion by cleaving the reversible chemical bond, thereby leading to effective apoptosis of the specific cancer cells.
Collapse
Affiliation(s)
- Daxiu Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
22
|
Tian T, Xiao D, Zhang T, Li Y, Shi S, Zhong W, Gong P, Liu Z, Li Q, Lin Y. A Framework Nucleic Acid Based Robotic Nanobee for Active Targeting Therapy. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202007342] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Taoran Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Yanjing Li
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Wenyu Zhong
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Ping Gong
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
| | - Zhan Liu
- Key Lab for Biomechanical Engineering of Sichuan Province Sichuan University Chengdu Sichuan 610065 China
| | - Qian Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 China
- College of Biomedical Engineering Sichuan University Chengdu Sichuan 610041 China
| |
Collapse
|
23
|
Rossetti M, Bertucci A, Patiño T, Baranda L, Porchetta A. Programming DNA-Based Systems through Effective Molarity Enforced by Biomolecular Confinement. Chemistry 2020; 26:9826-9834. [PMID: 32428310 DOI: 10.1002/chem.202001660] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
The fundamental concept of effective molarity is observed in a variety of biological processes, such as protein compartmentalization within organelles, membrane localization and signaling paths. To control molecular encountering and promote effective interactions, nature places biomolecules in specific sites inside the cell in order to generate a high, localized concentration different from the bulk concentration. Inspired by this mechanism, scientists have artificially recreated in the lab the same strategy to actuate and control artificial DNA-based functional systems. Here, it is discussed how harnessing effective molarity has led to the development of a number of proximity-induced strategies, with applications ranging from DNA-templated organic chemistry and catalysis, to biosensing and protein-supported DNA assembly.
Collapse
Affiliation(s)
- Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Bertucci
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Tania Patiño
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Lorena Baranda
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
24
|
Mao X, Liu M, Yan L, Deng M, Li F, Li M, Wang F, Li J, Wang L, Tian Y, Fan C, Zuo X. Programming Biomimetically Confined Aptamers with DNA Frameworks. ACS NANO 2020; 14:8776-8783. [PMID: 32484652 DOI: 10.1021/acsnano.0c03362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Active sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers. We demonstrate that the molecular-scale confinement increases the thermodynamic stability of aptamers via facilitated folding kinetics, which is confirmed by the single-molecule FRET (smFRET). Unfavorable conformations of aptamers are restricted as revealed by the Monte Carlo simulation. The binding affinity of the DNA framework-confined aptamer is improved by ∼3-fold. With a similar strategy we improve the catalytic activity of hemin-binding aptamer. Our approach thus shows high potential for designing protein-mimicking DNA nanostructures with enhanced binding affinity and catalytic activity for biosensing and biomedical engineering.
Collapse
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Lei Yan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Mengying Deng
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fei Wang
- Joint Research Center for Precision Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital South Campus, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University,, Shanghai 200240, China
| |
Collapse
|
25
|
Effect of Distance from Catalytic Synergy Group to Iron Porphyrin Center on Activity of G-Quadruplex/Hemin DNAzyme. Molecules 2020; 25:molecules25153425. [PMID: 32731553 PMCID: PMC7435396 DOI: 10.3390/molecules25153425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022] Open
Abstract
G-quadruplex/Hemin (G4/Hemin) complex has been widely used in biocatalysis and analytical applications. Meanwhile, compared with natural proteinous enzyme, its low catalytic activity is still limiting its applications. Even though several methods have been developed to enhance the peroxidation efficiency, the important core of the G4 design based enhancement mechanism is still indistinct. Here, we focus the mechanism study on the two most important microdomains: the iron porphyrin center and the catalytic synergy group within the 3' flanking. These microdomains not only provide the pocket for the combination of substrate, but also offer the axial coordination for the accelerated formation of Compound I (catalytic intermediate). In order to obtain a more suitable space layout to further accelerate the catalytic process, we have used the bases within the 3' flanking to precisely regulate the distance between microdomains. Finally, the position-dependent effect on catalytic enhancement is observed. When dC is positioned at the second-position of 3' flanking, the newly obtained DNAzyme achieves an order of magnitude improvement compared to parent G4/Hemin in catalytic activity. The results highlight the influence of the distance between the catalytic synergy group and iron porphyrin center on the activity of DNAzyme, and provide insightful information for the design of highly active DNAzymes.
Collapse
|
26
|
Nakama T, Takezawa Y, Sasaki D, Shionoya M. Allosteric Regulation of DNAzyme Activities through Intrastrand Transformation Induced by Cu(II)-Mediated Artificial Base Pairing. J Am Chem Soc 2020; 142:10153-10162. [PMID: 32396728 DOI: 10.1021/jacs.0c03129] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allosteric regulation is gaining increasing attention as a basis for the production of stimuli-responsive materials in many research areas including DNA nanotechnology. We expected that metal-mediated artificial base pairs, consisting of ligand-type nucleotides and a bridging metal ion, could serve as allosteric units that regulate the function of DNA molecules. In this study, we established a rational design strategy for developing CuII-responsive allosteric DNAzymes by incorporating artificial hydroxypyridone ligand-type nucleotides (H) that form a CuII-mediated base pair (H-CuII-H). We devised a new enzymatic method using a standard DNA polymerase and a ligase to prepare DNA strands containing H nucleotides. Previously reported DNAzymes were modified by introducing a H-H pair into the stem region, and the stem-loop sequences were altered so that the structure becomes catalytically inactive in the absence of CuII ions. The formation of a H-CuII-H base pair triggers intrastrand transformation from the inactive to the active structure, enabling allosteric regulation of the DNAzyme activity in response to CuII ions. The activity of the H-modified DNAzyme was reversibly switched by the addition and removal of CuII ions under isothermal conditions. Similarly, by incorporating a H-CuII-H pair into an in vitro-selected AgI-dependent DNAzyme, we have developed a DNAzyme that exhibits an AND logic-gate response to CuII and AgI ions. The rational design strategy and the easy enzymatic synthetic method presented here provide a versatile way to develop a variety of metal-responsive allosteric DNA materials, including molecular machines and logic circuits, based on metal-mediated artificial base pairing.
Collapse
Affiliation(s)
- Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Sasaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
27
|
Lu X, Wang L, Chen Q, Wang Y, Cao Z, Zhou G, Li L. A biosensor based on multifunctional allostery for dynamic analysis of circulating tumor DNA. Chem Commun (Camb) 2020; 56:4184-4187. [DOI: 10.1039/d0cc01560a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional allosterically regulated DNA molecule beacon assay was applied to engineer a single-step, amplified and dynamic biosensor for controllable analyses of ctDNA.
Collapse
Affiliation(s)
- Xing Lu
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Liqian Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- P. R. China
| | - Qingxue Chen
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Yulan Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Zhenxiong Cao
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Guobao Zhou
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| | - Lei Li
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing 314001
- China
| |
Collapse
|
28
|
Mao X, Li Q, Zuo X, Fan C. Catalytic Nucleic Acids for Bioanalysis. ACS APPLIED BIO MATERIALS 2019; 3:2674-2685. [PMID: 35025402 DOI: 10.1021/acsabm.9b00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiuhai Mao
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA‐Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lu Xiao
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Chunmei Gu
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| | - Yu Xiang
- Department of Chemistry Beijing Key Laboratory for Microanalytical Methods and Instrumentation Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education) Tsinghua University Beijing 100084 China
| |
Collapse
|
30
|
Xiao L, Gu C, Xiang Y. Orthogonal Activation of RNA-Cleaving DNAzymes in Live Cells by Reactive Oxygen Species. Angew Chem Int Ed Engl 2019; 58:14167-14172. [PMID: 31314942 DOI: 10.1002/anie.201908105] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Indexed: 02/05/2023]
Abstract
RNA-cleaving DNAzymes are useful tools for intracellular metal-ion sensing and gene regulation. Incorporating stimuli-responsive modifications into these DNAzymes enables their activities to be spatiotemporally and chemically controlled for more precise applications. Despite the successful development of many caged DNAzymes for light-induced activation, DNAzymes that can be intracellularly activated by chemical inputs of biological importance, such as reactive oxygen species (ROS), are still scarce. ROS like hydrogen peroxide (H2 O2 ) and hypochlorite (HClO) are critical mediators of oxidative stress-related cell signaling and dysregulation including activation of immune system as well as progression of diseases and aging. Herein, we report ROS-activable DNAzymes by introducing phenylboronate and phosphorothioate modifications to the Zn2+ -dependent 8-17 DNAzyme. These ROS-activable DNAzymes were orthogonally activated by H2 O2 and HClO inside live human and mouse cells.
Collapse
Affiliation(s)
- Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chunmei Gu
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus, Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
31
|
Zeng D, San L, Qian F, Ge Z, Xu X, Wang B, Li Q, He G, Mi X. Framework Nucleic Acid-Enabled Programming of Electrochemical Catalytic Properties of Artificial Enzymes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21859-21864. [PMID: 31117473 DOI: 10.1021/acsami.9b06480] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The creation and engineering of artificial enzymes remain a challenge, especially the arrangement of enzymes into geometric patterns with nanometer precision. In this work, we fabricated a series of novel DNA-tetrahedron-scaffolded-DNAzymes (Tetrazymes) and evaluated the catalytic activity of these Tetrazymes by electrochemistry. Tetrazymes were constructed by precisely positioning G-quadruplex on different sites of a DNA tetrahedral framework, with hemin employed as the co-catalyst. Immobilization of Tetrazymes on a gold electrode surface revealed horseradish peroxidase (HPR)-mimicking bioelectrocatalytic property. Cyclic voltammogram and amperometry were employed to evaluate the capability of Tetrazymes of different configurations to electrocatalyze the reduction of hydrogen peroxide (H2O2). These artificial Tetrazymes displayed 6- to 14-fold higher enzymatic activity than G-quadruplex/hemin (G4-hemin) without the DNA tetrahedron scaffold, demonstrating application potential in developing novel G-quadruplex-based electrochemical sensors.
Collapse
Affiliation(s)
- Dongdong Zeng
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | - Lili San
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | - Fengyu Qian
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | | | - Xiaohui Xu
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | - Bin Wang
- Shanghai Key Laboratory of Molecular Imaging , Shanghai University of Medicine & Health Sciences , Shanghai 201318 , China
| | | | - Guifang He
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
| | - Xianqiang Mi
- Shanghai Advanced Research Institute , Chinese Academy of Sciences , Shanghai 201210 , China
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology , Chinese Academy of Sciences , Shanghai 200050 , China
| |
Collapse
|
32
|
Yu Y, Zhou Y, Zhu M, Liu M, Zhu H, Chen Y, Su G, Chen W, Peng H. Programming a split G-quadruplex in a DNA nanocage and its microRNA imaging in live cells. Chem Commun (Camb) 2019; 55:5131-5134. [PMID: 30973555 DOI: 10.1039/c9cc02096a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel approach to program target-responsive devices by incorporating the split G4 motifs in a DNA nanocage has been developed. The rigid prism outcompetes the flexible one in reaction kinetics and signal/background ratios, which can be easily internalized by cells and successfully applied in microRNA imaging in live cells.
Collapse
Affiliation(s)
- Yanyan Yu
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Directing curli polymerization with DNA origami nucleators. Nat Commun 2019; 10:1395. [PMID: 30918257 PMCID: PMC6437208 DOI: 10.1038/s41467-019-09369-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The physiological or pathological formation of fibrils often relies on molecular-scale nucleators that finely control the kinetics and structural features. However, mechanistic understanding of how protein nucleators mediate fibril formation in cells remains elusive. Here, we develop a CsgB-decorated DNA origami (CB-origami) to mimic protein nucleators in Escherichia coli biofilm that direct curli polymerization. We show that CB-origami directs curli subunit CsgA monomers to form oligomers and then accelerates fibril formation by increasing the proliferation rate of primary pathways. Fibrils grow either out from (departure mode) or towards the nucleators (arrival mode), implying two distinct roles of CsgB: as nucleation sites and as trap sites to capture growing nanofibrils in vicinity. Curli polymerization follows typical stop-and-go dynamics but exhibits a higher instantaneous elongation rate compared with independent fibril growth. This origami nucleator thus provides an in vitro platform for mechanistically probing molecular nucleation and controlling directional fibril polymerization for bionanotechnology.
Collapse
|
34
|
Zhang Z, Li Y, Zhang X, Liu J. Molecularly imprinted nanozymes with faster catalytic activity and better specificity. NANOSCALE 2019; 11:4854-4863. [PMID: 30820498 DOI: 10.1039/c8nr09816f] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanozymes are nanomaterials mimicking the activity of natural enzymes, while most nanozymes lack substrate specificity. Molecular imprinting on nanozymes provides a simple solution to this problem, and the catalytic activity is also enhanced. To understand enhanced activity, a surface science approach is taken by dissecting the nanozyme reaction into adsorption of substrates, reaction, and product release. Each step is individually studied using reaction kinetics measurement, dynamic light scattering, UV-vis spectrometry. Enrichment of local substrate concentration due to imprinting is around 8-fold, and increased substrate concentration could contribute to increased activity. Diffusion of the substrate across the imprinted gel layer is studied by a pre-incubation experiment, also highlighting the difference between imprinted and non-imprinted gel layers. The activation energy is measured and a substrate-imprinted sample had the lowest activation energy of 13.8 kJ mol-1. Product release is also improved after imprinting as indicated by isothermal titration calorimetry using samples respectively imprinted with the substrate and the product. This study has rationalized improved activity and specificity of molecularly imprinted nanozymes and may guide further rational design of such materials.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1 Canada.
| | | | | | | |
Collapse
|
35
|
Li F, Gao Q, Yang M, Guo W. Regulation of Catalytic DNA Activities with Thermosensitive Gold Nanoparticle Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14932-14939. [PMID: 30277792 DOI: 10.1021/acs.langmuir.8b02149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The regulation of the activities of catalytic DNA is of great importance in many applications, especially in biosensing, controllable drug carriers, and gene therapy. In this work, the surfaces of gold nanoparticles (AuNPs) are simultaneously modified with a thermoresponsive polymer, poly( N-isopropylacrylamide) (pNIPAM), and catalytic DNA to form thermosensitive catalytic DNA/pNIPAM/AuNP systems. The thermosensitive pNIPAM on the surfaces of AuNPs enables the temperature-controlled catalytic activities of the system in a narrow temperature range. The catalytic DNA/pNIPAM/AuNP system exhibits almost no catalytic activity at temperatures below the lower critical solution temperature (LCST) of pNIPAM and become highly catalytic when the temperature is higher than the LCST. Two kinds of catalytic DNA, the entropy-driven DNA catalytic network and the Mg2+-dependent DNAzyme, were chosen as model catalytic systems, and the results showed that the regulation of catalytic activities for both systems was achieved efficiently. These systems may have important potentials in future biosensing and biomedical applications.
Collapse
Affiliation(s)
- Fengyun Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , P. R. China
| | - Qi Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , P. R. China
| | - Mingjie Yang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , P. R. China
| | - Weiwei Guo
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , 94 Weijin Road , Tianjin 300071 , P. R. China
| |
Collapse
|
36
|
Tang W, Cheng M, Dai D, Xiong Z, Liu F. Rational design of sequestered DNAzyme beacons to enable flexible control of catalytic activities. RSC Adv 2018; 8:29338-29343. [PMID: 35548005 PMCID: PMC9084462 DOI: 10.1039/c8ra05757e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/08/2018] [Indexed: 01/18/2023] Open
Abstract
DNAzymes as functional units play increasingly important roles for DNA nanotechnology, and fine control of the catalytic activities of DNAzymes is a crucial element in the design and construction of functional and dynamic devices. So far, attempts to control cleavage kinetics can be mainly achieved through varying the concentrations of the specific metal ions. Here we present a facile sequestered DNAzyme beacon strategy based on precisely blocking the catalytic core of the DNAzyme, which can flexibly regulate the DNAzyme cleavage kinetics without changing the concentrations of metal ions. This strategy can be extended to couple with a large number of other RNA-cleaving DNAzymes and was successfully applied in designing a dual stem-loop structure probe for arbitrary sequence biosensing, which provides the possibility of scaling up versatile and dynamic DNA devices that use DNAzymes as functional modules.
Collapse
Affiliation(s)
- Wei Tang
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Mengxi Cheng
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Danling Dai
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics Mianyang 621700 China
| | - Feng Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
37
|
Yin C, Wu Y, Li X, Niu J, Lei J, Ding X, Xiao D, Zhou C. Highly Selective, Naked-Eye, and Trace Discrimination between Perfect-Match and Mismatch Sequences Using a Plasmonic Nanoplatform. Anal Chem 2018; 90:7371-7376. [PMID: 29851471 DOI: 10.1021/acs.analchem.8b00756] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A plasmonic nanoplatform to perform an enzyme-free, naked-eye, and trace discrimination of single-base mutation from fully matched sequence is reported. The nanoplatform showed great potential to enhance catalytic hairpin assembly (CHA) amplification efficiency and biocatalytic activity of hemin/G-quadruplex (DNAzyme). When human immunodeficiency virus (HIV) DNA biomarker was used as the model analyst, a naked-eye detection with high selectivity and high sensitivity down to 10-17 M in whole serum was achieved by observing red-to-blue color change. Single-base mismatch and two-base mismatch were detected at the low concentrations of 10-11 and 10-8 M, respectively. The naked-eye detection based on the enzyme-free plasmonic nanoplatform is expected to have potential applications ranging from quick detection and early diagnostics to point-of-care research.
Collapse
|
38
|
Sato H, Shimada N, Masuda T, Maruyama A. Allosteric Control of Peroxidase-Mimicking DNAzyme Activity with Cationic Copolymers. Biomacromolecules 2018; 19:2082-2088. [DOI: 10.1021/acs.biomac.8b00201] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hiroki Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa, Japan 226-8501
| | - Naohiko Shimada
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa, Japan 226-8501
| | - Tsukuru Masuda
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa, Japan 226-8501
| | - Atsushi Maruyama
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 B-57 Nagatsuta Midori-ku, Yokohama, Kanagawa, Japan 226-8501
| |
Collapse
|
39
|
Zhong R, Tang Q, Wang S, Zhang H, Zhang F, Xiao M, Man T, Qu X, Li L, Zhang W, Pei H. Self-Assembly of Enzyme-Like Nanofibrous G-Molecular Hydrogel for Printed Flexible Electrochemical Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706887. [PMID: 29388269 DOI: 10.1002/adma.201706887] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Indexed: 06/07/2023]
Abstract
Conducting hydrogels provide great potential for creating designer shape-morphing architectures for biomedical applications owing to their unique solid-liquid interface and ease of processability. Here, a novel nanofibrous hydrogel with significant enzyme-like activity that can be used as "ink" to print flexible electrochemical devices is developed. The nanofibrous hydrogel is self-assembled from guanosine (G) and KB(OH)4 with simultaneous incorporation of hemin into the G-quartet scaffold, giving rise to significant enzyme-like activity. The rapid switching between the sol and gel states responsive to shear stress enables free-form fabrication of different patterns. Furthermore, the replication of the G-quartet wires into a conductive matrix by in situ catalytic deposition of polyaniline on nanofibers is demonstrated, which can be directly printed into a flexible electrochemical electrode. By loading glucose oxidase into this novel hydrogel, a flexible glucose biosensor is developed. This study sheds new light on developing artificial enzymes with new functionalities and on fabrication of flexible bioelectronics.
Collapse
Affiliation(s)
- Ruibo Zhong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Qian Tang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Shaopeng Wang
- Division of Physical Biology and Bioimaging Center College of Life Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
| | - Hongbo Zhang
- Department of Pharmaceutical Science, Åbo Akademic University, FI-20520, Turku, Finland
| | - Feng Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Tiantian Man
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Xiangmeng Qu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| | - Weijia Zhang
- Institutes of Biomedical Sciences and Zhongshan Hospital, Fudan University, Shanghai, 200032, P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, P. R. China
| |
Collapse
|
40
|
A surface-confined DNA assembly amplification strategy on DNA nanostructural scaffold for electrochemiluminescence biosensing. Biosens Bioelectron 2018; 100:571-576. [DOI: 10.1016/j.bios.2017.09.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/08/2017] [Accepted: 09/19/2017] [Indexed: 01/25/2023]
|
41
|
Centola M, Valero J, Famulok M. Allosteric Control of Oxidative Catalysis by a DNA Rotaxane Nanostructure. J Am Chem Soc 2017; 139:16044-16047. [DOI: 10.1021/jacs.7b08839] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mathias Centola
- LIMES
Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Straße
1, 53121 Bonn, Germany
| | - Julián Valero
- LIMES
Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Straße
1, 53121 Bonn, Germany
- Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Michael Famulok
- LIMES
Chemical Biology Unit, Universität Bonn, Gerhard-Domagk-Straße
1, 53121 Bonn, Germany
- Center of Advanced European Studies and Research, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
- Center
of Aptamer Research and Development, University of Bonn, Gerhard-Domagk-Straße
1, 53121 Bonn, Germany
| |
Collapse
|
42
|
Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens Bioelectron 2017; 100:228-234. [PMID: 28918231 DOI: 10.1016/j.bios.2017.08.042] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 01/23/2023]
Abstract
Early detection, diagnosis and treatment of human immune deficiency virus (HIV) infection is the key to reduce acquired immunodeficiency syndrome (AIDS) mortality. In our research, an innovative surface plasmon resonance (SPR) biosensing strategy has been developed for highly sensitive detection of HIV-related DNA based on entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons (DDTs). ESDRs as enzyme-free and label-free signal amplification circuit can be specifically triggered by target DNA, leading to the cyclic utilization of target DNA and the formation of plentiful double-stranded DNA (dsDNA) products. Subsequently, the dsDNA products bind to the immobilized hairpin capture probes and further combine with DDTs nanostructures. Due to the high efficiency of ESDRs and large molecular weight of DDTs, the SPR response signal was enhanced dramatically. The proposed SPR biosensor could detect target DNA sensitively and specifically in a linear range from 1pM to 150nM with a detection limit of 48fM. In addition, the whole detecting process can be accomplished in 60min with high accuracy and duplicability. In particular, the developed SPR biosensor was successfully used to analyze target DNA in complex biological sample, indicating that the developed strategy is promising for rapid and early clinical diagnosis of HIV infection.
Collapse
|
43
|
Liu Q, Wang H, Shi X, Wang ZG, Ding B. Self-Assembled DNA/Peptide-Based Nanoparticle Exhibiting Synergistic Enzymatic Activity. ACS NANO 2017; 11:7251-7258. [PMID: 28657711 DOI: 10.1021/acsnano.7b03195] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Designing enzyme-mimicking active sites in artificial systems is key to achieving catalytic efficiencies rivaling those of natural enzymes and can provide valuable insight in the understanding of the natural evolution of enzymes. Here, we report the design of a catalytic hemin-containing nanoparticle with self-assembled guanine-rich nucleic acid/histidine-rich peptide components that mimics the active site and peroxidative activity of hemoproteins. The chemical complementarities between the folded nucleic acid and peptide enable the spatial arrangement of essential elements in the active site and effective activation of hemin. As a result, remarkable synergistic effects of nucleic acid and peptide on the catalytic performances were observed. The turnover number of peroxide reached the order of that of natural peroxidase, and the catalytic efficiency is comparable to that of myoglobin. These results have implications in the precise design of supramolecular enzyme mimetics, particularly those with hierarchical active sites. The assemblies we describe here may also resemble an intermediate in the evolution of contemporary enzymes from the catalytic RNA of primitive cells.
Collapse
Affiliation(s)
- Qing Liu
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Hui Wang
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
| | - Xinghua Shi
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| | - Zhen-Gang Wang
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchial Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology , Beijing 100190, P.R. China
- University of Chinese Academy of Sciences , Beijing 100049, P.R. China
| |
Collapse
|
44
|
Jafari M, Rezaei M, Kalantari H, Tabarzad M, Daraei B. DNAzyme-aptamer or aptamer-DNAzyme paradigm: Biochemical approach for aflatoxin analysis. Biotechnol Appl Biochem 2017; 65:274-280. [PMID: 28326608 DOI: 10.1002/bab.1563] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/15/2017] [Indexed: 12/22/2022]
Abstract
DNAzyme and aptamer conjugations have already been used for sensitive and accurate detection of several molecules. In this study, we tested the relationship between conjugation orientation of DNAzyme and aflatoxin B1 aptamer and their subsequent peroxidase activity. Circular dichroism (CD) spectroscopy and biochemical analysis were used here to differentiate between these two conjugation patterns. Results showed that DNAzyme-aptamer has more catalytic activity and efficiency than aptamer-DNAzyme. Thereby, DNAzyme-aptamer with its superior efficiency can be used for design and development of more sensitive aflatoxin B1 DNA based biosensors.
Collapse
Affiliation(s)
- Marzieh Jafari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohsen Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Heibatullah Kalantari
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Daraei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
45
|
Relations between the loop transposition of DNA G-quadruplex and the catalytic function of DNAzyme. Biochim Biophys Acta Gen Subj 2017; 1861:1913-1920. [PMID: 28533132 DOI: 10.1016/j.bbagen.2017.05.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/26/2017] [Accepted: 05/18/2017] [Indexed: 01/11/2023]
Abstract
The structures of DNA G-quadruplexes are essential for their functions in vivo and in vitro. Our present study revealed that sequential order of the three G-quadruplex loops, that is, loop transposition, could be a critical factor to determinate the G-quadruplex conformation and consequently improved the catalytic function of G-quadruplex based DNAzyme. In the presence of 100mM K+, loop transposition induced one of the G-quadruplex isomers which shared identical loops but differed in the sequential order of loops into a hybrid topology while the others into predominately parallel topologies. 1D NMR spectroscopy and mutation analysis suggested that the hydrogen bonding from loops residues with nucleotides in flanking sequences may be responsible for the stabilization of the different conformations. A well-known DNAzyme consisting of G-quadruplex and hemin (Ferriprotoporphyrin IX chloride) was chosen to test the catalytic function. We found that the loop transposition could enhance the reaction rate obviously by increasing the hemin binding affinity to G-quadruplex. These findings disclose the relations between the loop transposition, G-quadruplex conformation and catalytic function of DNAzyme.
Collapse
|
46
|
Fozooni T, Ravan H, Sasan H. Signal Amplification Technologies for the Detection of Nucleic Acids: from Cell-Free Analysis to Live-Cell Imaging. Appl Biochem Biotechnol 2017; 183:1224-1253. [DOI: 10.1007/s12010-017-2494-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
47
|
Liu Z, Luo X, Li Z, Huang Y, Nie Z, Wang HH, Yao S. Enzyme-Activated G-Quadruplex Synthesis for in Situ Label-Free Detection and Bioimaging of Cell Apoptosis. Anal Chem 2017; 89:1892-1899. [DOI: 10.1021/acs.analchem.6b04360] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhuoliang Liu
- College
of Science, National University of Defence Technology, Changsha, 410073, People’s Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
A label-free ultrasensitive assay of 8-hydroxy-2′-deoxyguanosine in human serum and urine samples via polyaniline deposition and tetrahedral DNA nanostructure. Anal Chim Acta 2016; 946:48-55. [DOI: 10.1016/j.aca.2016.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/13/2016] [Accepted: 10/16/2016] [Indexed: 12/27/2022]
|
49
|
Del Grosso E, Idili A, Porchetta A, Ricci F. A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. NANOSCALE 2016; 8:18057-18061. [PMID: 27714163 DOI: 10.1039/c6nr06026a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Here we demonstrate a general and modular approach to regulate the activity of target-responsive DNA-based nanoswitches. We do so by coupling together two DNA-based responsive elements: a triplex-forming clamp-like probe able to bind a specific DNA sequence and a split aptamer selected to bind a small molecule. In the presence of the specific target of one of the above responsive elements, the nanoswitch partially folds and its ability to bind the second target is restored. With this approach we can finely modulate the affinity of both DNA-recognition elements and aptamers using an external ligand. The modular nature of our strategy makes it easily generalizable to different DNA based recognition elements. As a demonstration of this we successfully designed five different DNA nanoswitches whose responsiveness can be regulated by different molecular effectors and targets. The convenience with which this mechanism is designed suggests that it may prove a useful tool by which sensors, genetic networks and other biotechnology devices employing nucleic-acid based receptors can be controlled with an external input.
Collapse
Affiliation(s)
- Erica Del Grosso
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Andrea Idili
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Alessandro Porchetta
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| | - Francesco Ricci
- Chemistry Department, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy.
| |
Collapse
|
50
|
Li W, Li Y, Liu Z, Lin B, Yi H, Xu F, Nie Z, Yao S. Insight into G-quadruplex-hemin DNAzyme/RNAzyme: adjacent adenine as the intramolecular species for remarkable enhancement of enzymatic activity. Nucleic Acids Res 2016; 44:7373-84. [PMID: 27422869 PMCID: PMC5009756 DOI: 10.1093/nar/gkw634] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023] Open
Abstract
G-quadruplex (G4) with stacked G-tetrads structure is able to bind hemin (iron (III)-protoporphyrin IX) to form a unique type of DNAzyme/RNAzyme with peroxidase-mimicking activity, which has been widely employed in multidisciplinary fields. However, its further applications are hampered by its relatively weak activity compared with protein enzymes. Herein, we report a unique intramolecular enhancement effect of the adjacent adenine (EnEAA) at 3' end of G4 core sequences that significantly improves the activity of G4 DNAzymes. Through detailed investigations of the EnEAA, the added 3' adenine was proved to accelerate the compound I formation in catalytic cycle and thus improve the G4 DNAzyme activity. EnEAA was found to be highly dependent on the unprotonated state of the N1 of adenine, substantiating that adenine might function as a general acid-base catalyst. Further adenine analogs analysis supported that both N1 and exocyclic 6-amino groups in adenine played key role in the catalysis. Moreover, we proved that EnEAA was generally applicable for various parallel G-quadruplex structures and even G4 RNAzyme. Our studies implied that adenine might act analogously as the distal histidine in protein peroxidases, which shed light on the fundamental understanding and rational design of G4 DNAzyme/RNAzyme catalysts with enhanced functions.
Collapse
Affiliation(s)
- Wang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Yong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhuoliang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering & Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China
| | - Haibo Yi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Feng Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|