1
|
Xu J, Lv Z, Wang L, Wu X, Tan B, Shen XC, Chen H. Tuning Tumor Targeting and Ratiometric Photoacoustic Imaging by Fine-Tuning Torsion Angle for Colorectal Liver Metastasis Diagnosis. Chemistry 2024; 30:e202402019. [PMID: 38923040 DOI: 10.1002/chem.202402019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic (PA) tomography is an emerging biomedical imaging technology for precision cancer medicine. Conventional small-molecule PA probes usually exhibit a single PA signal and poor tumor targeting that lack the imaging reliability. Here, we introduce a series of cyanine/hemicyanine interconversion dyes (denoted Cy-HCy) for PA/fluorescent dual-mode probe development that features optimized ratiometric PA imaging and tunable tumor-targeting ability for precise diagnosis and resection of colorectal cancer (CRC). Importantly, Cy-HCy can be presented in cyanine (inherent tumor targeting and long NIR PA wavelength) and hemicyanine (poor tumor targeting and short NIR PA wavelength) by fine-tuning torsion angle and the ingenious transformation between cyanine and hemicyanine through regulation optically tunable group endows the NIR ratiometric PA and tunable tumor-targeting properties. To demonstrate the applicability of Cy-HCy dyes, we designed the first small-molecule tumor-targeting and NIR ratiometric PA probe Cy-HCy-H2S for precise CRC liver metastasis diagnosis, activated by H2S (a CRC biomarker). Using this probe, we not only visualized the subcutaneous tumor and liver metastatic cancers in CRC mouse models but also realized PA and fluorescence image-guided tumor excision. We expect that Cy-HCy will be generalized for creating a wide variety of inherently tumor-targeting NIR ratiometric PA probes in oncological research and practice.
Collapse
Affiliation(s)
- Jinyuan Xu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhangkang Lv
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xingqing Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bisui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
2
|
Fu Q, Yang X, Wang M, Zhu K, Wang Y, Song J. Activatable Probes for Ratiometric Imaging of Endogenous Biomarkers In Vivo. ACS NANO 2024; 18:3916-3968. [PMID: 38258800 DOI: 10.1021/acsnano.3c10659] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Dynamic variations in the concentration and abnormal distribution of endogenous biomarkers are strongly associated with multiple physiological and pathological states. Therefore, it is crucial to design imaging systems capable of real-time detection of dynamic changes in biomarkers for the accurate diagnosis and effective treatment of diseases. Recently, ratiometric imaging has emerged as a widely used technique for sensing and imaging of biomarkers due to its advantage of circumventing the limitations inherent to conventional intensity-dependent signal readout methods while also providing built-in self-calibration for signal correction. Here, the recent progress of ratiometric probes and their applications in sensing and imaging of biomarkers are outlined. Ratiometric probes are classified according to their imaging mechanisms, and ratiometric photoacoustic imaging, ratiometric optical imaging including photoluminescence imaging and self-luminescence imaging, ratiometric magnetic resonance imaging, and dual-modal ratiometric imaging are discussed. The applications of ratiometric probes in the sensing and imaging of biomarkers such as pH, reactive oxygen species (ROS), reactive nitrogen species (RNS), glutathione (GSH), gas molecules, enzymes, metal ions, and hypoxia are discussed in detail. Additionally, this Review presents an overview of challenges faced in this field along with future research directions.
Collapse
Affiliation(s)
- Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Kang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Nogita K, Sugahara T, Miki K, Mu H, Kobayashi M, Harada H, Ohe K. A reductively convertible nickel phthalocyanine precursor as a biological thiol-responsive turn-on photoacoustic contrast agent. Chem Commun (Camb) 2024; 60:1472-1475. [PMID: 38224167 DOI: 10.1039/d3cc05628g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A nickel phthalocyanine precursor bearing poly(ethylene glycol) as a turn-on contrast agent for photoacoustic imaging was prepared. The water-soluble polymeric chains were smoothly eliminated through thiol-mediated reductive aromatization in cancer cells, enabling the detection of endogenous biological thiols in vitro and in vivo.
Collapse
Affiliation(s)
- Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takaya Sugahara
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
4
|
Chen Z, Qin H, Yin Y, Deng DD, Qin SY, Li N, Wang K, Sun Y. Full-Color Emissive D-D-A Carbazole Luminophores: Red-to-NIR Mechano-fluorochromism, Aggregation-Induced Near-Infrared Emission, and Application in Photodynamic Therapy. Chemistry 2023; 29:e202203797. [PMID: 36545826 DOI: 10.1002/chem.202203797] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The preparation of multifunctionalized luminophores with full-color emission based on an identical core skeleton is a significative but challenging research topic. In this work, eight donor-donor-acceptor (D-D-A)-type luminogens based on a central carbazole core bearing a C6 hydrocarbon chain were designed by using different kinds of donor and acceptor units on the left and right, and synthesized in good yields. These D-D-A carbazole derivatives display deep-blue, sky-blue, cyan, green, yellow-green, yellow, orange and red fluorescence in the solid state, achieving full-color emission covering the whole visible light range under UV light illumination. Notably, the dicyano-functionalized triphenylamine-containing carbazole derivative exhibits rare aggregation-induced near-infrared emission and red-to-near-infrared mechano-fluorochromism with high contrast beyond 100 nm. Furthermore, the red-emissive luminogen can serve as a potential candidate for cell imaging and photodynamic therapy (PDT). This work not only provides reference for the construction of full-color emissive systems but also opens a new avenue to the preparation of multifunctionalized luminophores capable of simultaneous application in near-Infrared mechanical-force sensors and PDT fields.
Collapse
Affiliation(s)
- Zhao Chen
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Huan Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Ya Yin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Dian-Dian Deng
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, 330013, P. R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| | - Nan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, P. R. China
| | - Yue Sun
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry, Tiangong University, Tianjin, 300387, P. R. China.,Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan, 430074, P. R. China
| |
Collapse
|
5
|
Subasinghe SAAS, Pautler RG, Samee MAH, Yustein JT, Allen MJ. Dual-Mode Tumor Imaging Using Probes That Are Responsive to Hypoxia-Induced Pathological Conditions. BIOSENSORS 2022; 12:478. [PMID: 35884281 PMCID: PMC9313010 DOI: 10.3390/bios12070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/26/2022] [Indexed: 05/02/2023]
Abstract
Hypoxia in solid tumors is associated with poor prognosis, increased aggressiveness, and strong resistance to therapeutics, making accurate monitoring of hypoxia important. Several imaging modalities have been used to study hypoxia, but each modality has inherent limitations. The use of a second modality can compensate for the limitations and validate the results of any single imaging modality. In this review, we describe dual-mode imaging systems for the detection of hypoxia that have been reported since the start of the 21st century. First, we provide a brief overview of the hallmarks of hypoxia used for imaging and the imaging modalities used to detect hypoxia, including optical imaging, ultrasound imaging, photoacoustic imaging, single-photon emission tomography, X-ray computed tomography, positron emission tomography, Cerenkov radiation energy transfer imaging, magnetic resonance imaging, electron paramagnetic resonance imaging, magnetic particle imaging, and surface-enhanced Raman spectroscopy, and mass spectrometric imaging. These overviews are followed by examples of hypoxia-relevant imaging using a mixture of probes for complementary single-mode imaging techniques. Then, we describe dual-mode molecular switches that are responsive in multiple imaging modalities to at least one hypoxia-induced pathological change. Finally, we offer future perspectives toward dual-mode imaging of hypoxia and hypoxia-induced pathophysiological changes in tumor microenvironments.
Collapse
Affiliation(s)
| | - Robia G. Pautler
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Md. Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA; (R.G.P.); (M.A.H.S.)
| | - Jason T. Yustein
- Integrative Molecular and Biomedical Sciences and the Department of Pediatrics in the Texas Children’s Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Matthew J. Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA;
| |
Collapse
|
6
|
Zhan W, Zhao B, Cui X, Liu J, Xiao X, Xu Y, She S, Hou C, Guo H. PDA modified NIR-II NaEr 0.8Yb 0.2F 4nanoparticles with high photothermal effect. NANOTECHNOLOGY 2022; 33:385102. [PMID: 35609524 DOI: 10.1088/1361-6528/ac72b3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Polydopamine (PDA)-modified NaEr0.8Yb0.2 F4nanoparticles were synthesized, with strong NIR-II emission, quantum yield of 29.63%, and excellent photothermal performance. Crystal phases and microstructures are characterized. Optical properties such as absorption, NIR-II emission, and light stability are studied, and the luminescence mechanism is discussed in detail. Key factors in NIR-II imaging were evaluated in fresh pork tissue, including penetration depth, spatial resolution, and signal-to-noise ratio (SNR). A high penetration depth of 5 mm and a high spatial resolution of 1 mm were detected. Mice are imaged in vivo afterintravenousinjection. Due to the accumulation of nanoparticles in the liver, high image quality with an SNR of 5.2 was detected in the abdomen of KM mice with hair. The photothermal conversion effect of PDA-modified NPs was twice that of the reported material. These NIR-II nanoparticles have superior optical properties, high photothermal efficiency and low cytotoxicity, and are potential fluorescent probes for further disease diagnosis and treatment.
Collapse
Affiliation(s)
- Weifan Zhan
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Zhao
- Department of Sports Medicine, Fourth Medical Center, General Hospital of the Chinese People's Liberation Army, Chinese, Beijing, People's Republic of China
| | - Xiaoxia Cui
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Junsong Liu
- Xi'an Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of Jiaotong University, Xi'an Shanxi, People's Republic of China
| | - Xusheng Xiao
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Shengfei She
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Chaoqi Hou
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Haitao Guo
- Xi'an Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Xi'an Shanxi, People's Republic of China
- Center for Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
7
|
A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202107076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Ouyang J, Sun L, Zeng F, Wu S. Rational design of stable heptamethine cyanines and development of a biomarker-activatable probe for detecting acute lung/kidney injuries via NIR-II fluorescence imaging. Analyst 2022; 147:410-416. [DOI: 10.1039/d1an02183d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heptamethine cyanines exhibiting high photo- and chemostability have been developed. And an activatable probe was developed for H2O2 to visualize acute lung and kidney injuries via NIR-II fluorescence imaging.
Collapse
Affiliation(s)
- Juan Ouyang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Lihe Sun
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, College of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
He Y, Wang S, Yu P, Yan K, Ming J, Yao C, He Z, El-Toni AM, Khan A, Zhu X, Sun C, Lei Z, Zhang F. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics. Chem Sci 2021; 12:10474-10482. [PMID: 34447540 PMCID: PMC8356747 DOI: 10.1039/d1sc02763h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Fluorescence probes have great potential to empower bioimaging, precision clinical diagnostics and surgery. However, current probes are limited to in vivo high-contrast diagnostics, due to the substantial background interference from tissue scattering and nonspecific activation in blood and normal tissues. Here, we developed a kind of cell endocytosis-activated fluorescence (CEAF) probe, which consists of a hydrophilic polymer unit and an acid pH-sensitive small-molecule fluorescent moiety that operates in the "tissue-transparent" second near-infrared (NIR-II) window. The CEAF probe stably presents in the form of quenched nanoaggregates in water and blood, and can be selectively activated and retained in lysosomes through cell endocytosis, driven by a synergetic mechanism of disaggregation and protonation. In vivo imaging of tumor and inflammation with a passive-targeting and affinity-tagged CEAF probe, respectively, yields highly specific signals with target-to-background ratios over 15 and prolonged observation time up to 35 hours, enabling positive implications for surgical, diagnostic and fundamental biomedical studies.
Collapse
Affiliation(s)
- Yue He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Jiang Ming
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Chenzhi Yao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Ahmed Mohamed El-Toni
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Aslam Khan
- King Abdullah Institute for Nanotechnology, King Saud University Riyadh 11451 Saudi Arabia
| | - Xinyan Zhu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Zuhai Lei
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers and iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University Shanghai 200433 China
| |
Collapse
|
10
|
Zhang S, Chen H, Wang L, Qin X, Jiang BP, Ji SC, Shen XC, Liang H. A General Approach to Design Dual Ratiometric Fluorescent and Photoacoustic Probes for Quantitatively Visualizing Tumor Hypoxia Levels In Vivo. Angew Chem Int Ed Engl 2021; 61:e202107076. [PMID: 34227715 DOI: 10.1002/anie.202107076] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Herein, we describe an energy balance strategy between fluorescence and photoacoustic effects by sulfur substitution to transform existing hemicyanine dyes (Cy) into optimized NIRF/PA dual ratiometric scaffolds. Based on this optimized scaffold, we reported the first dual-ratio response of nitroreductase probe AS-Cy-NO2 , which allows quantitative visualization of tumor hypoxia in vivo. AS-Cy-NO2 , composed of a new NIRF/PA scaffold thioxanthene-hemicyanine (AS-Cy-1) and a 4-nitrobenzene moiety, showed a 10-fold ratiometric NIRF enhancement (I773 /I733 ) and 2.4-fold ratiometric PA enhancement (PA730 /PA670 ) upon activation by a biomarker (nitroreductase, NTR) associated with tumor hypoxia. Moreover, the dual ratiometric NIRF/PA imaging accurately quantified the hypoxia extent with high sensitivity and high imaging depth in xenograft breast cancer models. More importantly, the 3D maximal intensity projection (MIP) PA images of the probe can precisely differentiate the highly heterogeneous oxygen distribution in solid tumor. Thus, this study provides a promising NIRF/PA scaffold that may be generalized for the dual ratiometric imaging of other disease-relevant biomarkers.
Collapse
Affiliation(s)
- Shuping Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hua Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Liping Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Xue Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P.R. China
| |
Collapse
|
11
|
Wu Y, Zeng F, Zhao Y, Wu S. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications. Chem Soc Rev 2021; 50:7924-7940. [PMID: 34114588 DOI: 10.1039/d1cs00358e] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | | | | | | |
Collapse
|
12
|
Mokrousov MD, Thompson W, Ermilov SA, Abakumova T, Novoselova MV, Inozemtseva OA, Zatsepin TS, Zharov VP, Galanzha EI, Gorin DA. Indocyanine green dye based bimodal contrast agent tested by photoacoustic/fluorescence tomography setup. BIOMEDICAL OPTICS EXPRESS 2021; 12:3181-3195. [PMID: 34221653 PMCID: PMC8221961 DOI: 10.1364/boe.419461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 05/08/2023]
Abstract
Multimodal imaging systems are in high demand for preclinical research, experimental medicine, and clinical practice. Combinations of photoacoustic technology with other modalities including fluorescence, ultrasound, MRI, OCT have been already applied in feasibility studies. Nevertheless, only the combination of photoacoustics with ultrasound in a single setup is commercially available now. A combination of photoacoustics and fluorescence is another compelling approach because those two modalities naturally complement each other. Here, we presented a bimodal contrast agent based on the indocyanine green dye (ICG) as a single signalling compound embedded in the biocompatible and biodegradable polymer shell. We demonstrate its remarkable characteristics by imaging using a commercial photoacoustic/fluorescence tomography system (TriTom, PhotoSound Technologies). It was shown that photoacoustic signal of the particles depends on the amount of dye loaded into the shell, while fluorescence signal depends on the total amount of dye per particle. For the first time to our knowledge, a commercial bimodal photoacoustic/fluorescence setup was used for characterization of ICG doped polymer particles. Additionally, we conducted cell toxicity studies for these particles as well as studied biodistribution over time in vivo and ex vivo using fluorescent imaging. The obtained results suggest a potential for the application of biocompatible and biodegradable bimodal contrast agents as well as the integrated photoacoustic/fluorescence imaging system for preclinical and clinical studies.
Collapse
Affiliation(s)
- Maksim D. Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Weylan Thompson
- PhotoSound Technologies, 9511 Town Park Dr, Houston, TX 77036, USA
| | | | - Tatiana Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | - Marina V. Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| | | | - Timofei S. Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3, Moscow, 119991, Russia
| | - Vladimir P. Zharov
- University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, USA
| | - Ekaterina I. Galanzha
- University of Arkansas for Medical Sciences, 4301 W. Markham St. Little Rock, AR 72205, USA
| | - Dmitry A. Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, 121205, Russia
| |
Collapse
|
13
|
Mei H, Wang D, Wang M, Gu X, Liu X, Yang L. A novel fluorescence probe for the selective detection of cysteine in aqueous solutions and imaging in living cells and mice. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1965-1969. [PMID: 33913943 DOI: 10.1039/d1ay00178g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel fluorescent probe based on hydroxyquinoline conjugated with a charged trimethylindolenine unit Toc-Ac was developed, which exhibited long wavelength emission (560 nm) and a large Stokes shift (∼140 nm) due to the intrinsic mechanism of the intramolecular charge transfer process. The probe Toc-Ac showed a highly sensitive response to Cys (the detection limit was 3.86 × 10-8 M) in aqueous solution and was successfully applied for detecting endogenous Cys in living cells and mice.
Collapse
Affiliation(s)
- Huihui Mei
- Henan Engineering Research Center of Industrial Recirculating Water Treatment, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.
| | | | | | | | | | | |
Collapse
|
14
|
Chakraborty S, Joseph MM, Varughese S, Ghosh S, Maiti KK, Samanta A, Ajayaghosh A. A new pentacyclic pyrylium fluorescent probe that responds to pH imbalance during apoptosis. Chem Sci 2020; 11:12695-12700. [PMID: 34094464 PMCID: PMC8162809 DOI: 10.1039/d0sc02623a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Efficient fluorophores with easy synthetic routes and fast responses are of great importance in clinical diagnostics. Herein, we report a new, rigid pentacyclic pyrylium fluorophore, PS-OMe, synthesised in a single step by a modified Vilsmeier-Haack reaction. Insights into the reaction mechanism facilitated a new reaction protocol for the efficient synthesis of PS-OMe which upon demethylation resulted in a "turn-on" pH sensor, PS-OH. This new fluorescent probe has been successfully used to monitor intracellular acidification at physiological pH. From the fluorescence image analysis, we were able to quantify the intracellular dynamic pH change during apoptosis. This new pH probe is a potential chemical tool for screening, drug discovery and dose determination in cancer therapy.
Collapse
Affiliation(s)
- Sandip Chakraborty
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Sunil Varughese
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Department of Chemistry, Shiv Nadar University NH91, Dadri, Gautam Buddh Nagar 201314 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR - Human Resource Development Centre Ghaziabad 201002 India
| |
Collapse
|
15
|
Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020; 11:10553-10570. [PMID: 34094312 PMCID: PMC8162460 DOI: 10.1039/d0sc01721c] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Semiconducting polymer nanoparticles (SPNs) have gained growing attention in biomedical applications. However, the preparation of SPNs is usually limited to nanoprecipitation in the presence of amphiphilic copolymers, which encounters the issue of dissociation. As an alternative to SPNs, grafted semiconducting polymer amphiphiles (SPAs) composed of a semiconducting polymer (SP) backbone and hydrophilic side chains show increased physiological stability and improved optical properties. This review summarizes recent advances in SPAs for cancer imaging and combination phototherapy. The applications of SPAs in optical imaging including fluorescence, photoacoustic, multimodal and activatable imaging are first described, followed by the discussion of applications in imaging-guided phototherapy and combination therapy, light-triggered drug delivery and gene regulation. At last, the conclusion and future prospects in this field are discussed.
Collapse
Affiliation(s)
- Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Wen Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University Tianjin 300071 China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
16
|
Fan Q, Cui X, Wang Q, Gao P, Shi S, Wen W, Guo H, Xu Y, Peng B. A novel photostable near-infrared-to-near-infrared fluorescent nanoparticle for in vivo imaging. J Biomed Mater Res B Appl Biomater 2020; 108:2912-2924. [PMID: 32386265 DOI: 10.1002/jbm.b.34622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 11/08/2022]
Abstract
Water-soluble K5 HoLi2 F10 (KHLF) nanoprobes with the excitation and emission both in the near-infrared (NIR) region were developed and first demonstrated for in vivo imaging of living mice. The PEG400 coating endows the nanoprobes with good water solubility and biocompatibility. Doping with Ho3+ ions is capable of emitting NIR fluorescence with two peaks centered, respectively, at 887 and 1,180 nm once excited by a 808 nm laser; meanwhile, it also possess good photothermal conversion performance. The KHLF matrix with specifically structure of large ion-distance and low photon energy imparts the nanoprobes low quenching effect and excellent photostability (fluorescence decrease <5% upon 120 min illumination of 808 nm continuous laser with a power density of 1 W/cm2 ). The nanoparticles (NPs) were tested for in vitro bioimaging with living mice. The results show the NPs have low biotoxicity, rapid metabolism, normal biodistribution, together with the photothermal imaging performance and a high-contrast fluorescence images (signal-to-background ratio of 14:1). The superior performances of these nanoprobes in vivo imaging of mice proclaim the great potential of this type of probe for high-contrast imaging and photothermal treatment in practical applications.
Collapse
Affiliation(s)
- Qi Fan
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,University of Chinese Academy of Sciences (UCAS), Beijing, People's Republic of China
| | - Xiaoxia Cui
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Quan Wang
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China
| | - Peng Gao
- School of Physics and Optoelectronic Engineering, Xidian University, Xi'an, People's Republic of China
| | - Shengjia Shi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Weihua Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China
| | - Haitao Guo
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yantao Xu
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bo Peng
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Science (CAS), Xi'an, Shaanxi, People's Republic of China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
17
|
Fang H, Chen Y, Wang Y, Geng S, Yao S, Song D, He W, Guo Z. A dual-modal probe for NIR fluorogenic and ratiometric photoacoustic imaging of Cys/Hcy in vivo. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9688-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Yang CF, Zeng LY, Ning BK, Wang JY, Zhang H, Zhang ZH. Development of a fast-responsive and turn on fluorescent probe with large Stokes shift for specific detection of cysteine in vivo. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117482. [PMID: 31472424 DOI: 10.1016/j.saa.2019.117482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Cysteine has a great effect on the physiological and pathological processes, which could bring out various diseases such as skin lesions, edema, hair depigmentation, Alzheimer's, Parkinson's, and liver damage due to the abnormal concentrations of cysteine. Therefore, it is of great impoatance to develop a method for imaging Cys. Herein, a novel fluorescent probe was developed for imaging Cys in vivo specially. This turn-on probe exhibited favorable advantages including large Stokes shift (90 nm), fast response (10 min), good selectivity, low cytotoxicity and so on. Furthermore, the probe could be applied to monitoring cysteine in living HeLa cells, which indicates that this turn-on probe could penetrate viable cell membranes and image Cys over other analystes especially HCy and GSH.
Collapse
Affiliation(s)
- Cui-Feng Yang
- State Key Laboratory of Fluorine & Nitrogen Chemicals & Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Li-Yuan Zeng
- State Key Laboratory of Fluorine & Nitrogen Chemicals & Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Bin-Ke Ning
- State Key Laboratory of Fluorine & Nitrogen Chemicals & Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Jian-Yong Wang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Haitao Zhang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhi-Hao Zhang
- School of Light Industry and Engineering, Qi Lu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
19
|
Lin Y, Sun L, Zeng F, Wu S. An Unsymmetrical Squaraine-Based Activatable Probe for Imaging Lymphatic Metastasis by Responding to Tumor Hypoxia with MSOT and Aggregation-Enhanced Fluorescent Imaging. Chemistry 2019; 25:16740-16747. [PMID: 31674063 DOI: 10.1002/chem.201904675] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Optoacoustic imaging has great potential for preclinical research and clinical practice, and designing robust activatable optoacoustic probes for specific diseases is beneficial for its further development. Herein, an activatable probe has been developed for tumor hypoxia imaging. For this probe, indole and quinoline were linked on each side of an oxocyclobutenolate core to form an unsymmetrical squaraine. A triarylamine group was incorporated to endow the molecule with the aggregation enhanced emission (AEE) properties. In aqueous media, the squaraine chromophore aggregates into the nanoprobe, which specifically responds to nitroreductase and produces strong optoacoustic signals due to its high extinction coefficient, as well as prominent fluorescence emission as a result of its AEE feature. The nanoprobe was used to image tumor metastasis via the lymphatic system both optoacoustically and fluorescently. Moreover, both the fluorescence signals and three-dimensional multispectral optoacoustic tomography signals from the activated nanoprobe allow us to locate the tumor site and to map the metastatic route.
Collapse
Affiliation(s)
- Yi Lin
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Lihe Sun
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of, Guangdong Province, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, P. R. China
| |
Collapse
|
20
|
Chen Z, Mu X, Han Z, Yang S, Zhang C, Guo Z, Bai Y, He W. An Optical/Photoacoustic Dual-Modality Probe: Ratiometric in/ex Vivo Imaging for Stimulated H2S Upregulation in Mice. J Am Chem Soc 2019; 141:17973-17977. [DOI: 10.1021/jacs.9b09181] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zhongyan Chen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Xueling Mu
- Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Shiping Yang
- Key Laboratory of Resource Chemistry, Shanghai Normal University, Shanghai 200234, People’s Republic of China
| | - Changli Zhang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People’s Republic of China
| |
Collapse
|
21
|
Ma G, Gao X, Jiang C, Xing S, Wei C, Huang P, Lin J. pH-Responsive Nanoprobe for In Vivo Photoacoustic Imaging of Gastric Acid. Anal Chem 2019; 91:13570-13575. [DOI: 10.1021/acs.analchem.9b02701] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gongcheng Ma
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Xiaoting Gao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Chao Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Shaojun Xing
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Chaoliang Wei
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, P. R. China
| |
Collapse
|
22
|
Huang J, Wu Y, Zeng F, Wu S. An Activatable Near-Infrared Chromophore for Multispectral Optoacoustic Imaging of Tumor Hypoxia and for Tumor Inhibition. Theranostics 2019; 9:7313-7324. [PMID: 31695770 PMCID: PMC6831286 DOI: 10.7150/thno.36755] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a key hallmark of solid tumors and tumor hypoxia usually contributes to cancer progression, therapeutic resistance and poor outcome. Accurately detecting and imaging tumor hypoxia with high spatial resolution would be conducive to formulating optimized treatment plan and thus achieving better patient outcome. Methods: Tumor hypoxia can cleave the azo linker and release a NIR fluorophore (NR-NH2) and release the active drug as well. NR-NH2 shows a strong absorption band at around 680 nm and a strong fluorescence band at 710 nm, allowing for both multispectral optoacoustic tomography imaging (MSOT) and fluorescent imaging of tumor hypoxia in a tumor-bearing mouse model. Results: Liposome encapsulated with the activatable chromophore (NR-azo) for detecting/imaging tumor hypoxia and for tumor inhibition was demonstrated. For this chromophore, a xanthene-based NIR fluorophore acts as the optoacoustic and fluorescent reporter, an azo linker serves as the hypoxia-responsive moiety and a nitrogen mustard as the therapeutic drug. NR-azo shows an absorption at around 575 nm but exhibits negligible fluorescence due to the existence of the strong electron-withdrawing azo linker. Conclusion: We demonstrated an optoacoustic and fluorescent system for not only imaging tumor hypoxia in vivo but also achieving tumor inhibition.
Collapse
Affiliation(s)
| | | | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Wang H, Zhang Y, Yang Y, He Z, Wu C, Zhang W, Zhang W, Liu J, Li P, Tang B. In situ photoacoustic imaging of cysteine to reveal the mechanism of limited GSH synthesis in pulmonary fibrosis. Chem Commun (Camb) 2019; 55:9685-9688. [PMID: 31347620 DOI: 10.1039/c9cc03814k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We developed a photoacoustic and fluorescent dual-mode imaging probe, CCYS, for the detection of cysteine with high selectivity and sensitivity in a living system for the first time. By using CCYS, we found that the limited synthesis of glutathione in pulmonary fibrosis was not caused by cysteine deficiency.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yixin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yuyun Yang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Zixu He
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Ju Liu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China. and Medical Research Center, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated to Shandong First Medical University, P. R. China.
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
24
|
|
25
|
Zhu M, Wang L, Wu X, Na R, Wang Y, Li QX, Hammock BD. A novel and simple imidazo[1,2-a]pyridin fluorescent probe for the sensitive and selective imaging of cysteine in living cells and zebrafish. Anal Chim Acta 2019; 1058:155-165. [PMID: 30851849 PMCID: PMC7198451 DOI: 10.1016/j.aca.2019.01.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/27/2018] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
Cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) play many crucial physiological roles in organisms. Their abnormal levels can cause and indicate various diseases. In the present study, a small-molecule fluorescent probe 2-(imidazo[1,2-a]pyridin-2-yl)phenyl acrylate (IPPA) was designed, synthesized and characterized by NMR, FT-IR and HRMS. IPPA can selectively detect Cys over other analytes because of an approximately 76 times enhancement in fluorescence intensity. The limit of detection of IPPA for Cys was 0.33 μM. The pseudo-first-order rate constant of the reaction between IPPA and Cys was approximately 10 times that of the reaction between IPPA and Hcy (KCys 3.18 × 10-3 S-1vs KHcy 4.92 × 10-4 S-1), indicating that Cys can be distinguished from Hcy. In addition, IPPA exhibits strong anti-interference ability, small molecular weight, high efficiency, low toxicity and good cell permeability. It was successfully used in imaging HepG2 cells and zebrafish. The fluorescence response of IPPA for calf serum are powerful proofs for practical application. Therefore, IPPA has high potential for bioassay applications.
Collapse
Affiliation(s)
- Meiqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou, 450002, China; Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Lijun Wang
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou, 450002, China; Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoqin Wu
- Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Risong Na
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou, 450002, China.
| | - Yi Wang
- Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, College of Plant Protection, Henan Agricultural University, Wenhua Road No. 95, Zhengzhou, 450002, China; Key Laboratory of Agri-food Safety of Anhui Province, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China; Department of Entomology and UCD Comprehensive Cancer Center, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| | - Qing X Li
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Bruce D Hammock
- Department of Entomology and UCD Comprehensive Cancer Center, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| |
Collapse
|
26
|
Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors. Biomaterials 2019; 197:129-145. [PMID: 30641264 DOI: 10.1016/j.biomaterials.2019.01.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/31/2018] [Accepted: 01/01/2019] [Indexed: 12/11/2022]
Abstract
Hypoxia plays vital roles in the development of tumor resistance against typical anticancer therapies and local reoxygenation has proved effective to overcome the hypoxia-induced chemoresistance. Perfluorocarbon (PFC) is an FDA approved oxygen carrier and currently vigorously investigated for oxygen delivery to tumors. This study reports a perfluorocarbon and etoposide (EP) loaded porous hollow Fe3O4-based theranostic nanoplatform capable of delivering oxygen to solid tumors to enhance their susceptibility against EP. Results show that oxygen could be released at a moderate rate from the porous hollow magnetic Fe3O4 nanoparticles (PHMNPs) over an extended period of time, therefore effectively reducing the hypoxia-induced EP resistance of tumor cells. Moreover, the surface of PHMNPs was modified with lactobionic acid (LA)-containing amphiphilic polymers via hydrophobic interaction, which could provide targeting effect against certain types of tumors. The hydrophilic moiety would be subsequently shed by the intratumoral GSH after cellular internalization and result in the agglomeration of nanocarriers inside tumor cells, consequently impeding the nanoparticle exocytosis to enhance their intracellular retention. The enhanced retention could elevate the intracellular EP level and effectively boost the tumor cell killing effect. In addition to the therapeutic benefits, the Fe3O4 nanocage could also be used for the magnetic resonance imaging of the tumor area. The assorted benefits of the composite nanosystem are anticipated to be advantageous for the treatment of drug-resistant hypoxic tumors.
Collapse
|
27
|
Chen D, Long Z, Sun Y, Luo Z, Lou X. A red-emission probe for intracellular biothiols imaging with a large Stokes shift. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Cong Z, Yang F, Cao L, Wen H, Fu T, Ma S, Liu C, Quan L, Liao Y. Multispectral optoacoustic tomography (MSOT) for imaging the particle size-dependent intratumoral distribution of polymeric micelles. Int J Nanomedicine 2018; 13:8549-8560. [PMID: 30587977 PMCID: PMC6296692 DOI: 10.2147/ijn.s185726] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study proposes the utilization of multispectral optoacoustic tomography (MSOT) to investigate the intratumoral distribution of polymeric micelles and effect of size on the biodistribution and antitumor efficacy (ATE). MATERIALS AND METHODS Docetaxel and/or optoacoustic agent-loaded polymeric micelles (with diameters of 22, 48, and 124 nm) were prepared using amphiphilic block copolymers poly (ethylene glycol) methyl ether-block-poly (D,L lactide) (PEG2000-PDLLAx). Subcutaneous 4T1 tumor-bearing mice were monitored with MSOT imaging and IVIS® Spectrum in vivo live imaging after tail vein injection of micelles. The in vivo results and ex vivo confocal imaging results were then compared. Next, ATE of the three micelles was found and compared. RESULTS We found that MSOT imaging offers spatiotemporal and quantitative information on intratumoral distribution of micelles in living animals. All the polymeric micelles rapidly extravasated into tumor site after intravenous injection, but only the 22-nm micelle preferred to distribute into the inner tumor tissues, leading to a superior ATE than that of 48- and 124-nm micelles. CONCLUSION This study demonstrated that MSOT is theranostically a powerful imaging modality, offering quantitative information on size-dependent spatiotemporal distribution patterns after the extravasation of nanomedicine from tumor blood vessels.
Collapse
Affiliation(s)
- Zhaoqing Cong
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Feifei Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Li Cao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Han Wen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Taotao Fu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Siqi Ma
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Chunyu Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Lihui Quan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| | - Yonghong Liao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Haidian District, Beijing 100193, People's Republic of China,
| |
Collapse
|
29
|
Borg RE, Rochford J. Molecular Photoacoustic Contrast Agents: Design Principles & Applications. Photochem Photobiol 2018; 94:1175-1209. [PMID: 29953628 PMCID: PMC6252265 DOI: 10.1111/php.12967] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/10/2018] [Indexed: 12/24/2022]
Abstract
Photoacoustic imaging (PAI) is a rapidly growing field which offers high spatial resolution and high contrast for deep-tissue imaging in vivo. PAI is nonionizing and noninvasive and combines the optical resolution of fluorescence imaging with the spatial resolution of ultrasound imaging. In particular, the development of exogenous PA contrast agents has gained significant momentum of late with a vastly expanding complexity of dye materials under investigation ranging from small molecules to macromolecular proteins, polymeric and inorganic nanoparticles. The goal of this review is to survey the current state of the art in molecular photoacoustic contrast agents (MPACs) for applications in biomedical imaging. The fundamental design principles of MPACs are presented and a review of prior reports spanning from early-to-current literature is put forth.
Collapse
Affiliation(s)
| | - Jonathan Rochford
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
| |
Collapse
|
30
|
Lavaud L, Pascal S, Metwally K, Gasteau D, Da Silva A, Chen Z, Elhabiri M, Canard G, Jacquemin D, Siri O. Azacalixphyrins as NIR photoacoustic contrast agents. Chem Commun (Camb) 2018; 54:12365-12368. [PMID: 30325372 DOI: 10.1039/c8cc05851b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Near-infrared (NIR) azacalixphyrins bearing aryl substituents strongly impacting the physico-chemical properties of the macrocycles were designed, enabling hyperchromic and bathochromic shifts of the absorption compared to their N-alkylated analogues. This engineering enhances the photoacoustic response under NIR excitation, making azacalixphyrins promising organic contrast agents that reach the 800-1000 nm range.
Collapse
Affiliation(s)
- Lucien Lavaud
- Aix-Marseille Université, CNRS UMR 7325, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Campus de Luminy, 13288 Marseille cedex 09, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dwivedi BK, Singh VD, Paitandi RP, Pandey DS. Substituent-directed ESIPT-coupled Aggregation-induced Emission in Near-infrared-emitting Quinazoline Derivatives. Chemphyschem 2018; 19:2672-2682. [DOI: 10.1002/cphc.201800579] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Bhupendra Kumar Dwivedi
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Vishwa Deepak Singh
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Rajendra Prasad Paitandi
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| | - Daya Shankar Pandey
- Department of Chemistry; Institute of Science; Banaras Hindu University; Varanasi - 221 005, (U. P. India
| |
Collapse
|
32
|
Lin X, Liu C, Sheng Z, Gong X, Song L, Zhang R, Zheng H, Sun M. Highly Sensitive Fluorescence and Photoacoustic Detection of Metastatic Breast Cancer in Mice Using Dual-Modal Nanoprobes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26064-26074. [PMID: 30044603 DOI: 10.1021/acsami.8b09142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biomedical imaging of metastatic breast cancer, especially in lymphatic and lung metastasis, is highly significant in cancer staging as it helps assess disease prognosis and treatment. Using an albumin-indocyanine green dual-modal nanoprobe developed in our laboratory, in vivo fluorescence imaging and photoacoustic imaging of metastatic breast cancer tumors were performed separately. Fluorescence imaging at the near-infrared window features high imaging sensitivity but is generally limited by a low imaging depth. Thus, tumors can only be observed in situ whereas tumor cells in the lymph nodes and lung cannot be imaged in a precise manner. In contrast, photoacoustic imaging often helps overcome the limitations of imaging depth with high acoustic spatial resolution, which could provide complementary information for imaging cancer metastases. Ex vivo fluorescence and photoacoustic imaging were also performed to verify the tumor metastatic route. This study may not only provide insights into the design of dual-modal nanoprobes for breast cancer diagnosis but may also demonstrate the superiority of combined fluorescence imaging and photoacoustic imaging for guiding, monitoring, and evaluating lymphatic and lung metastatic stages of breast cancer with a high imaging specificity as well as sensitivity.
Collapse
Affiliation(s)
- Xiangwei Lin
- Measurement and Control Research Center, Department of Control Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| | | | | | | | | | - Ruifang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University , Zhengzhou University , Zhengzhou 450000 , Henan , China
| | | | - Mingjian Sun
- Measurement and Control Research Center, Department of Control Science and Engineering , Harbin Institute of Technology , Harbin 150001 , China
| |
Collapse
|
33
|
Chen D, Yang J, Dai J, Lou X, Zhong C, Yu X, Xia F. A low background D-A-D type fluorescent probe for imaging of biothiols in living cells. J Mater Chem B 2018; 6:5248-5255. [PMID: 32254762 DOI: 10.1039/c8tb01340c] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two probes, structurally symmetric CBFB and asymmetric CBFM, constructed by a D-A-D (donor-acceptor-donor) type curcuminoid as the fluorophore and the DNBS (2,4-dinitrobenzenesulfonyl) group as the biothiol recognition site were designed and synthesized here. The DNBS group can quench the emission of the fluorophore by the PET (photoinduced electron transfer) process, and in the presence of biothiols, the emission of the probe was switched on as a result of the cleavage of the quencher by a nucleophilic aromatic substitution reaction. Experimental analyses and theoretical calculations revealed that two recognition moieties in the molecule can quench the fluorescence more efficiently, therefore, CBFB showed a much higher SNR (signal to noise ratio) than CBFM in biothiol detection with an emission maximum at 610 nm. This "low background" and "turn-on" fluorescent probe, CBFB, was successfully utilized to map endogenous biothiols in living cells.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhao J, Chen J, Ma S, Liu Q, Huang L, Chen X, Lou K, Wang W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm Sin B 2018; 8:320-338. [PMID: 29881672 PMCID: PMC5989919 DOI: 10.1016/j.apsb.2018.03.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/19/2022] Open
Abstract
Multimodality optical imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy, important in disease diagnosis and treatment. In this review, we focus on recent developments of optical fluorescence imaging (OFI) probe integration with other imaging modalities such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), and photoacoustic imaging (PAI). The imaging technologies are briefly described in order to introduce the strengths and limitations of each techniques and the need for further multimodality optical imaging probe development. The emphasis of this account is placed on how design strategies are currently implemented to afford physicochemically and biologically compatible multimodality optical fluorescence imaging probes. We also present studies that overcame intrinsic disadvantages of each imaging technique by multimodality approach with improved detection sensitivity and accuracy.
Collapse
Affiliation(s)
- Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Junwei Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Shengnan Ma
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Lixian Huang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Xiani Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyan Lou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, and State Key Laboratory of Bioengineering Reactor, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131-0001, USA
| |
Collapse
|
35
|
Near-infrared BODIPY-paclitaxel conjugates assembling organic nanoparticles for chemotherapy and bioimaging. J Colloid Interface Sci 2018; 514:584-591. [DOI: 10.1016/j.jcis.2017.12.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022]
|
36
|
Lv Y, Liu M, Zhang Y, Wang X, Zhang F, Li F, Bao WE, Wang J, Zhang Y, Wei W, Ma G, Zhao L, Tian Z. Cancer Cell Membrane-Biomimetic Nanoprobes with Two-Photon Excitation and Near-Infrared Emission for Intravital Tumor Fluorescence Imaging. ACS NANO 2018; 12:1350-1358. [PMID: 29338190 DOI: 10.1021/acsnano.7b07716] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biomimetic fluorescent nanoprobes capable of emitting near-infrared (NIR) fluorescence (λmax ≈ 720 nm) upon excitation of 800 nm light were developed. The key conjugated polymer enabled two-photon absorption and Förster resonance energy transfer (FRET) processes within the nanoprobes, which imparted the nanoprobes with ideal NIR-incoming-NIR-outgoing fluorescence features. The cancer cell membrane (CM) coating endowed these nanoprobes with perfect biocompatibility and highly specific targeting ability to homologous tumors. It was believed that CM encapsulation provided an additional protecting layer for the photoactive components residing in the core of nanoprobes for retaining their intrinsic fluorescing ability in the physiological milieu. The long-term structural integrity, excellent photostability (fluorescence decrease <10% upon 30 min illumination of 800 nm pulse laser), high NIR fluorescence quantum yield (∼20%), and long in vivo circulation time of the target nanoprobes were also confirmed. The ability of these feature-packed nanoprobes for circumventing the challenges of absorption and light scattering caused by cellular structures and tissues was definitely confirmed via in vivo and in vitro experiments. The superior performances of these nanoprobes in terms of fluorescence signaling as well as targeting specificity were verified in intravital fluorescence imaging on tumor-bearing model mice. Specifically, these nanoprobes unequivocally enabled high-resolution visualization of the fine heterogeneous architectures of intravital tumor tissue, which proclaims the great potential of this type of probe for high-contrast fluorescence detection of thick biological samples in practical applications.
Collapse
Affiliation(s)
- Yanlin Lv
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Ming Liu
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
- School of Materials Science and Engineering, Wuhan Institute of Technology , Wuhan 403052, P. R. China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Xuefei Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Fan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Wei-Er Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yuanlin Zhang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, CAS , Beijing 100190, P. R. China
| | - Liancheng Zhao
- School of Materials Science and Engineering, Harbin Institute of Technology , Harbin 150001, P. R. China
| | - Zhiyuan Tian
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| |
Collapse
|
37
|
Chauhan DS, Prasad R, Devrukhkar J, Selvaraj K, Srivastava R. Disintegrable NIR Light Triggered Gold Nanorods Supported Liposomal Nanohybrids for Cancer Theranostics. Bioconjug Chem 2018; 29:1510-1518. [PMID: 29281790 DOI: 10.1021/acs.bioconjchem.7b00801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, facile synthesis and application of targeted, dual therapeutic gold nanorods-liposome (GNR-Lipos) nanohybrid for imaging guided photothermal therapy and chemotherapy is investigated. The dual therapeutic GNR-Lipos nanohybrid consists of GNR supported, and doxorubicin (DOX) loaded liposome. GNRs not only serve as a photothermal agent and increase the drug release in intracellular environment of cancer cells, but also provide mechanical strength to liposomes by being decorated both inside and outside of bilayer surfaces. The designed nanohybrid shows a remarkable response for synergistic chemophotothermal therapy compared to only chemotherapy or photothermal therapy. The NIR response, efficient uptake by the cells, disintegration of GNR-Lipos nanohybrid, and synergistic therapeutic effect of photothermal and chemotherapy over breast cancer cells MDA-MB-231 are studied for the better development of a biocompatible nanomaterial based multifunctional cancer theranostic agent.
Collapse
Affiliation(s)
- Deepak S Chauhan
- Department of Biosciences and Bioengineering , IIT Bombay , Powai, Mumbai - 400076 , India
| | | | - Janhavi Devrukhkar
- Department of Biosciences and Bioengineering , IIT Bombay , Powai, Mumbai - 400076 , India
| | | | - Rohit Srivastava
- Department of Biosciences and Bioengineering , IIT Bombay , Powai, Mumbai - 400076 , India
| |
Collapse
|
38
|
Chen D, Long Z, Dang Y, Chen L. A novel fluorescent probe with red emission and a large Stokes shift for selective imaging of endogenous cysteine in living cells. Analyst 2018; 143:5779-5784. [DOI: 10.1039/c8an01657g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A new probe ANT selectively mapped endogenous Cys in living cells with bright red-emission and a large Stokes shift.
Collapse
Affiliation(s)
- Dugang Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Zi Long
- Engineering Research Center of Nano-Geomaterials of Ministry of Education
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan 430074
- P. R. China
| | - Yecheng Dang
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| | - Li Chen
- Key Laboratory for Green Chemical Process of Ministry of Education
- School of Chemical Engineering and Pharmacy
- Wuhan Institute of Technology
- Wuhan 430205
- P. R. China
| |
Collapse
|
39
|
Philips DS, Ghosh S, Sudheesh KV, Suresh CH, Ajayaghosh A. An Unsymmetrical Squaraine-Dye-Based Chemical Platform for Multiple Analyte Recognition. Chemistry 2017; 23:17973-17980. [DOI: 10.1002/chem.201703645] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Divya S. Philips
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Samrat Ghosh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Karivachery V. Sudheesh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Cherumuttathu H. Suresh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division; CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-National Institute for Interdisciplinary Science; and Technology (CSIR-NIIST); Trivandrum 695019 India
| |
Collapse
|
40
|
Xiao H, Wu C, Li P, Gao W, Zhang W, Zhang W, Tong L, Tang B. Ratiometric photoacoustic imaging of endoplasmic reticulum polarity in injured liver tissues of diabetic mice. Chem Sci 2017; 8:7025-7030. [PMID: 29147529 PMCID: PMC5642195 DOI: 10.1039/c7sc02330h] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/07/2017] [Indexed: 01/08/2023] Open
Abstract
As one of the complications of diabetes, liver injury results in significant hazards. Therefore, accurately diagnosing diabetes-induced liver injury beforehand is crucial for the warning and treatment of hepatic diseases. Diabetes-induced liver injury can cause changes in the microstructure and morphology of liver tissue, leading to changes in the hydrophilic and hydrophobic domains in the endoplasmic reticulum (ER), which is closely associated with changes in cellular ER polarity. So, differences in the ER polarity can indicate the degree of diabetes-induced liver injury. Herein, we develop a new fluorescent and photoacoustic dual-mode probe, ER-P, for detection of the ER polarity of liver tissue in normal and diabetic mice. Upon excitation with a 633 nm laser, ER-P showed increasing fluorescence intensity at 800 nm accompanying a decline in the polarity. Due to its polarity-sensitivity, ER-P was utilized for confocal fluorescence imaging in live cells, and the results demonstrate that ER-P can exclusively accumulate in the ER and indicate an increase in the polarity during ER stress. Importantly, ER-P displayed different absorbance intensities at 700 nm and 800 nm in different polarity environments because of intramolecular charge transfer. The photoacoustic intensity ratios between 700 nm and 800 nm will enable quantification of polarity to be achieved. The ratiometric photoacoustic imaging data demonstrate that the polarity of the liver tissue of diabetic mice is higher than that of the liver tissue of normal mice. Meanwhile, after treatment with the antidiabetic drug metformin, diabetic mice exhibit a reduced polarity environment in their liver tissue. The proposed study may serve as a new approach for the early diagnosis and therapeutic evaluation of diabetes-induced liver injury.
Collapse
Affiliation(s)
- Haibin Xiao
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Chuanchen Wu
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Gao
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Lili Tong
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| |
Collapse
|
41
|
Banala S, Fokong S, Brand C, Andreou C, Kräutler B, Rueping M, Kiessling F. Quinone-fused porphyrins as contrast agents for photoacoustic imaging. Chem Sci 2017; 8:6176-6181. [PMID: 28989649 PMCID: PMC5628350 DOI: 10.1039/c7sc01369h] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Photoacoustic (PA) imaging is an emerging non-invasive diagnostic modality with many potential clinical applications in oncology, rheumatology and the cardiovascular field. For this purpose, there is a high demand for exogenous contrast agents with high absorption coefficients in the optical window for tissue imaging, i.e. the near infrared (NIR) range between 680 and 950 nm. We herein report the photoacoustic properties of quinone-fused porphyrins inserted with different transition metals as new highly promising candidates. These dyes exhibit intense NIR absorption, a lack of fluorescence emission, and PA sensitivity in concentrations below 3 nmol mL-1. In this context, the highest PA signal was obtained with a Zn(ii) inserted dye. Furthermore, this dye was stable in blood serum and free thiol solution and exhibited negligible cell toxicity. Additionally, the Zn(ii) probe could be detected with an up to 3.2 fold higher PA intensity compared to the clinically most commonly used PA agent, ICG. Thus, further exploration of the 'quinone-fusing' approach to other chromophores may be an efficient way to generate highly potent PA agents that do not fluoresce and shift their absorption into the NIR range.
Collapse
Affiliation(s)
- Srinivas Banala
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
| | - Stanley Fokong
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| | - Christian Brand
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Chrysafis Andreou
- Department of Radiology , Memorial Sloan Kettering Cancer Center , 1275 York Avenue , New York , NY 10065 , USA
| | - Bernhard Kräutler
- Institute of Organic Chemistry , University of Innsbruck , Innrain 80-82 , A6020 , Innsbruck , Austria
| | - Magnus Rueping
- Institute of Organic Chemistry , RWTH Aachen University , Landoltweg 1 , D-52074 Aachen , Germany
- KAUST Catalysis Center (KCC) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging , University Clinic , RWTH Aachen University , Pauwelstraße 30 , D-52074 Aachen , Germany . ; ; Tel: +49 241 8085566
| |
Collapse
|
42
|
Cherumukkil S, Ghosh S, Praveen VK, Ajayaghosh A. An unprecedented amplification of near-infrared emission in a Bodipy derived π-system by stress or gelation. Chem Sci 2017; 8:5644-5649. [PMID: 28989602 PMCID: PMC5621002 DOI: 10.1039/c7sc01696d] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 06/08/2017] [Indexed: 12/22/2022] Open
Abstract
A meso-substituted Bodipy derived π-gelator exhibits amplified near-infrared (NIR) emission upon shearing of its film from n-decane or drying of its gel from DMSO.
We report an unprecedented strategy to generate and amplify near-infrared (NIR) emission in an organic chromophore by mechanical stress or gelation pathways. A greenish-yellow emitting film of π-extended Bodipy-1, obtained from n-decane, became orange-red upon mechanical shearing, with a 15-fold enhancement in NIR emission at 738 nm. Alternatively, a DMSO gel of Bodipy-1 exhibited a 7-fold enhancement in NIR emission at 748 nm with a change in emission color from yellow to orange-red upon drying. The reason for the amplified NIR emission in both cases is established from the difference in chromophore packing, by single crystal analysis of a model compound (Bodipy-2), which also exhibited a near identical emission spectrum with red to NIR emission (742 nm). Comparison of the emission features and WAXS and FT-IR data of the sheared n-decane film and the DMSO xerogel with the single crystal data supports a head-to-tail slipped arrangement driven by the N–H···F–B bonding in the sheared or xerogel states, which facilitates strong exciton coupling and the resultant NIR emission.
Collapse
Affiliation(s)
- Sandeep Cherumukkil
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Samrat Ghosh
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Vakayil K Praveen
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section , Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) , Thiruvananthapuram-695019 , India . .,Academy of Scientific and Innovative Research (AcSIR) , CSIR-NIIST Campus , Thiruvananthapuram-695019 , India
| |
Collapse
|
43
|
Saranya G, Anees P, Joseph MM, Maiti KK, Ajayaghosh A. A Ratiometric Near-Infrared Fluorogen for the Real Time Visualization of Intracellular Redox Status during Apoptosis. Chemistry 2017; 23:7191-7195. [PMID: 28375562 DOI: 10.1002/chem.201700839] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/14/2022]
Abstract
Direct monitoring of apoptotic progression is a major step forward for the early assessment of therapeutic efficacy of certain treatments and the accurate evaluation of the spread of a disease. Here, the regulatory role of glutathione (GSH) is explored as a potential biomarker for tracking apoptosis. For this purpose, a near- infrared (NIR) squaraine dye is introduced that is capable of sensing GSH in a ratiometric manner by switching its emission from NIR (690 nm) to visible region (560 nm). The favorable biocompatible attributes of the probe facilitated the real-time monitoring of apoptotic process in line with the conventional apoptotic assay. Furthermore, the robust nature of the probe was utilized for the quantitative estimation of GSH during different stages of apoptosis. Through this study, an easy and reliable method of assaying apoptosis is demonstrated, which can provide valuable insights in translational clinical research.
Collapse
Affiliation(s)
- Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Palapuravan Anees
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Manu M Joseph
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India
| | - Kaustabh K Maiti
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| | - Ayyappanpillai Ajayaghosh
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram, 695019, India
| |
Collapse
|
44
|
Xiong L, Ma J, Huang Y, Wang Z, Lu Z. Highly Sensitive Squaraine-Based Water-Soluble Far-Red/Near-Infrared Chromofluorogenic Thiophenol Probe. ACS Sens 2017; 2:599-605. [PMID: 28723193 DOI: 10.1021/acssensors.7b00151] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A squaraine-based far-red/near-infrared fluorescent probe (SQ-DNBS) was exploited for thiophenol detection. SQ-DNBS is a colorimetric and "off-on" fluorometric dual-channel "naked-eye" chemosensor showing high selectivity, high sensitivity (detection limit: 9.9 nM), and rapid response to thiophenol in aqueous solution. SQ-DNBS also can be used in practical applications for the detection of thiophenol in water samples. Photophysical and spectral characterization results revealed that the probing mechanism of SQ-DNBS toward thiophenol lies in the thiolate-mediated cleavage reaction. Our discovery demonstrates the potential of the arylmethylene-squaraine skeleton as a promising fluorophore unit to construct high-performance far-red/near-infrared chemosensors.
Collapse
Affiliation(s)
- Li Xiong
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jun Ma
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yan Huang
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zihe Wang
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhiyun Lu
- Key Laboratory of Green Chemistry
and Technology (Ministry of Education), College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
45
|
Liu Y, Yang Y, Sun M, Cui M, Fu Y, Lin Y, Li Z, Nie L. Highly specific noninvasive photoacoustic and positron emission tomography of brain plaque with functionalized croconium dye labeled by a radiotracer. Chem Sci 2017; 8:2710-2716. [PMID: 28451353 PMCID: PMC5399633 DOI: 10.1039/c6sc04798j] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/08/2017] [Indexed: 11/21/2022] Open
Abstract
Highly-efficient targeting probes are desirable for disease diagnosis and functional imaging. However, most of the current near-infrared (NIR) probes suffer from low signal conversion, insufficient photostability, poor probe specificity, and limited functions. Herein, an NIR ultrahigh absorbing croconium dye for amyloid (CDA) was designed and synthesized to specifically bind to cerebrovascular amyloid without antibody linkage. This unique CDA is able to strongly bind the hydrophobic channels of amyloid beta (Aβ) fiber with a very strong binding energy of -9.3 kcal mol-1. Our experimental results demonstrate that the amphipathic dye with an intense absorption peak at 800 nm generated a significant local temperature surge under low-power laser irradiation. Compared with representative prominent indocyanine green, Prussian blue, and gold nanorods, this probe can produce the strongest photoacoustic signal based on the same mass concentration. Labeled with radioactive 18F, this multifunctional probe allowed for the ultrasensitive photoacoustic tomography (PAT)/positron emission tomography (PET)/fluorescence imaging of Aβ plaques in the brain cortex. Featured with high spatial resolution and optical specificity, PAT was intrinsically suitable for imaging pathological sites on cortical vessels, whereas PET revealed whole-body anatomy with quantitative biodistribution information. Our study shows that a CDA-based functionalized dye aided with PAT and PET is capable of plaque diagnosis and localization.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Yanping Yang
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Mingjian Sun
- Department of Control Science and Engineering , Harbin Institute of Technology , 92 West Dazhi Street, Nan Gang District , Harbin 150001 , China
| | - Mengchao Cui
- Key Laboratory of Radiopharmaceuticals , Ministry of Education , College of Chemistry , Beijing Normal University , Beijing 100875 , China
| | - Ying Fu
- Department of Control Science and Engineering , Harbin Institute of Technology , 92 West Dazhi Street, Nan Gang District , Harbin 150001 , China
| | - Yu Lin
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology , Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , People's Republic of China . ;
| |
Collapse
|
46
|
Xie X, Li M, Tang F, Li Y, Zhang L, Jiao X, Wang X, Tang B. Combinatorial Strategy to Identify Fluorescent Probes for Biothiol and Thiophenol Based on Diversified Pyrimidine Moieties and Their Biological Applications. Anal Chem 2017; 89:3015-3020. [PMID: 28192974 DOI: 10.1021/acs.analchem.6b04608] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We present a feasible paradigm of developing original fluorescent probes for target biomolecules via combinatorial chemistry. In this developmental program, pyrimidine moieties were investigated and optimized as unique recognition units for thiols for the first time through a parallel synthesis in combination with a rapid screening process. This time-efficient and cost-saving process effectively facilitated the developmental progress and provided detailed structure-reactivity relationships. As a result, Res-Biot and Flu-Pht were identified as optimal fluorescent probes for biothiol and thiophenol, respectively. Their favorable characteristics and superior applicability have been well demonstrated in both chemical and biological contexts. In particular, Res-Biot enables the direct visualization of biothiol fluctuations during oxidative stress and cell apoptosis, indicating its suitability in elucidation of a specific pathophysiological process in both living cells and living animals. Meanwhile, Flu-Pht is competent to visualize thiophenols without the interference from endogenous biothiols in living cells.
Collapse
Affiliation(s)
- Xilei Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Mengmeng Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Fuyan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Yong Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Leilei Zhang
- Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 10050, China
| | - Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University , Jinan 250014, P. R. China
| |
Collapse
|
47
|
Huang J, Weinfurter S, Daniele C, Perciaccante R, Federica R, Della Ciana L, Pill J, Gretz N. Zwitterionic near infrared fluorescent agents for noninvasive real-time transcutaneous assessment of kidney function. Chem Sci 2017; 8:2652-2660. [PMID: 28553500 PMCID: PMC5431684 DOI: 10.1039/c6sc05059j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/08/2017] [Indexed: 12/28/2022] Open
Abstract
Zwitterionic near infrared fluorescent agents were developed for non-invasive real-time transcutaneous assessment of kidney function.
We developed novel zwitterionic near infrared (NIR) fluorescent agents (ABZWCY-HPβCD and AAZWCY-HPβCD), which exhibit favorable hydrophilicity, low plasma protein binding, high stability and non-toxicity. These attractive characteristics ensure that they are excreted rapidly, without any skin accumulation or metabolism in vivo. More importantly, zwitterionic HPβCD based agents can be efficiently filtrated by the glomerulus and completely excreted through the kidneys into urine without reabsorption or secretion in the kidney proximal tubule. Relying on these novel zwitterionic NIR agents and a transcutaneous device, we demonstrate a rapid, robust and biocompatible approach for assessing kidney function in rat models of both healthy rats and those with kidney disease, without the need for time-consuming blood/urine sample preparation. Our work provides a promising tool for in vivo real-time non-invasive kidney function assessment in preclinical applications.
Collapse
Affiliation(s)
- Jiaguo Huang
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Stefanie Weinfurter
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Cristina Daniele
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | | | - Rodeghiero Federica
- Cyanagen S.r.l. , Via degli Stradelli Guelfi 40/C , 40138 Bologna , BO , Italy
| | | | - Johannes Pill
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| | - Norbert Gretz
- Medical Research Center , Medical Faculty Mannheim , University of Heidelberg , Theodor-Kutzer-Ufer 1-3 , 68167 , Mannheim , Germany .
| |
Collapse
|
48
|
Xiao JW, Zhu WJ, Sun R, Xu YJ, Ge JF. Evaluation of electron or charge transfer processes between chromenylium-based fluorophores and protonated–deprotonated aniline. RSC Adv 2016. [DOI: 10.1039/c6ra19831g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PET and ICT processes in chromenylium hybrid fluorescent dyes.
Collapse
Affiliation(s)
- Jin-Wei Xiao
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Wei-Jin Zhu
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Ru Sun
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| | - Yu-Jie Xu
- School of Radiation Medicine and Protection
- Medicine College of Soochow University
- Suzhou 215123
- China
| | - Jian-Feng Ge
- College of Chemistry
- Chemical Engineering and Material Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
| |
Collapse
|