1
|
Alkabli J. Recent advances in the development of chitosan/hyaluronic acid-based hybrid materials for skin protection, regeneration, and healing: A review. Int J Biol Macromol 2024; 279:135357. [PMID: 39245118 DOI: 10.1016/j.ijbiomac.2024.135357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Biomaterials play vital roles in regenerative medicine, specifically in tissue engineering applications. They promote angiogenesis and facilitate tissue creation and repair. The most difficult aspect of this field is acquiring smart biomaterials that possess qualities and functions that either surpass or are on par with those of synthetic products. The biocompatibility, biodegradability, film-forming capacity, and hydrophilic nature of the non-sulfated glycosaminoglycans (GAGs) (hyaluronic acid (HA) and chitosan (CS)) have attracted significant attention. In addition, CS and HA possess remarkable inherent biological capabilities, such as antimicrobial, antioxidant, and anti-inflammatory properties. This review provides a comprehensive overview of the recent progress made in designing and fabricating CS/HA-based hybrid materials for dermatology applications. Various formulations utilizing CS/HA have been developed, including hydrogels, microspheres, films, foams, membranes, and nanoparticles, based on the fabrication protocol (physical or chemical). Each formulation aims to enhance the materials' remarkable biological properties while also addressing their limited stability in water and mechanical strength. Additionally, this review gave a thorough outline of future suggestions for enhancing the mechanical strength of CS/HA wound dressings, along with methods to include biomolecules to make them more useful in skin biomedicine applications.
Collapse
Affiliation(s)
- J Alkabli
- Department of Chemistry, College of Sciences and Arts-Alkamil, University of Jeddah, Jeddah 23218, Saudi Arabia.
| |
Collapse
|
2
|
Bokatyi AN, Dubashynskaya NV, Skorik YA. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr Polym 2024; 337:122145. [PMID: 38710553 DOI: 10.1016/j.carbpol.2024.122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024]
Abstract
Hyaluronic acid (HA) has emerged as a promising biopolymer for various biomedical applications due to its biocompatibility, biodegradability, and intrinsic ability to interact with cell surface receptors, making it an attractive candidate for drug delivery systems and tissue engineering. Chemical modification of HA has opened up versatile possibilities to tailor its properties, enabling the development of advanced drug delivery systems and biomaterials with enhanced functionalities and targeted applications. This review analyzes the strategies and applications of chemically modified HA in the field of drug delivery and biomaterial development. The first part of the review focuses on the different methods and functional groups used for the chemical modification of HA, highlighting the impact of these modifications on its physicochemical properties, degradation behavior and interactions with drugs. The second part of the review evaluates the use of chemically modified HA in the development of advanced biomedical materials including nano- and microparticles, hydrogels and mucoadhesive materials with tailored drug release profiles, site-specific targeting and stimuli-responsive behavior. Thus, the review consolidates the current advances and future perspectives in the field of chemical modification of HA, underscoring its immense potential to drive the development of advanced drug delivery systems and biomaterials with diverse biomedical applications.
Collapse
Affiliation(s)
- Anton N Bokatyi
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Natallia V Dubashynskaya
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi VO 31, St. Petersburg 199004, Russian Federation.
| |
Collapse
|
3
|
Wu X, Zhang Q, Wang Z, Xu Y, Tao Q, Wang J, Kong X, Sheng K, Wang Y. Investigation of construction and characterization of carboxymethyl chitosan - sodium alginate nanoparticles to stabilize Pickering emulsion hydrogels for curcumin encapsulation and accelerating wound healing. Int J Biol Macromol 2022; 209:1837-1847. [PMID: 35489626 DOI: 10.1016/j.ijbiomac.2022.04.157] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/05/2023]
Abstract
Limitations in compatibility and effectiveness in delivering bioactive compounds often make it prohibitively difficult to apply Pickering emulsions in wound dressing. In this research, we prepared Pickering emulsion composite hydrogels based on carboxymethyl chitosan - sodium alginate (CMCS-SA) nanoparticles (NPs) stabilized Pickering emulsions, poloxamer 407 (PLX), and curcumin (CUR). CMCS-SA NPs were prepared and used to stabilize Pickering emulsion. The stability of Pickering emulsion improved with the increase of the concentration of NPs, and was highly sensitive to ionic strength change. This Pickering emulsion remained stable at various temperatures. After curcumin were introduced into the emulsion, 0.6% CMCS-SA NPs Pickering emulsion showed controlled release of curcumin in vitro. The CMCS-SA-PLX-CUR hydrogels also exhibited smooth surface and dense structure. This composite hydrogels has antibacterial properties against Escherichia coli and Staphylococcus aureus. Moreover, the CMCS-SA-PLX-CUR hydrogels improved wound healing and increased expression of Ki67 and CD31. RT-qPCR results indicated that the mRNA levels of α-SMA and TGF-β1 in the CMCS-SA-PLX-CUR group were downregulated, while the mRNA levels of TGF-β3 increased. The present study suggests that the potentials of CMCS-SA-PLX-CUR hydrogels are promising in protecting bioactive components and wound care management.
Collapse
Affiliation(s)
- Xinru Wu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qingao Zhang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Zeming Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Yifan Xu
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Qiuru Tao
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Jingmin Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Xiaowei Kong
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Kangliang Sheng
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China.
| | - Yongzhong Wang
- School of Life Sciences, Anhui University, Hefei 230601, Anhui, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China; Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, China.
| |
Collapse
|
4
|
Deng A, Yang Y, Du S, Yang X, Pang S, Wang X, Yang S. Preparation of a recombinant collagen-peptide (RHC)-conjugated chitosan thermosensitive hydrogel for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111555. [DOI: 10.1016/j.msec.2020.111555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 12/22/2022]
|
5
|
Pal A, Vernon BL, Nikkhah M. Therapeutic neovascularization promoted by injectable hydrogels. Bioact Mater 2018; 3:389-400. [PMID: 30003178 PMCID: PMC6038261 DOI: 10.1016/j.bioactmat.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/27/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
The aim of therapeutic neovascularization is to repair ischemic tissues via formation of new blood vessels by delivery of angiogenic growth factors, stem cells or expansion of pre-existing cells. For efficient neovascularization, controlled release of growth factors is particularly necessary since bolus injection of molecules generally lead to a poor outcome due to inadequate retention within the injured site. In this regard, injectable hydrogels, made of natural, synthetic or hybrid biomaterials, have become a promising solution for efficient delivery of angiogenic factors or stem and progenitor cells for in situ tissue repair, regeneration and neovascularization. This review article will broadly discuss the state-of-the-art in the development of injectable hydrogels from natural and synthetic precursors, and their applications in ischemic tissue repair and wound healing. We will cover a wide range of in vitro and in vivo studies in testing the functionalities of the engineered injectable hydrogels in promoting tissue repair and neovascularization. We will also discuss some of the injectable hydrogels that exhibit self-healing properties by promoting neovascularization without the presence of angiogenic factors.
Collapse
Affiliation(s)
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Arizona 85281, USA
| |
Collapse
|
6
|
Deng A, Yang Y, Du S, Yang S. Electrospinning of in situ crosslinked recombinant human collagen peptide/chitosan nanofibers for wound healing. Biomater Sci 2018; 6:2197-2208. [PMID: 30003209 DOI: 10.1039/c8bm00492g] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electrospun collagen nanofibers are effective for wound healing; however, many problems, such as the tedious preparation process, weak strength and poor structure integration, limit further applications. In this study, recombinant human collagen (RHC) peptides and a simple one-step crosslinking strategy were used to prepare RHC/chitosan nanofibers. With the nonpathogenic, water-soluble RHC and a mild electrospinning solvent, in situ crosslinked nanofibers (S-CN) not only simplified the preparation procedure but also maintained a more integrated morphology. Compared with the immersed crosslinked nanofibers (I-CN), S-CN showed better performance in moisture retention, degradation and mechanical strength tests. In vitro cell proliferation, morphology and RT-PCR studies confirmed that fibroblasts presented better activities on nanofibers crosslinked in situ. Importantly, after treating with the nanofibers, rapid epidermidalization and angiogenesis were observed in an SD rat scalding model. All these data suggest that electrospun RHC/chitosan nanofibers crosslinked in situ are an ideal candidate that can be used for wound healing applications.
Collapse
Affiliation(s)
- Aipeng Deng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | | | | | | |
Collapse
|
7
|
Naghizadeh Z, Karkhaneh A, Khojasteh A. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:256-264. [DOI: 10.1016/j.msec.2018.04.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/26/2017] [Accepted: 04/10/2018] [Indexed: 11/16/2022]
|
8
|
Huang Q, Zou Y, Arno MC, Chen S, Wang T, Gao J, Dove AP, Du J. Hydrogel scaffolds for differentiation of adipose-derived stem cells. Chem Soc Rev 2018; 46:6255-6275. [PMID: 28816316 DOI: 10.1039/c6cs00052e] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Natural extracellular matrices (ECMs) have been widely used as a support for the adhesion, migration, differentiation, and proliferation of adipose-derived stem cells (ADSCs). However, poor mechanical behavior and unpredictable biodegradation properties of natural ECMs considerably limit their potential for bioapplications and raise the need for different, synthetic scaffolds. Hydrogels are regarded as the most promising alternative materials as a consequence of their excellent swelling properties and their resemblance to soft tissues. A variety of strategies have been applied to create synthetic biomimetic hydrogels, and their biophysical and biochemical properties have been modulated to be suitable for cell differentiation. In this review, we first give an overview of common methods for hydrogel preparation with a focus on those strategies that provide potential advantages for ADSC encapsulation, before summarizing the physical properties of hydrogel scaffolds that can act as biological cues. Finally, the challenges in the preparation and application of hydrogels with ADSCs are explored and the perspectives are proposed for the next generation of scaffolds.
Collapse
Affiliation(s)
- Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
|
10
|
Liu H, Wang C, Li C, Qin Y, Wang Z, Yang F, Li Z, Wang J. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Adv 2018; 8:7533-7549. [PMID: 35539132 PMCID: PMC9078458 DOI: 10.1039/c7ra13510f] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/18/2022] Open
Abstract
Functional active wound dressings are expected to provide a moist wound environment, offer protection from secondary infections, remove wound exudate and accelerate tissue regeneration, as well as to improve the efficiency of wound healing. Chitosan-based hydrogels are considered as ideal materials for enhancing wound healing owing to their biodegradable, biocompatible, non-toxic, antimicrobial, biologically adhesive, biological activity and hemostatic effects. Chitosan-based hydrogels have been demonstrated to promote wound healing at different wound healing stages, and also can alleviate the factors against wound healing (such as excessive inflammatory and chronic wound infection). The unique biological properties of a chitosan-based hydrogel enable it to serve as both a wound dressing and as a drug delivery system (DDS) to deliver antibacterial agents, growth factors, stem cells and so on, which could further accelerate wound healing. For various kinds of wounds, chitosan-based hydrogels are able to promote the effectiveness of wound healing by modifying or combining with other polymers, and carrying different types of active substances. In this review, we will take a close look at the application of chitosan-based hydrogels in wound dressings and DDS to enhance wound healing.
Collapse
Affiliation(s)
- He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Chenyu Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
- Hallym University 1Hallymdaehak-gil Chuncheon Gangwon-do 200-702 Korea
| | - Chen Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Fan Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University Changchun 130041 P. R. China
| |
Collapse
|
11
|
Zhou S, Chang Q, Lu F, Xing M. Injectable Mussel-Inspired Immobilization of Platelet-Rich Plasma on Microspheres Bridging Adipose Micro-Tissues to Improve Autologous Fat Transplantation by Controlling Release of PDGF and VEGF, Angiogenesis, Stem Cell Migration. Adv Healthc Mater 2017; 6. [PMID: 28881440 DOI: 10.1002/adhm.201700131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Indexed: 12/12/2022]
Abstract
Platelets-rich plasma (PRP) can produce growth factors (GFs) to improve angiogenesis. However, direct injection of PRP does not lead to highly localized GFs. The current study employs a mussel-inspired polydopamine to immobilize PRP on gelatin microspheres (GMs) with the purpose of bridging adipose micro-tissues to help implanted fat survive (GM-pDA-PRP). Enhanced PRP adhesion leads to a prolonged and localized production of GFs, which is verified by platelet counting and by ELISA of vascular endothelial growth factors (VEGFs) and of platelet derived growth factors (PDGFs). The GM-pDA-PRP "hatches" a microenvironment for the proliferation of adipose-derived stem cells. After the adipose micro-tissue has bridged with GM-pDA-PRP after 16 weeks, triple-fluorescence staining reveals that the mature adipocytes, blood vessels, and capillaries are arranged like in normal adipose tissue. The survival fat increases significantly compared to that in control, PRP, and GM-PRP groups (84.8 ± 11.4% versus 47.8 ± 8.9%, 56.9 ± 9.7%, and 60.2 ± 10.5%, respectively). Both histological assessments and CD31 immunofluorescence indicate that the improvement of angiogenesis in GM-pDA-PRP is higher than in the fat graft group (6.4-fold in quantitative CD31 positive cells). The CD34 positive cells in the GM-pDA-PRP group are around 3.5-fold the amount in the fat graft group, which suggests that more stem cells migrate to the implant area. Cell proliferation staining shows that the number of Ki67 positive cells is around five times as high as that in the fat graft group.
Collapse
Affiliation(s)
- Shaolong Zhou
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
| | - Qiang Chang
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
- Department of Mechanical Engineering; University of Manitoba; Winnipeg R35 2N2 Canada
- Children's hospital Research Institute of Manitoba; Winnipeg R3E 3P3 Canada
| | - Feng Lu
- Department of Plastic Surgery; Southern Medical University; Guangzhou 510515 P. R. China
| | - Malcolm Xing
- Department of Mechanical Engineering; University of Manitoba; Winnipeg R35 2N2 Canada
- Children's hospital Research Institute of Manitoba; Winnipeg R3E 3P3 Canada
| |
Collapse
|
12
|
Kaisang L, Siyu W, Lijun F, Daoyan P, Xian CJ, Jie S. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. J Surg Res 2017; 217:63-74. [DOI: 10.1016/j.jss.2017.04.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 12/21/2022]
|
13
|
Song X, Mei J, Zhang X, Wang L, Singh G, Xing MMQ, Qiu X. Flexible and highly interconnected, multi-scale patterned chitosan porous membrane produced in situ from mussel shell to accelerate wound healing. Biomater Sci 2017; 5:1101-1111. [DOI: 10.1039/c7bm00095b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mussel shell-derived dressing for full-thickness wound healing. The mussel shell-derived, in situ formed flexible membrane dressing promotes wound healing processes.
Collapse
Affiliation(s)
- Xiaoping Song
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangdong
- China
| | - Jie Mei
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangdong
- China
| | - Xingying Zhang
- Department of Mechanical and Manitoba Institute of Child Health
- University of Manitoba
- Winnipeg
- Canada
| | - Leyu Wang
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangdong
- China
| | - Gurankit Singh
- Department of Mechanical and Manitoba Institute of Child Health
- University of Manitoba
- Winnipeg
- Canada
| | - Malcolm M. Q. Xing
- Department of Mechanical and Manitoba Institute of Child Health
- University of Manitoba
- Winnipeg
- Canada
| | - Xiaozhong Qiu
- Department of Anatomy
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering
- Southern Medical University
- Guangdong
- China
| |
Collapse
|
14
|
Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond) 2016; 11:1611-28. [PMID: 27230960 PMCID: PMC5619097 DOI: 10.2217/nnm-2016-0083] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Thomas W Eyster
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
15
|
Highley CB, Prestwich GD, Burdick JA. Recent advances in hyaluronic acid hydrogels for biomedical applications. Curr Opin Biotechnol 2016; 40:35-40. [PMID: 26930175 DOI: 10.1016/j.copbio.2016.02.008] [Citation(s) in RCA: 354] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/04/2016] [Accepted: 02/09/2016] [Indexed: 10/22/2022]
Abstract
Hyaluronic acid (HA) is widely used in the design of engineered hydrogels, due to its biofunctionality, as well as numerous sites for modification with reactive groups. There are now widespread examples of modified HA macromers that form either covalent or physical hydrogels through crosslinking reactions such as with click chemistry or supramolecular assemblies of guest-host pairs. HA hydrogels range from relatively static matrices to those that exhibit spatiotemporally dynamic properties through external triggers like light. Such hydrogels are being explored for the culture of cells in vitro, as carriers for cells in vivo, or to deliver therapeutics, including in an environmentally responsive manner. The future will bring new examples of HA hydrogels due to the synthetic diversity of HA.
Collapse
Affiliation(s)
| | - Glenn D Prestwich
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Fabrication of Hyaluronan-Poly(vinylphosphonic acid)-Chitosan Hydrogel for Wound Healing Application. INT J POLYM SCI 2016. [DOI: 10.1155/2016/6723716] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new hydrogel made of hyaluronan, poly(vinylphosphonic acid), and chitosan (HA/PVPA/CS hydrogel) was fabricated and characterized to be used for skin wound healing application. Firstly, the component ratio of hydrogel was studied to optimize the reaction effectiveness. Next, its microstructure was observed by light microscope. The chemical interaction in hydrogel was evaluated by nuclear magnetic resonance spectroscopy and Fourier transform-infrared spectroscopy. Then, a study on its degradation rate was performed. After that, antibacterial activity of the hydrogel was examined by agar diffusion method. Finally,in vivostudy was performed to evaluate hydrogel’s biocompatibility. The results showed that the optimized hydrogel had a three-dimensional highly porous structure with the pore size ranging from about 25 µm to less than 125 µm. Besides, with a degradation time of two weeks, it could give enough time for the formation of extracellular matrix framework during remodeling stages. Furthermore, the antibacterial test showed that hydrogel has antimicrobial activity againstE. coli.Finally,in vivostudy indicated that the hydrogel was not rejected by the immune system and could enhance wound healing process. Overall, HA/PVPA/CS hydrogel was successfully fabricated and results implied its potential for wound healing applications.
Collapse
|
17
|
Chen S, Shi J, Xu X, Ding J, Zhong W, Zhang L, Xing M, Zhang L. Study of stiffness effects of poly(amidoamine)-poly(n-isopropyl acrylamide) hydrogel on wound healing. Colloids Surf B Biointerfaces 2015; 140:574-582. [PMID: 26628331 DOI: 10.1016/j.colsurfb.2015.08.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/17/2022]
Abstract
The mechanical miss-match between the host and an implanted foreign body is one of the primary causes for implantation failure. To enhance the efficacy in wound repair, we developed stiffness-tunable temperature-sensitive hydrogels composed of poly(amidoamine) (PAA)-based poly(n-isopropyl acrylamide) (PNIPAM). PNIPAM-PAA hydrogels with three different stiffness fabricated by varying the concentrations of poly(amidoamine) were chosen for morphology and rheology tests. The degradation rate and cell compatibility of gels were also characterized. The PAA-PNIPAM hydrogels were then tested in a wound healing model of mice with full-thickness skin loss. We found that the stiffness of hydrogels has an impact on the wound healing process mainly by regulating the cell activities in the proliferation phase. PNIPAM-PAA hydrogels with appropriate stiffness reduce scar formation and improve wound healing by promoting myofibroblast transformation, keratinocytes proliferation, extracellular matrix synthesis and remodeling. Moreover, the stiffness of hydrogels impact on the secretion of TGF-β1 and bFGF, which play an important role in skin wound healing. These results suggest that the therapeutic effects of hydrogels in skin wound healing can by regulated by hydrogels' stiffness.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Departments of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada
| | - Junbin Shi
- Departments of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada
| | - Xiaolin Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianyang Ding
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wen Zhong
- Department of Biosystem Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Lu Zhang
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou 510515, China.
| | - Malcolm Xing
- Departments of Mechanical Engineering, Biochemistry and Medical Genetics, University of Manitoba, and Manitoba Institute of Child Health, Winnipeg, MB R3T 2N2, Canada.
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
18
|
Xiao X, Yu L, Dong Z, Mbelek R, Xu K, Lei C, Zhong W, Lu F, Xing M. Adipose stem cell-laden injectable thermosensitive hydrogel reconstructing depressed defects in rats: filler and scaffold. J Mater Chem B 2015; 3:5635-5644. [PMID: 32262534 DOI: 10.1039/c5tb00270b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Facial depressed defects are a common cosmetic problem. Temporary fillers need to be re-injected frequently to maintain the desired outcomes. Here, the feasibility of a novel type of injectable hydrogel for persistent effect is demonstrated. We first useed agmatine to synthesize a poly(amidoamine) (PAA) to form a cell-attachable crosslinker and then the crosslinker was co-polymerized with N-isopropylacrylamide to obtain an injectable and temperature sensitive hydrogel. 1H NMR showed the successful synthesis of the crosslinker. In vitro tests, CCK-8 assay and live/dead viability test showed that the hydrogel was non-toxic to adipose-derived stem cells (ASCs). SEM images also confirmed that ASCs could adhere to the hydrogel. Then we constructed a novel depressed defect model in rats and injected four different fillers in the depressed defects: (1) the hydrogel with ASCs, (2) the hydrogel only, (3) hyaluronic acid, and (4) PBS. After 4 weeks, gross and histological analyses showed the defects in hydrogel, hydrogel + ASCs, and HA groups improved significantly and there were no significant differences among them. Significant differences in thickness from skin to muscle in the defect was found between the hydrogel + ASCs group and the other groups after 6 months. The hydrogels degraded completely in defects in both the hydrogel group and the hydrogel + ASCs group, and were filled with adipocytes and multilocular immature adipocytes. Immunohistochemical study using s-100 and perilipin staining revealed adipocyte differentiation in the defect sites. We also used green fluorescent protein (GFP)-ASCs for tracing and found that exogenous added ASCs were involved in adipogenesis. In conclusion, such a cell attachable thermosensitive hydrogel has definite potential not only as a filler but also as a scaffold, and has a persistent effect for small depressed defects. It might ultimately become a new material in plastic and reconstructive surgery.
Collapse
Affiliation(s)
- Xiaolian Xiao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chen S, Zhang M, Shao X, Wang X, Zhang L, Xu P, Zhong W, Zhang L, Xing M, Zhang L. A laminin mimetic peptide SIKVAV-conjugated chitosan hydrogel promoting wound healing by enhancing angiogenesis, re-epithelialization and collagen deposition. J Mater Chem B 2015; 3:6798-6804. [DOI: 10.1039/c5tb00842e] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Angiogenesis and re-epithelialization are critical factors in skin wound healing.
Collapse
Affiliation(s)
- Shixuan Chen
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
- Departments of Mechanical Engineering
| | - Min Zhang
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
| | - Xuebing Shao
- Departments of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba, and Manitoba Children's Hospital of Research Institute
- Winnipeg
- Canada
| | - Xueer Wang
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
| | - Lei Zhang
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
| | - Pengcheng Xu
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
| | - Wen Zhong
- Department of Biosystem Engineering
- University of Manitoba
- Winnipeg
- Canada
| | - Lu Zhang
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
- Elderly Health Services Research Center
| | - Malcolm Xing
- Departments of Mechanical Engineering
- Biochemistry and Medical Genetics
- University of Manitoba, and Manitoba Children's Hospital of Research Institute
- Winnipeg
- Canada
| | - Lin Zhang
- School of Basic Medical Sciences
- Southern Medical University
- Guangzhou 510515
- China
| |
Collapse
|