1
|
Miyabe K, Sakai M, Inaba S. Moment analysis method for the determination of permeation kinetics of coumarin at lipid bilayers of liposomes by using capillary electrophoresis. Electrophoresis 2024; 45:1885-1894. [PMID: 39329504 DOI: 10.1002/elps.202400100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/03/2024] [Accepted: 08/18/2024] [Indexed: 09/28/2024]
Abstract
A method was developed for studying mass transfer kinetics at lipid bilayers of liposomes. Elution peaks of coumarin were measured by liposome electrokinetic chromatography (LEKC). Four types of phospholipids having different alkyl chains were used for preparing liposomes, which were used as pseudo-stationary phases in LEKC systems. Rate constants of permeation across lipid bilayers of liposomes or of adsorption at lipid membranes were determined by analyzing the first absolute and second central moments of the elution peaks measured by LEKC. The rate constants of permeation or adsorption tend to decrease with an increase in the carbon number of the alkyl chains of phospholipids. It was demonstrated that the moment analysis of elution peak profiles measured by LEKC is effective for determining lipid membrane permeability or adsorption kinetics. Compared with other conventional techniques, the method has some advantages for studying mass transfer kinetics at lipid bilayers. Solute permeation across or solute adsorption at real lipid bilayers of liposomes is analyzed. The principle of the method is the analysis of separation behavior in LEKC, which is different from that of the other ones. It is expected that the method contributes to the kinetic study of mass transfer at lipid bilayers from various perspectives.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Mio Sakai
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| | - Shunta Inaba
- Department of Chemistry, Faculty of Science, Rikkyo University, Toshima-ku, Tokyo, Japan
| |
Collapse
|
2
|
Ono T, Tabata KV, Noji H, Morimoto J, Sando S. Each side chain of cyclosporin A is not essential for high passive permeability across lipid bilayers. RSC Adv 2023; 13:8394-8397. [PMID: 36922944 PMCID: PMC10010161 DOI: 10.1039/d3ra01358h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
We compared the passive permeability of cyclosporin A (CsA) derivatives with side chain deletions across lipid bilayers. CsA maintained passive permeability after losing any one of the side chains, which suggests that the propensity of the backbone of CsA is an important component for high passive permeability.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan .,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
3
|
Miyabe K, Inaba S, Umeda M. A study on attempt for determination of permeation kinetics of coumarin at lipid bilayer of liposomes by using capillary electrophoresis with moment analysis theory. J Chromatogr A 2023; 1687:463691. [PMID: 36542884 DOI: 10.1016/j.chroma.2022.463691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
It was tried to develop a moment analysis method for the determination of lipid membrane permeability. The first absolute and second central moments of elution peaks measured by liposome electrokinetic chromatography (LEKC) are analyzed by using moment equations. As a concrete example, elution peak profiles of coumarin in a LEKC system, in which liposomes consisting of 1-palmitoyl-2-oleoyl-sn‑glycero-3-phosphocholine (POPC) and phosphatidylserine (PS) are used as a pseudo-stationary phase, were analyzed. It seems that lipid membrane permeability of coumarin across the lipid bilayer of POPC/PS liposomes was measured by the moment analysis method because previous permeability measurements using parallel artificial membrane permeability assay (PAMPA) and Caco-2 cells indicated that coumarin is permeable across lipid bilayer. However, it was also pointed out that the moment analysis method with LEKC is not effective for the determination of lipid membrane permeability and that it provides information about adsorption/desorption kinetics at lipid bilayer of liposomes. Therefore, different moment equations were also developed for the determination of adsorption/desorption rate constants of coumarin from the LEKC data. It was demonstrated that permeation rate constants at lipid bilayer or adsorption/desorption rate constants can be determined from the LEKC data on the basis of moment analysis theory for the mass transfer phenomena of coumarin at the lipid bilayer of POPC/PS liposomes. Mass transfer kinetics of solutes at lipid bilayer should be determined under the conditions that liposomes originally be because they are self-assembling and dynamic systems formed through weak interactions between phospholipid monomers. The moment analysis method using LEKC is effective for the experimental determination of the mass transfer rate constants at the lipid bilayer of liposomes because neither immobilization nor chemical modification of liposomes is necessary when LEKC data are measured. It is expected that the results of this study contribute to the dissemination of an opportunity for the determination of permeation rate constants or adsorption/desorption rate constants at the lipid bilayer of liposomes to many researchers because capillary electrophoresis is widespread.
Collapse
Affiliation(s)
- Kanji Miyabe
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan.
| | - Shunta Inaba
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| | - Momoko Umeda
- Department of Chemistry, Faculty of Science, Rikkyo University, 3-34-1, Nishi-Ikebukuro, Toshimaku, Tokyo 171-8501, Japan
| |
Collapse
|
4
|
Ono T, Tabata KV, Goto Y, Saito Y, Suga H, Noji H, Morimoto J, Sando S. Label-free quantification of passive membrane permeability of cyclic peptides across lipid bilayers: penetration speed of cyclosporin A across lipid bilayers. Chem Sci 2023; 14:345-349. [PMID: 36687349 PMCID: PMC9811578 DOI: 10.1039/d2sc05785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Cyclic peptides that passively penetrate cell membranes are under active investigation in drug discovery research. PAMPA (Parallel Artificial Membrane Permeability Assay) and Caco-2 assay are mainly used for permeability measurements in these studies. However, permeability rates across the artificial membrane and the cell monolayer used for these assays are intrinsically different from the ones across pure lipid bilayers. There are also membrane permeability assays for peptides using reconstructed lipid bilayers, but they require labeling for detection, and the absolute membrane permeability of the natural peptides themselves could not be determined. Here, we constructed a lipid bilayer permeability assay and realized the first label-free measurements of the lipid bilayer permeability of cyclic peptides. Quantitative permeability values across lipid bilayers were determined for model cyclic hexapeptides and an important natural product, cyclosporin A (CsA). The obtained quantitative permeability values will provide new and advanced knowledge about the passive permeability of cyclic peptides.
Collapse
Affiliation(s)
- Takahiro Ono
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Yutaro Saito
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of TokyoBunkyo-kuTokyo 113-0033Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Jumpei Morimoto
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| | - Shinsuke Sando
- Department of Chemistry & Biotechnology, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo7-3-1 HongoBunkyo-kuTokyo 113-8656Japan
| |
Collapse
|
5
|
Albanese P, Cataldini S, Ren CZJ, Valletti N, Brunetti J, Chen JLY, Rossi F. Light-Switchable Membrane Permeability in Giant Unilamellar Vesicles. Pharmaceutics 2022; 14:2777. [PMID: 36559270 PMCID: PMC9780837 DOI: 10.3390/pharmaceutics14122777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In this work, giant unilamellar vesicles (GUVs) were synthesized by blending the natural phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with a photoswitchable amphiphile (1) that undergoes photoisomerization upon irradiation with UV-A (E to Z) and blue (Z to E) light. The mixed vesicles showed marked changes in behavior in response to UV light, including changes in morphology and the opening of pores. The fine control of membrane permeability with consequent cargo release could be attained by modulating either the UV irradiation intensity or the membrane composition. As a proof of concept, the photocontrolled release of sucrose from mixed GUVs is demonstrated using microscopy (phase contrast) and confocal studies. The permeability of the GUVs to sucrose could be increased to ~4 × 10-2 μm/s when the system was illuminated by UV light. With respect to previously reported systems (entirely composed of synthetic amphiphiles), our findings demonstrate the potential of photosensitive GUVs that are mainly composed of natural lipids to be used in medical and biomedical applications, such as targeted drug delivery and localized topical treatments.
Collapse
Affiliation(s)
- Paola Albanese
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| | - Simone Cataldini
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Chloe Z-J Ren
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1142, New Zealand
| | - Nadia Valletti
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| | - Jlenia Brunetti
- MedBiotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Jack L-Y Chen
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, University of Siena, Via Aldo Moro, 53100 Siena, Italy
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Federico Rossi
- Department of Earth, Environmental & Physical Sciences, University of Siena, Pian Mantellini 44, 53100 Siena, Italy
| |
Collapse
|
6
|
The next frontier in ADME science: Predicting transporter-based drug disposition, tissue concentrations and drug-drug interactions in humans. Pharmacol Ther 2022; 238:108271. [DOI: 10.1016/j.pharmthera.2022.108271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 12/25/2022]
|
7
|
Boscariol R, Oliveira Junior JM, Baldo DA, Balcão VM, Vila MM. Transdermal permeation of curcumin promoted by choline geranate ionic liquid: Potential for the treatment of skin diseases. Saudi Pharm J 2022; 30:382-397. [PMID: 35527836 PMCID: PMC9068761 DOI: 10.1016/j.jsps.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/29/2022] [Indexed: 12/25/2022] Open
Abstract
The transdermal permeation of curcumin aided by choline and geranic acid ionic liquid (CAGE-IL) was addressed as a potential treatment for skin diseases. An in-depth analysis of the effect of CAGE-IL concentration in the enhancement of transdermal permeation of curcumin was performed, and the results were modelled via nonlinear regression analysis. The results obtained showed that a low percentage of CAGE-IL (viz. 2.0%, w/w) was effective in disrupting the skin structure in a transient fashion, facilitating the passage of curcumin dissolved in it.
Collapse
Affiliation(s)
- Rodrigo Boscariol
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - José M. Oliveira Junior
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Denicezar A. Baldo
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| | - Victor M. Balcão
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Marta M.D.C. Vila
- PhageLab – Laboratory of Biofilms and Bacteriophages, University of Sorocaba, 18023-000 Sorocaba, SP, Brazil
| |
Collapse
|
8
|
Strutt R, Sheffield F, Barlow NE, Flemming AJ, Harling JD, Law RV, Brooks NJ, Barter LMC, Ces O. UV-DIB: label-free permeability determination using droplet interface bilayers. LAB ON A CHIP 2022; 22:972-985. [PMID: 35107110 DOI: 10.1039/d1lc01155c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Simple diffusion of molecular entities through a phospholipid bilayer, is a phenomenon of great importance to the pharmaceutical and agricultural industries. Current model lipid systems to probe this typically only employ fluorescence as a readout, thus limiting the range of assessable chemical matter that can be studied. We report a new technology platform, the UV-DIB, which facilitates label free measurement of small molecule translocation rates. This is based upon the coupling of droplet interface bilayer technology with implemented fiber optics to facilitate analysis via ultraviolet spectroscopy, in custom designed PMMA wells. To improve on current DIB technology, the platform was designed to be reusable, with a high sampling rate and a limit of UV detection in the low μM regime. We demonstrate the use of our system to quantify passive diffusion in a reproducible and rapid manner where the system was validated by investigating multiple permeants of varying physicochemical properties across a range of lipid interfaces, each demonstrating differing kinetics. Our system permits the interrogation of structural dependence on the permeation rate of a given compound. We present this ability from two structural perspectives, that of the membrane, and the permeant. We observed a reduction in permeability between pure DOPC and DPhPC interfaces, concurring with literature and demonstrating our ability to study the effects of lipid composition on permeability. In relation to the effects of permeant structure, our device facilitated the rank ordering of various compounds from the xanthine class of compounds, where the structure of each permeant differed by a single group alteration. We found that DIBs were stable up to 5% DMSO, a molecule often used to aid solubilisation of pharmaceutical and agrochemical compounds. The ability of our device to rank-order compounds with such minor structural differences provides a level of precision that is rarely seen in current, industrially applied technologies.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Felix Sheffield
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nathan E Barlow
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Anthony J Flemming
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - John D Harling
- Medicinal Chemistry, GlaxoSmithKline, Stevenage, SG1 2NY, UK
| | - Robert V Law
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK.
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, Shepherd's Bush, London, W12 0BZ, UK
| |
Collapse
|
9
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK, Karpichev Y. Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. CHEMICAL THERMODYNAMICS AND THERMAL ANALYSIS 2021; 3-4:100012. [DOI: 10.1016/j.ctta.2021.100012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
10
|
Banjare MK, Behera K, Banjare RK, Pandey S, Ghosh KK, Karpichev Y. Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. CHEMICAL THERMODYNAMICS AND THERMAL ANALYSIS 2021; 3-4:100012. [DOI: https:/doi.org/10.1016/j.ctta.2021.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
|
11
|
Tănase MA, Raducan A, Oancea P, Diţu LM, Stan M, Petcu C, Scomoroşcenco C, Ninciuleanu CM, Nistor CL, Cinteza LO. Mixed Pluronic-Cremophor Polymeric Micelles as Nanocarriers for Poorly Soluble Antibiotics-The Influence on the Antibacterial Activity. Pharmaceutics 2021; 13:pharmaceutics13040435. [PMID: 33804932 PMCID: PMC8063824 DOI: 10.3390/pharmaceutics13040435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
In this work, novel polymeric mixed micelles from Pluronic F127 and Cremophor EL were investigated as drug delivery systems for Norfloxacin as model antibiotic drug. The optimal molar ratio of surfactants was determined, in order to decrease critical micellar concentration (CMC) and prepare carriers with minimal surfactant concentrations. The particle size, zeta potential, and encapsulation efficiency were determined for both pure and mixed micelles with selected composition. In vitro release kinetics of Norfloxacin from micelles show that the composition of surfactant mixture generates tunable extended release. The mixed micelles exhibit good biocompatibility against normal fibroblasts MRC-5 cells, while some cytotoxicity was found in all micellar systems at high concentrations. The influence of the surfactant components in the carrier on the antibacterial properties of Norfloxacin was investigated. The drug loaded mixed micellar formulation exhibit good activity against clinical isolated strains, compared with the CLSI recommended standard strains (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29213, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922). P. aeruginosa 5399 clinical strain shows low sensitivity to Norfloxacin in all tested micelle systems. The results suggest that Cremophor EL-Pluronic F127 mixed micelles can be considered as novel controlled release delivery systems for hydrophobic antimicrobial drugs.
Collapse
Affiliation(s)
- Maria Antonia Tănase
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Adina Raducan
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Petruţa Oancea
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
| | - Lia Mara Diţu
- Microbiology Department, Faculty of Biology, University of Bucharest, 60101 Bucharest, Romania;
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania;
| | - Cristian Petcu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
- Correspondence: (C.P.); (L.O.C.)
| | - Cristina Scomoroşcenco
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Cristina Lavinia Nistor
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Polymer Department, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (C.M.N.); (C.L.N.)
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania; (M.A.T.); (A.R.); (P.O.)
- Correspondence: (C.P.); (L.O.C.)
| |
Collapse
|
12
|
Korner JL, Stephenson EB, Elvira KS. A bespoke microfluidic pharmacokinetic compartment model for drug absorption using artificial cell membranes. LAB ON A CHIP 2020; 20:1898-1906. [PMID: 32322848 DOI: 10.1039/d0lc00263a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Early prediction of the rate and extent of intestinal absorption is vital for the efficient development of orally administered drugs. Here we show a new type of pharmacokinetic compartment model that shows a threefold improvement in the prediction of molecular absorption in the jejunum than the current state-of-the-art in vitro technique, parallel artificial membrane permeability assays (PAMPA). Our three-stage pharmacokinetic compartment model uses microfluidic droplets and bespoke, biomimetic artificial cells to model the path of a drug proxy from the intestinal space into the blood via an enterocyte. Each droplet models the buffer and salt composition of each pharmacokinetic compartment. The artificial cell membranes are made from the major components of human intestinal cell membranes (l-α-phosphatidylcholine, PC and l-α-phosphatidylethanolamine, PE) and sizes are comparable to human cells (∼0.5 nL). We demonstrate the use of the microfluidic platform to quantify common pharmacokinetic parameters such as half-life, flux and the apparent permeability coefficient (Papp). Our determined Papp more closely resembles that of actual intestinal tissue than PAMPA, which overestimates it by a factor of 20.
Collapse
Affiliation(s)
- Jaime L Korner
- Department of Chemistry, University of Victoria, Victoria, BC, Canada.
| | | | | |
Collapse
|
13
|
Mohanan G, Nair KS, Nampoothiri KM, Bajaj H. Engineering bio-mimicking functional vesicles with multiple compartments for quantifying molecular transport. Chem Sci 2020; 11:4669-4679. [PMID: 34122921 PMCID: PMC8159255 DOI: 10.1039/d0sc00084a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Controlled design of giant unilamellar vesicles under defined conditions has vast applications in the field of membrane and synthetic biology. Here, we bio-engineer bacterial-membrane mimicking models of controlled size under defined salt conditions over a range of pH. A complex bacterial lipid extract is used for construction of physiologically relevant Gram-negative membrane mimicking vesicles whereas a ternary mixture of charged lipids (DOPG, cardiolipin and lysyl-PG) is used for building Gram-positive bacterial-membrane vesicles. Furthermore, we construct stable multi-compartment biomimicking vesicles using the gel-assisted swelling method. Importantly, we validate the bio-application of the bacterial vesicle models by quantifying diffusion of chemically synthetic amphoteric antibiotics. The transport rate is pH-responsive and depends on the lipid composition, based on which a permeation model is proposed. The permeability properties of antimicrobial peptides reveal pH dependent pore-forming activity in the model vesicles. Finally, we demonstrate the functionality of the vesicles by quantifying the uptake of membrane-impermeable molecules facilitated by embedded pore-forming proteins. We suggest that the bacterial vesicle models developed here can be used to understand fundamental biological processes like the peptide assembly mechanism or bacterial cell division and will have a multitude of applications in the bottom-up assembly of a protocell. Giant vesicle functional models mimicking a bacterial membrane under physiological conditions are constructed.![]()
Collapse
Affiliation(s)
- Gayathri Mohanan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Karthika S Nair
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - K Madhavan Nampoothiri
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| | - Harsha Bajaj
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST) Trivandrum 695019 Kerala India
| |
Collapse
|
14
|
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes. J Mol Biol 2019; 431:3531-3546. [DOI: 10.1016/j.jmb.2019.03.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
15
|
Ramadurai S, Sarangi NK, Maher S, MacConnell N, Bond AM, McDaid D, Flynn D, Keyes TE. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8095-8109. [PMID: 31120755 DOI: 10.1021/acs.langmuir.9b01028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Many drugs have intracellular or membrane-associated targets, thus understanding their interaction with the cell membrane is of value in drug development. Cell-free tools used to predict membrane interactions should replicate the molecular organization of the membrane. Microcavity array-supported lipid bilayer (MSLB) platforms are versatile biophysical models of the cell membrane that combine liposome-like membrane fluidity with stability and addressability. We used an MSLB herein to interrogate drug-membrane interactions across seven drugs from different classes, including nonsteroidal anti-inflammatories: ibuprofen (Ibu) and diclofenac (Dic); antibiotics: rifampicin (Rif), levofloxacin (Levo), and pefloxacin (Pef); and bisphosphonates: alendronate (Ale) and clodronate (Clo). Fluorescence lifetime correlation spectroscopy (FLCS) and electrochemical impedance spectroscopy (EIS) were used to evaluate the impact of drug on 1,2-dioleyl- sn-glycerophosphocholine and binary bilayers over physiologically relevant drug concentrations. Although FLCS data revealed Ibu, Levo, Pef, Ale, and Clo had no impact on lipid lateral mobility, EIS, which is more sensitive to membrane structural change, indicated modest but significant decreases to membrane resistivity consistent with adsorption but weak penetration of drugs at the membrane. Ale and Clo, evaluated at pH 5.25, did not impact the impedance of the membrane except at concentrations exceeding 4 mM. Conversely, Dic and Rif dramatically altered bilayer fluidity, suggesting their translocation through the bilayer, and EIS data showed that resistivity of the membrane decreased substantially with increasing drug concentration. Capacitance changes to the bilayer in most cases were insignificant. Using a Langmuir-Freundlich model to fit the EIS data, we propose Rsat as an empirical value that reflects permeation. Overall, the data indicate that Ibu, Levo, and Pef adsorb at the interface of the lipid membrane but Dic and Rif interact strongly, permeating the membrane core modifying the water/ion permeability of the bilayer structure. These observations are discussed in the context of previously reported data on drug permeability and log P.
Collapse
Affiliation(s)
- Sivaramakrishnan Ramadurai
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nirod Kumar Sarangi
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Sean Maher
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Nicola MacConnell
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| | - Alan M Bond
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | | | | | - Tia E Keyes
- School of Chemical Sciences and National Centre for Sensor Research , Dublin City University , Dublin 9 , Ireland
| |
Collapse
|
16
|
Heo P, Ramakrishnan S, Coleman J, Rothman JE, Fleury JB, Pincet F. Highly Reproducible Physiological Asymmetric Membrane with Freely Diffusing Embedded Proteins in a 3D-Printed Microfluidic Setup. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900725. [PMID: 30977975 DOI: 10.1002/smll.201900725] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Indexed: 06/09/2023]
Abstract
Experimental setups to produce and to monitor model membranes have been successfully used for decades and brought invaluable insights into many areas of biology. However, they all have limitations that prevent the full in vitro mimicking and monitoring of most biological processes. Here, a suspended physiological bilayer-forming chip is designed from 3D-printing techniques. This chip can be simultaneously integrated to a confocal microscope and a path-clamp amplifier. It is composed of poly(dimethylsiloxane) and consists of a ≈100 µm hole, where the horizontal planar bilayer is formed, connecting two open crossed-channels, which allows for altering of each lipid monolayer separately. The bilayer, formed by the zipping of two lipid leaflets, is free-standing, horizontal, stable, fluid, solvent-free, and flat with the 14 types of physiologically relevant lipids, and the bilayer formation process is highly reproducible. Because of the two channels, asymmetric bilayers can be formed by making the two lipid leaflets of different composition. Furthermore, proteins, such as transmembrane, peripheral, and pore-forming proteins, can be added to the bilayer in controlled orientation and keep their native mobility and activity. These features allow in vitro recapitulation of membrane process close to physiological conditions.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| | - Sathish Ramakrishnan
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Jeff Coleman
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James E Rothman
- Ecole Normale Supérieure, PSL University, Paris, 75005, France
| | - Jean-Baptiste Fleury
- Department of Experimental Physics and Center for Biophysics, Saarland University, Saarbruecken, D-66123, Germany
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Université Sorbonne Paris Cité, Paris, 75005, France
| |
Collapse
|
17
|
Schaich M, Cama J, Al Nahas K, Sobota D, Sleath H, Jahnke K, Deshpande S, Dekker C, Keyser UF. An Integrated Microfluidic Platform for Quantifying Drug Permeation across Biomimetic Vesicle Membranes. Mol Pharm 2019; 16:2494-2501. [PMID: 30994358 DOI: 10.1021/acs.molpharmaceut.9b00086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The low membrane permeability of candidate drug molecules is a major challenge in drug development, and insufficient permeability is one reason for the failure of antibiotic treatment against bacteria. Quantifying drug transport across specific pathways in living systems is challenging because one typically lacks knowledge of the exact lipidome and proteome of the individual cells under investigation. Here, we quantify drug permeability across biomimetic liposome membranes, with comprehensive control over membrane composition. We integrate the microfluidic octanol-assisted liposome assembly platform with an optofluidic transport assay to create a complete microfluidic total analysis system for quantifying drug permeability. Our system enables us to form liposomes with charged lipids mimicking the negative charge of bacterial membranes at physiological pH and salt concentrations, which proved difficult with previous liposome formation techniques. Furthermore, the microfluidic technique yields an order of magnitude more liposomes per experiment than previous assays. We demonstrate the feasibility of the assay by determining the permeability coefficient of norfloxacin and ciprofloxacin across biomimetic liposomes.
Collapse
Affiliation(s)
- Michael Schaich
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Jehangir Cama
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K.,Living Systems Institute , University of Exeter , Stocker Road , Exeter EX4 4QD , U.K
| | - Kareem Al Nahas
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Diana Sobota
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Hannah Sleath
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| | - Kevin Jahnke
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K.,Department of Biophysical Chemistry , University of Heidelberg , Im Neuenheimer Feld 253 , D-69120 Heidelberg , Germany.,Department of Cellular Biophysics , Max Planck Institute for Medical Research , Jahnstraße 29 , D-69120 Heidelberg , Germany
| | - Siddharth Deshpande
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience , Delft University of Technology , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands
| | - Ulrich F Keyser
- Cavendish Laboratory , University of Cambridge , JJ Thomson Avenue , Cambridge CB3 0HE , U.K
| |
Collapse
|
18
|
Gayen A, Kumar D, Matheshwaran S, Chandra M. Unveiling the Modulating Role of Extracellular pH in Permeation and Accumulation of Small Molecules in Subcellular Compartments of Gram-negative Escherichia coli using Nonlinear Spectroscopy. Anal Chem 2019; 91:7662-7671. [PMID: 30986344 DOI: 10.1021/acs.analchem.9b00574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Quantitative evaluation of small molecule permeation and accumulation in Gram-negative bacteria is important for drug development against these bacteria. While these measurements are commonly performed at physiological pH, Escherichia coli and many other Enterobacteriaceae infect human gastrointestinal and urinary tracts, where they encounter different pH conditions. To understand how external pH affects permeation and accumulation of small molecules in E. coli cells, we apply second harmonic generation (SHG) spectroscopy using SHG-active antimicrobial compound malachite green as the probe molecule. Using SHG, we quantify periplasmic and cytoplasmic accumulations separately in live E. coli cells, which was never done before. Compartment-wise measurements reveal accumulation of the probe molecule in cytoplasm at physiological and alkaline pH, while entrapment in periplasm at weakly acidic pH and retention in external solution at highly acidic pH. Behind such disparity in localizations, up to 2 orders of magnitude reduction in permeability across the inner membrane at weakly acidic pH and outer membrane at highly acidic pH are found to play key roles. Our results unequivocally demonstrate the control of external pH over entry and compartment-wise distribution of small molecules in E. coli cells, which is a vital information and should be taken into account in antibiotic screening against E. coli and other Enterobacteriaceae members. In addition, our results demonstrate the ability of malachite green as an excellent SHG-indicator of changes of individual cell membrane and periplasm properties of live E. coli cells in response to external pH change from acidic to alkaline. This finding, too, has great importance, as there is barely any other molecular probe that can provide similar information.
Collapse
|
19
|
Russo G, Barbato F, Grumetto L, Philippe L, Lynen F, Goetz GH. Entry of therapeutics into the brain: Influence of exposed polarity calculated in silico and measured in vitro by supercritical fluid chromatography. Int J Pharm 2019; 560:294-305. [DOI: 10.1016/j.ijpharm.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
|
20
|
Palaiokostas M, Ding W, Shahane G, Orsi M. Effects of lipid composition on membrane permeation. SOFT MATTER 2018; 14:8496-8508. [PMID: 30346462 DOI: 10.1039/c8sm01262h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Passive permeation through lipid membranes is an essential process in biology. In vivo membranes typically consist of mixtures of lamellar and nonlamellar lipids. Lamellar lipids are characterized by their tendency to form lamellar sheet-like structures, which are predominant in nature. Nonlamellar lipids, when isolated, instead form more geometrically complex nonlamellar phases. While mixed lamellar/nonlamellar lipid membranes tend to adopt the ubiquitous lamellar bilayer structure, the presence of nonlamellar lipids is known to have profound effects on key membrane properties, such as internal distributions of stress and elastic properties, which in turn may alter related biological processes. This work focuses on one such process, i.e., permeation, by utilising atomistic molecular dynamics simulations in order to obtain transfer free energy profiles, diffusion profiles and permeation coefficients for a series of thirteen small molecules and drugs. Each permeant is tested on two bilayer membranes of different lipid composition, i.e., purely lamellar and mixed lamellar/nonlamellar. Our results indicate that the presence of nonlamellar lipids reduces permeation for smaller molecules (molecular weight < 100) but facilitates it for the largest ones (molecular weight > 100). This work represents an advancement towards the development of more realistic in silico permeability assays, which may have a substantial future impact in the area of rational drug design.
Collapse
Affiliation(s)
- Michail Palaiokostas
- School of Engineering and Materials Science, Queen Mary University of London, London, UK
| | | | | | | |
Collapse
|
21
|
Emami S, Su WC, Purushothaman S, Ngassam VN, Parikh AN. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses. Biophys J 2018; 115:1942-1955. [PMID: 30366629 DOI: 10.1016/j.bpj.2018.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Collapse
Affiliation(s)
- Shiva Emami
- Departments of Biomedical Engineering, University of California, Davis, California; Chemical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Chemistry, University of California, Davis, California
| | - Sowmya Purushothaman
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Viviane N Ngassam
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Departments of Biomedical Engineering, University of California, Davis, California; Chemistry, University of California, Davis, California; Chemical Engineering, University of California, Davis, California; Materials Science & Engineering, University of California, Davis, California.
| |
Collapse
|
22
|
Hermann KF, Neuhaus CS, Micallef V, Wagner B, Hatibovic M, Aschmann HE, Paech F, Alvarez-Sanchez R, Krämer SD, Belli S. Kinetics of lipid bilayer permeation of a series of ionisable drugs and their correlation with human transporter-independent intestinal permeability. Eur J Pharm Sci 2017; 104:150-161. [PMID: 28366650 DOI: 10.1016/j.ejps.2017.03.040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/21/2017] [Accepted: 03/29/2017] [Indexed: 12/28/2022]
Abstract
For low molecular weight drugs, lipid bilayer permeation is considered the major route for in vivo cell barrier passage. We recently introduced a fluorescence assay with liposomes to determine permeation kinetics of ionisable compounds across the lipid bilayer by monitoring drug-induced pH changes inside the liposomes. Here, we determined the permeability coefficients (PFLipP, FLipP for "Fluorescence Liposomal Permeability") across 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) bilayers of 35 ionisable drugs at pH6.0 and compared them to available in vivo human jejunal permeability (Peff) data. PFLipP values were furthermore compared with published Caco-2 cell permeability coefficients (PCaco-2), permeability coefficients determined with the parallel artificial membrane permeability assay (PAMPA) and with log D (pH6.0). The log PFLipP, corrected for predicted para-cellular diffusion, and log PCaco-2 correlated best with log Peff, with similar adjusted R2 (0.75 and 0.74, n=12). Our results suggest that transporter-independent intestinal drug absorption is predictable from liposomal permeability.
Collapse
Affiliation(s)
- Katharina F Hermann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Claudia S Neuhaus
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Virgine Micallef
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Björn Wagner
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Maja Hatibovic
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Hélène E Aschmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Franziska Paech
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Rubén Alvarez-Sanchez
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | - Stefanie D Krämer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.
| | - Sara Belli
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, CH-4070 Basel, Switzerland.
| |
Collapse
|
23
|
Barlow NE, Bolognesi G, Flemming AJ, Brooks NJ, Barter LMC, Ces O. Multiplexed droplet Interface bilayer formation. LAB ON A CHIP 2016; 16:4653-4657. [PMID: 27831583 DOI: 10.1039/c6lc01011c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present a simple method for the multiplexed formation of droplet interface bilayers (DIBs) using a mechanically operated linear acrylic chamber array. To demonstrate the functionality of the chip design, a lipid membrane permeability assay is performed. We show that multiple, symmetric DIBs can be created and separated using this robust low-cost approach.
Collapse
Affiliation(s)
- Nathan E Barlow
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| | - Guido Bolognesi
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| | - Anthony J Flemming
- Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK.
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| | - Laura M C Barter
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road, South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
24
|
Direct Optofluidic Measurement of the Lipid Permeability of Fluoroquinolones. Sci Rep 2016; 6:32824. [PMID: 27604156 PMCID: PMC5015079 DOI: 10.1038/srep32824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/11/2016] [Indexed: 11/17/2022] Open
Abstract
Quantifying drug permeability across lipid membranes is crucial for drug development. In addition, reduced membrane permeability is a leading cause of antibiotic resistance in bacteria, and hence there is a need for new technologies that can quantify antibiotic transport across biological membranes. We recently developed an optofluidic assay that directly determines the permeability coefficient of autofluorescent drug molecules across lipid membranes. Using ultraviolet fluorescence microscopy, we directly track drug accumulation in giant lipid vesicles as they traverse a microfluidic device while exposed to the drug. Importantly, our measurement does not require the knowledge of the octanol partition coefficient of the drug – we directly determine the permeability coefficient for the specific drug-lipid system. In this work, we report measurements on a range of fluoroquinolone antibiotics and find that their pH dependent lipid permeability can span over two orders of magnitude. We describe various technical improvements for our assay, and provide a new graphical user interface for data analysis to make the technology easier to use for the wider community.
Collapse
|