1
|
Jitjaroendee T, Chanmungkalakul S, Ervithayasuporn V, Kiatisevi S. Silica-based Materials for Mercury Detection and Removal: A Chelation-Free Solution. Chem Asian J 2025:e202401591. [PMID: 39925162 DOI: 10.1002/asia.202401591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
In this study, we introduce a chelation-free approach to the dual-functional detection and removal of Hg2+ ions using two novel silica-based materials, AnSiO2 and PySiO2, functionalized with anthracene and pyrene, respectively. These materials were synthesized via a two-step process involving the direct condensation of triethoxyvinylsilane onto silica gel surfaces, followed by Heck coupling with 9-bromoanthracene and 1-bromopyrene, respectively. They exhibit strong fluorescence emission in aqueous solutions, particularly at pH 6. Upon exposure to Hg2+ ions, both materials undergo significant fluorescence quenching, enabling sensitive and selective detection of Hg2+. PySiO2 demonstrated superior performance compared to AnSiO2, with a lower detection limit (0.29 μM) and a higher Stern-Volmer constant (2×106 M-1). Additionally, PySiO2 shows a higher adsorption capacity for Hg2+, reaching 54.04mg/g, as confirmed by ICP-MS analysis. The sensing mechanism involves charge-dipole and π-electron interactions, supported by spectroscopic analyses. Reusable for four cycles, PySiO2 effectively removes Hg2+ from aquaculture water, showcasing its potential for scalable, cost-effective, and simultaneous detection and remediation of mercury in real-world applications.
Collapse
Affiliation(s)
- Thanudkit Jitjaroendee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Supphachok Chanmungkalakul
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 8 Biomedical Grove, #07-01 Neuros Building, Singapore, 138665, Republic of Singapore
| | - Vuthichai Ervithayasuporn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Supavadee Kiatisevi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Salaya, Nakhon Pathom, 73170, Thailand
| |
Collapse
|
2
|
Lim SY, Younis SA, Kim KH, Lee J. The potential utility of dendritic fibrous nanosilica as an adsorbent and a catalyst in carbon capture, utilization, and storage. Chem Soc Rev 2024; 53:9976-10011. [PMID: 39282873 DOI: 10.1039/d4cs00564c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Anthropogenic emissions of greenhouse gases (GHG; e.g., CO2) are regarded as the most critical cause of the current global climate crisis. To combat this issue, a plethora of CO2 capture, utilization, and storage (CCUS) technologies have been proposed and developed based on a number of technical principles (e.g., post-combustion capture, chemical looping, and catalytic conversion). In this light, the potential utility of dendritic fibrous nanosilica (DFNS) materials is recognized for specific CCUS applications (such as adsorptive capture of CO2 and its catalytic conversion into a list of value-added products (e.g., methane, carbon monoxide, and cyclic carbonates)) with the highly tunable properties (e.g., high surface area, pore volume, multifunctional surface, and open pore structure). This review has been organized to offer a comprehensive evaluation of the approaches required for tuning the textural/morphological/surface properties of DFNS (based on multiple synthesis and modification scenarios) toward CCUS applications. It further discusses the effects of such approaches on the properties of DFNS materials in relation to their CCUS performance. This review is thus expected to help develop and implement advanced strategies for DFNS-based CCUS technologies.
Collapse
Affiliation(s)
- Sam Yeol Lim
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
- Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, Suwon 16419, South Korea.
- School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
3
|
Liu Z, Huang B, Liao X, Wang L, Yang X, Hu X. Salicylic acid doped silica nanoparticles as a fluorescent nanosensor for the detection of Fe 3+ in aqueous solution. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6404-6411. [PMID: 37861085 DOI: 10.1039/d3ay01464a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
A novel organic-inorganic hybrid nanosensor (SASP) was prepared by a one-step sol-gel method and characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, N2 adsorption-desorption, fluorescence spectroscopy, etc. The nanosensor showed almost 3-fold fluorescence emission quenching upon excitation with a 293 nm wavelength in the presence of 20 μM Fe3+ ions. The presence of 18 other metal ions had no observable effect on the sensitivity and selectivity of the nanosensor. A fluorescence analysis method based on the SASP for the selective detection of Fe3+ was established under optimal conditions. The results showed that there was a linear relationship between the log luminescence value and the concentration of Fe3+ over the range of 2.0 × 10-7-9.0 × 10-5 mol L-1 with a detection limit (3σ) of 2.5 × 10-8 mol L-1. Furthermore, the proposed method was successfully applied for the determination of trace Fe3+ in fetal bovine serum without the interference of other molecules and ions. Good recovery (96.5-104.5%) and a relative standard deviation of less than 8.6% were obtained from serum samples spiked with four levels of Fe3+. Additionally, the nanosensor showed a good reversibility; the fluorescence could be switched "off" and "on" in two ways, by adjusting the pH of the solution and adding metal chelating agent EDTA.
Collapse
Affiliation(s)
- Zhongyong Liu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Bomao Huang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xianglin Liao
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Li Wang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xixiang Yang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| | - Xiaogang Hu
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Wang Y, Wu P, Wang Y, He H, Huang L. Dendritic mesoporous nanoparticles for the detection, adsorption, and degradation of hazardous substances in the environment: State-of-the-art and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118629. [PMID: 37499417 DOI: 10.1016/j.jenvman.2023.118629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023]
Abstract
Equipped with hierarchical pores and three-dimensional (3D) center-radial channels, dendritic mesoporous nanoparticles (DMNs) make their pore volumes extremely large, specific surface areas super-high, internal spaces especially accessible, and so on. Other entities (like organic moieties or nanoparticles) can be modified onto the interfaces or skeletons of DMNs, accomplishing their functionalization for desirable applications. This comprehensive review emphasizes on the design and construction of DMNs-based systems which serve as sensors, adsorbents and catalysts for the detection, adsorption, and degradation of hazardous substances, mainly including the construction procedures of brand-new DMNs-based materials and the involved hazardous substances (like industrial chemicals, chemical dyes, heavy metal ions, medicines, pesticides, and harmful gases). The sensitive, adsorptive, or catalytic performances of various DMNs have been compared; correspondingly, the reaction mechanisms have been revealed strictly. It is honestly anticipated that the profound discussion could offer scientists certain enlightenment to design novel DMNs-based systems towards the detection, adsorption, and degradation of hazardous substances, respectively or comprehensively.
Collapse
Affiliation(s)
- Yabin Wang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, PR China; Institute for Triazine Compounds & Hierarchical Porous Materials, Shaanxi, PR China.
| | - Peng Wu
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, PR China
| | - Yanni Wang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, PR China
| | - Hua He
- Institute for Triazine Compounds & Hierarchical Porous Materials, Shaanxi, PR China
| | - Liangzhu Huang
- College of Chemistry and Chemical Engineering, Yan'an University, Yan'an, 716000, Shaanxi, PR China; Institute for Triazine Compounds & Hierarchical Porous Materials, Shaanxi, PR China
| |
Collapse
|
5
|
Silmi N, Arsyad R, Benu DP, Nugroho FG, Khasannah WL, Iqbal M, Yuliarto B, Mukti RR, Suendo V. A morphological study of bicontinuous concentric lamellar silica synthesized at atmospheric pressure and its application as an internal micro-reflector in dye-sensitized solar cells. Phys Chem Chem Phys 2023; 25:23792-23807. [PMID: 37622673 DOI: 10.1039/d3cp02876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
KCC-1, a nanostructured silica material with a bicontinuous concentric lamellar (bcl) morphology, provides plenty of functional characteristics, such as an open channel structure, excellent accessibility, and a large surface area. Although bcl silica exhibits various superior properties, studies on its morphology and its application in dye-sensitized solar cells (DSSCs) are still limited. Therefore, this work aims to study the influence of the synthesis time on the morphology of bcl silica. Moreover, we used the synthesized bcl silica as internal micro-reflectors in DSSCs. The bcl silica was synthesized using the reflux method by varying synthesis times. The morphology of bcl silica was observed using FESEM and HRTEM. FESEM images show that bcl silica has bicontinuous lamellar walls arranged concentrically to form spherical particles. As the synthesis time increases, the average particle size of bcl silica increases. The quantization of bcl silica binary images shows that the average lamellar cross-sectional area ratio decreases with increasing synthesis time. The simulation of the Cahn-Hilliard's spinodal decomposition model using MATLAB also describes the lamellar cross-sectional area ratio of bcl silica. In addition, to characterize the FESEM image's texture, a Shannon entropy calculation was performed. The line and circular gray value intensity profiles of the HRTEM image show that bcl silica has a denser core than the outer part. The denser core proves that the lamellae in bcl silica are concentrically arranged towards the particle core. Furthermore, we added bcl silica to a photoanode to see the effect of bcl characteristics on the DSSC performance. The results show that the bcl silica significantly improves the light-harvesting efficiency in DSSCs due to its low refractive index and open channel structure.
Collapse
Affiliation(s)
- Nadiatus Silmi
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Rafiq Arsyad
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Didi Prasetyo Benu
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Doctoral Program of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Department of Chemistry, Universitas Timor, Kefamenanu 85613, Indonesia
| | - Fairuz Gianirfan Nugroho
- Master's Program in Nanotechnology, Graduate School, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Wiji Lestari Khasannah
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
| | - Muhammad Iqbal
- Advanced Functional Materials (AFM) Laboratory, Department of Engineering Physics, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Brian Yuliarto
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Advanced Functional Materials (AFM) Laboratory, Department of Engineering Physics, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Rino Rakhmata Mukti
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Veinardi Suendo
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Bandung 40132, Indonesia.
- Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| |
Collapse
|
6
|
Oboudatian HS, Safaei-Ghomi J. Fibrous nanosilica spheres KCC-1@NH2 as highly effective and easily retrievable catalyst for the synthesis of chromenes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04695-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Wang Z, Gao Z, Qiao M, Peng J, Ding L. Pyrene-functionalized mesoporous silica as a fluorescent nanosensor for selective detection of Hg2+ in aqueous solution. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Oboudatian HS, Safaei-Ghomi J. Silica nanospheres KCC-1 as a good catalyst for the preparation of 2-amino-4H-chromenes by ultrasonic irradiation. Sci Rep 2022; 12:2381. [PMID: 35149718 PMCID: PMC8837639 DOI: 10.1038/s41598-022-05993-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fibrous nano-silica sphere (KCC-1) has appeared as a good and efficient catalyst for ultrasonic irradiation conditions in chemical reactions. This catalyst has the unique properties such as a fibrous surface morphology, high surface area and high mechanical stability. The results indicated that the KCC-1 nanocatalyst could be used as high-performance catalysts under high temperature and pressure condition in organic reaction under ultrasonic irradiation. Morphology, structure, and composition of the fibrous nano-silica sphere were described by N2 adsorption-desorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). In this work, we used KCC-1@NH2 nanosilica as a basic catalyst for the preparation of chromenes under ultrasonic irradiation conditions for the first time. The recyclability, nontoxicity and high stability of the catalyst, combined with low reaction times and excellent yields, make the present protocol very useful for the synthesis of the title products under ultrasonic conditions. The produced products were confirmed via 1H NMR, 13C NMR, FT-IR analysis.
Collapse
Affiliation(s)
- Hourieh Sadat Oboudatian
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| | - Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran.
| |
Collapse
|
9
|
Tarasi S, Ramazani A, Morsali A, Hu ML. Highly Sensitive Colorimetric Naked-Eye Detection of Hg II Using a Sacrificial Metal-Organic Framework. Inorg Chem 2021; 60:13588-13595. [PMID: 34435495 DOI: 10.1021/acs.inorgchem.1c01894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study has developed a specific, easy, and novel approach to designing a sacrificial metal-organic framework (MOF) that can detect and measure the amount of Hg2+ in aqueous and nonaqueous solutions using the naked eye. The functionalized [Zn(oba)(RL3)0.5]n·1.5DMF (TMU-59) provides the ability of simple visual assessment or colorimetric readout without sophisticated analytical equipment. Because of the special interaction with Hg2+, degradation of the structure of this unique MOF causes the solution to change color from colorless to a pink that is easily recognizable to the naked eye. The presence of a methyl group plays a major role in naked-eye detection by a qualitative sensor. Furthermore, this qualitative sensor data for the production of a simple, instant, and portable red, green, and blue (RGB)-based quantitative sensor were used to determine the concentration of Hg2+ in different specimens. As a turn-off fluorescence sensor, this unique structure is also capable of detecting Hg2+ at very low concentrations (the limit of detection is 0.16 ppb). To the best of our knowledge, TMU-59 is the first MOF-based naked-eye sensor that can successfully and specifically display the presence of Hg2+ through a major color change.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Ali Ramazani
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Agronomy, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran.,Department of Animal Science, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14115-175, Iran
| | - Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
10
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38476-38496. [PMID: 33733409 DOI: 10.1007/s11356-021-13304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
11
|
Synthesis of multi-organo-functionalized fibrous silica KCC-1 for highly efficient adsorption of acid fuchsine and acid orange II from aqueous solution. Sci Rep 2021; 11:2716. [PMID: 33526831 PMCID: PMC7851152 DOI: 10.1038/s41598-021-81080-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Multi-functionalized fibrous silica KCC-1 (MF-KCC-1) bearing amine, tetrasulfide, and thiol groups was synthesized via a post-functionalization method and fully characterized by several methods such as FTIR, FESEM, EDX-Mapping, TEM, and N2 adsorption-desorption techniques. Due to abundant surface functional groups, accessible active adsorption sites, high surface area (572 m2 g-1), large pore volume (0.98 cm3 g-1), and unique fibrous structure, mesoporous MF-KCC-1 was used as a potential adsorbent for the uptake of acid fuchsine (AF) and acid orange II (AO) from water. Different adsorption factors such as pH of the dye solution, the amount of adsorbent, initial dye concentration, and contact time, affecting the uptake process were optimized and isotherm and kinetic studies were conducted to find the possible mechanism involved in the process. For both AF and AO dyes, the Langmuir isotherm model and the PFO kinetic model show the most agreement with the experimental data. According to the Langmuir isotherm, the calculated maximum adsorption capacity for AF and AO were found to be 574.5 mg g-1 and 605.9 mg g-1, respectively, surpassing most adsorption capacities reported until now which is indicative of the high potential of mesoporous MF-KCC-1 as an adsorbent for removal applications.
Collapse
|
12
|
Titania-coated fibrous silica (TiO2/KCC-1) core-shell microspheres based solid-phase extraction in clam (Corbicula fluminea) using hydrophilic interaction liquid chromatography and mass spectrometry. Food Res Int 2020; 137:109408. [DOI: 10.1016/j.foodres.2020.109408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
|
13
|
Wang J, Zhang X, Liu HB, Zhang D, Nong H, Wu P, Chen P, Li D. Aggregation induced emission active fluorescent sensor for the sensitive detection of Hg2+ based on organic-inorganic hybrid mesoporous material. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117585. [PMID: 31734570 DOI: 10.1016/j.saa.2019.117585] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
We report the preparation of an organic-inorganic hybrid mesoporous material, PHC-SBA-15, derived from the coupling of a pyrene-based derivative PHC and mesoporous SBA-15 silica. Compared with the stable aggregation-induced emission (AIE) properties of PHC, those of PHC-SBA-15 were more promoted and active due to the fixation of PHC and the space limitation in mesoporous SBA-15. The aggregation and disaggregation activities can be tuned by controlling the concentrations in aqueous media and changing the fluorescence color from yellow to blue. In addition to the controllable AIE properties, PHC-SBA-15 was applied for the highly selective and sensitive detection of Hg2+ through the fluorescence quenching of monomeric pyrene in aqueous media. The fluorescence intensity at 395 nm was linearly proportional to that of Hg2+ in the concentration ranges of 0-1.0 × 10-5 and 1.0 × 10-5-10 × 10-5 M, showing a low detection limit of 1.02 × 10-7 M. This work provides an effective strategy for modulating the AIE properties from non-active to active by introducing AIE stable molecule into mesoporous silica material. This method also favors the development of fluorescent sensors for detecting targets with high sensitivity and selectivity in aqueous media with less synthetic difficulties.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China.
| | - Xiangmin Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Hai-Bo Liu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Di Zhang
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Huiting Nong
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Pingyu Wu
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Pengxiang Chen
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| | - Dong Li
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, PR China
| |
Collapse
|
14
|
Roghanizad A, Karimi Abdolmaleki M, Ghoreishi SM, Dinari M. One-pot synthesis of functionalized mesoporous fibrous silica nanospheres for dye adsorption: Isotherm, kinetic, and thermodynamic studies. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112367] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Chatterjee S, Guha N, Krishnan S, Singh AK, Mathur P, Rai DK. Selective and Recyclable Congo Red Dye Adsorption by Spherical Fe 3O 4 Nanoparticles Functionalized with 1,2,4,5-Benzenetetracarboxylic Acid. Sci Rep 2020; 10:111. [PMID: 31924827 PMCID: PMC6954200 DOI: 10.1038/s41598-019-57017-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 12/10/2019] [Indexed: 11/09/2022] Open
Abstract
In this study, the new material Fe3O4@BTCA has been synthesized by immobilization of 1,2,4,5-Benzenetetracarboxylic acid (BTCA) on the surface of Fe3O4 NPs, obtained by co-precipitation of FeCl3.6H2O and FeCl2.4H2O in the basic conditions. Characterization by P-XRD, FE-SEM, and TEM confirm Fe3O4 has a spherical crystalline structure with an average diameter of 15 nm, which after functionalization with BTCA, increases to 20 nm. Functionalization also enhances the surface area and surface charge of the material, confirmed by BET and zeta potential analyses, respectively. The dye adsorption capacity of Fe3O4@BTCA has been investigated for three common dyes; Congo red (C.R), Methylene blue (M.B), and Crystal violet (C.V). The adsorption studies show that the material rapidly and selectively adsorbs C.R dye with very high adsorption capacity (630 mg/g), which is attributed to strong H-bonding ability of BTCA with C.R dye as indicated by adsorption mechanism study. The material also shows excellent recyclability without any considerable loss of adsorption capacity. Adsorption isotherm and kinetic studies suggest that the adsorption occurs by the Langmuir adsorption model following pseudo-second-order adsorption kinetics.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Nikita Guha
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Sarathkumar Krishnan
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Amrendra K Singh
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Pradeep Mathur
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552, India
| | - Dhirendra K Rai
- Discipline of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore, 453552, India.
| |
Collapse
|
16
|
Chatterjee S, Qin J, Li X, Liang F, Rai DK, Yang YW. Safranin O-functionalized cuboid mesoporous silica material for fluorescent sensing and adsorption of permanganate. J Mater Chem B 2020; 8:2238-2249. [DOI: 10.1039/d0tb00036a] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new safranin O-based chelating fluorophore coupled, dual-functionalized organic–inorganic hybrid material has been prepared for simultaneous MnO4− detection and adsorption in aqueous media and living organisms such as limnodrilus claparedianus and zebrafish.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
- The State Key Laboratory of Refractories and Metallurgy
| | - Jianchun Qin
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
| | - Xiangshuai Li
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy
- School of Chemistry & Chemical Engineering
- Wuhan University of Science and Technology
- Wuhan 430081
- China
| | - Dhirendra K. Rai
- Discipline of Metallurgy Engineering and Materials Science
- Indian Institute of Technology Indore
- Indore 453552
- India
| | - Ying-Wei Yang
- College of Chemistry and College of Plant Science
- Jilin University
- Changchun 130012
- China
- The State Key Laboratory of Refractories and Metallurgy
| |
Collapse
|
17
|
Soltani R, Marjani A, Hosseini M, Shirazian S. Synthesis and characterization of novel N-methylimidazolium-functionalized KCC-1: A highly efficient anion exchanger of hexavalent chromium. CHEMOSPHERE 2020; 239:124735. [PMID: 31499306 DOI: 10.1016/j.chemosphere.2019.124735] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
A key challenge in adsorption process of toxic organic and inorganic species is the design and development of adsorbent materials bearing an abundance of accessible adsorption sites with high affinity to achieve both fast adsorption kinetics and elevated adsorption capacity for toxic contaminants. Herein, a novel anion-exchange adsorbent based on fibrous silica nanospheres KCC-1 was synthesized by a facile hydrothermal-assisted post-grafting modification of KCC-1 with 1-methyl-3- (triethoxysilylpropyl)imidazolium chloride for the first time. Silica fibers with micro-mesoporous structure display the proper combination of features to serve as a potential scaffold for decorating adsorption sites to create desired ion-exchange adsorbent. The obtained N-methylimidazolium-functionalized KCC-1 (MI-Cl-KCC-1) with fibrous nanosphere morphology showed a high surface area (∼241 m2 g-1) and high pore volume (0.81 m2 g-1). The adsorption behaviors of toxic hexavalent chromium from aqueous media by the MI-Cl-KCC-1 were systematically studied using the batch method. The adsorption rate was relatively fast, and MI-Cl-KCC-1 possesses a high capacity for the adsorption of Cr(VI). The maximum Cr(VI) adsorption was obtained at pH 3.0-4.0. Different non-linear isotherm equations were tested for choosing an appropriate adorption isotherm behavior, and the adsorption data for MI-Cl-KCC-1 were consistent with the Langmuir model with a maximum adsorption capacity of 428 ± 8 mg g-1.
Collapse
Affiliation(s)
- Roozbeh Soltani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Azam Marjani
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mina Hosseini
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Saeed Shirazian
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
18
|
Soltani R, Marjani A, Moguei MRS, Rostami B, Shirazian S. Novel diamino-functionalized fibrous silica submicro-spheres with a bimodal-micro-mesoporous network: Ultrasonic-assisted fabrication, characterization, and their application for superior uptake of Congo red. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111617] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Chatterjee S, Li XS, Liang F, Yang YW. Design of Multifunctional Fluorescent Hybrid Materials Based on SiO 2 Materials and Core-Shell Fe 3 O 4 @SiO 2 Nanoparticles for Metal Ion Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1904569. [PMID: 31573771 DOI: 10.1002/smll.201904569] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Indexed: 05/12/2023]
Abstract
Hybrid fluorescent materials constructed from organic chelating fluorescent probes and inorganic solid supports by covalent interactions are a special type of hybrid sensing platform that has gained much interest in the context of metal ion sensing applications owing to their excellent advantages, recyclability, and solubility/dispersibility in particular, as compared with single organic fluorescent molecules. In recent decades, SiO2 materials and core-shell Fe3 O4 @SiO2 nanoparticles have become important inorganic solid materials and have been used as inorganic solid supports to hybridize with organic fluorescent receptors, resulting in multifunctional fluorescent hybrid systems for potential applications in sensing and related research fields. Therefore, recent progress in various fluorescent-group-functionalized SiO2 materials is reviewed, with a focus on mesoporous silica nanoparticles and core-shell Fe3 O4 @SiO2 nanoparticles, as interesting fluorescent organic-inorganic hybrid materials for sensing applications toward essential and toxic metal ions. Selective examples of other types of silica/silicon materials, such as periodic mesoporous organosilicas, solid SiO2 nanoparticles, fibrous silica spheres, silica nanowires, silica nanotubes, and silica hollow microspheres, are also mentioned. Finally, relevant perspectives of metal-ion-sensing-oriented silica-fluorescent probe hybrid materials are provided.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiang-Shuai Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Ying-Wei Yang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
Zhang L, Wang J, Du T, Zhang W, Zhu W, Yang C, Yue T, Sun J, Li T, Wang J. NH2-MIL-53(Al) Metal–Organic Framework as the Smart Platform for Simultaneous High-Performance Detection and Removal of Hg2+. Inorg Chem 2019; 58:12573-12581. [DOI: 10.1021/acs.inorgchem.9b01242] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Liang Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Ting Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Chengyuan Yang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| | - Jing Sun
- Qinghai Provincial Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 23 Xinning Road, Xining 810008, Qinghai, China
| | - Tao Li
- Shaanxi Institute for Food and Drug Control, Xi’an 710065, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Bahta M, Ahmed N. A novel 1,8-naphthalimide as highly selective naked-eye and ratiometric fluorescent sensor for detection of Hg2+ ions. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Chatterjee S, Gohil H, Raval I, Chatterjee S, Paital AR. An Anthracene Excimer Fluorescence Probe on Mesoporous Silica for Dual Functions of Detection and Adsorption of Mercury (II) and Copper (II) with Biological In Vivo Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804749. [PMID: 30821112 DOI: 10.1002/smll.201804749] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
Dual functional activity by the same organic-inorganic hybrid material toward selective metal ion detection and its adsorption has drawn more attraction in the field of sensing. However, most of the hybrid materials in the literature are either for sensing studies or adsorption studies. In this manuscript, a fluorescent active hybrid material SiO2 @PBATPA is synthesized by covalent coupling of anthracene-based chelating ligand N,N'-(propane-1,3-diyl) bis(N-(anthracen-9-ylmethyl)-2-((3-(triethoxysilyl)propyl) amino) acetamide) (PBATPA) within the mesopores of newly synthesized cubic mesoporous silica. The synthetic strategy is designed to form an exclusively intramolecular excimer on a solid surface, which is then used as a sensory tool for selective detection of metal ions through fluorescence quenching by the destruction of excimer upon metal ion binding. The dual functions of sensing and adsorption studies show selectivity toward Hg2+ and Cu2+ among various metal ions with detection limits of 37 and 6 ppb, respectively, and adsorption capacities of 482 and 246 mg g-1 , respectively. This material can be used as a sensory cum adsorbent material in real food samples and living organisms such as the brine shrimp Artemia salina without any toxic effects from the material.
Collapse
Affiliation(s)
- Sobhan Chatterjee
- Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Hardipsinh Gohil
- Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR), CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Ishan Raval
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Shruti Chatterjee
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| | - Alok Ranjan Paital
- Division of Biotechnology and Phycology, CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, 364002, Gujarat, India
| |
Collapse
|
23
|
Babu Christus AA, Panneerselvam P, Ravikumar A, Marieeswaran M, Sivanesan S. MoS 2 nanosheet mediated ZnO-g-C 3N 4 nanocomposite as a peroxidase mimic: catalytic activity and application in the colorimetric determination of Hg(ii). RSC Adv 2019; 9:4268-4276. [PMID: 35520178 PMCID: PMC9060464 DOI: 10.1039/c8ra09814j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
A novel colorimetric sensing platform using the peroxidase mimicking activity of ternary MoS2-loaded ZnO-g-C3N4 nanocomposites (ZnO-g-C3N4/MoS2) has been developed for the determination of Hg(ii) ions over co-existing metal ions. The nanocomposite was prepared using an exfoliation process, and the product was further characterized using SEM, TEM, XRD and FTIR analysis. The ZnO-g-C3N4/MoS2 possesses excellent intrinsic catalytic activity to induce the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) in aqueous solution in the presence of H2O2 to generate deep blue coloured cation radicals (TMB+) which can be viewed with the naked eye and produce absorbance at a wavelength of 652 nm. The addition of a well known bioradical scavenger, glutathione (GSH), to the solution hinders the generation of cation radicals and turns the solution colourless. The introduction of Hg(ii) to this solution brings the blue colour back into it, due to the strong affinity of the thiol in the GSH. Based on this mechanism, we have developed a simple and rapid colorimetric sensor for the highly sensitive and selective detection of Hg(ii) ions in aqueous solution with a low detection limit of 1.9 nM. Furthermore, the prepared colorimetric sensor was effectively applied for the quantification analysis of real water samples.
Collapse
Affiliation(s)
- A Anand Babu Christus
- Department of Chemistry, SRM Institute of Science and Technology Ramapuram campus Ramapuram-600 089 Tamil Nadu India
| | - P Panneerselvam
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur-603 203 Tamil Nadu India
| | - A Ravikumar
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur-603 203 Tamil Nadu India
| | - M Marieeswaran
- Department of Chemistry, SRM Institute of Science and Technology Kattankulathur-603 203 Tamil Nadu India
| | - S Sivanesan
- Department of Applied Science and Technology, Anna University A. C. Tech Campus Chennai-600 025 India
| |
Collapse
|
24
|
Singha D, Das T, Satyanarayana L, Roy P, Nandi M. Rhodamine functionalized mesoporous silica as a chemosensor for the efficient sensing of Al3+, Cr3+ and Fe3+ ions and their removal from aqueous media. NEW J CHEM 2019. [DOI: 10.1039/c9nj03010g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rhodamine incorporated mesoporous silica acts as a selective chemosensor for Al3+, Cr3+ and Fe3+ ions and it is used for their separation from an aqueous medium.
Collapse
Affiliation(s)
- Debdas Singha
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Trisha Das
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| | - Lanka Satyanarayana
- Analytical Chemistry Department
- CSIR-Indian Institute of Chemical Technology
- Hyderabad 500007
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Mahasweta Nandi
- Integrated Science Education and Research Centre
- Siksha Bhavana
- Visva-Bharati University
- India
| |
Collapse
|
25
|
Kunthom R, Piyanuch P, Wanichacheva N, Ervithayasuporn V. Cage-like silsesequioxanes bearing rhodamines as fluorescence Hg2+ sensors. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Ding B, Wang J, Tao S, Ding Y, Zhang L, Gao N, Li G, Shi H, Li W, Ge S. Fabrication of multi-functional porous microspheres in a modular fashion for the detection, adsorption, and removal of pollutants in wastewater. J Colloid Interface Sci 2018; 522:1-9. [PMID: 29573635 DOI: 10.1016/j.jcis.2018.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
Abstract
Water pollution control has become significant challenges in recent years because of their extensive species diversity. It is critical to developing general-purpose materials for environmental rehabilitation. In this paper, a novel module-assembly method is developed to prepare multi-functional materials for treating pollutants in water. Building blocks are porous nanoparticles with a different function. Microspheres (MS) with a diameter of 90 μm are prepared and have a coefficient of variation of 6.8%. The modular fashion of self-assembly process in a microfluidic chip is the crucial factor in fabricating the multifunction material. The assembled microspheres with different building modules still have a specific surface area larger than 400 m2 g-1, and exhibit excellent performance in adsorbing various pollutants in water, such as heavy metal ions and organic dyes. The adsorption capacities of them to Hg2+ and orange II reach 150 mg g-1 and 333 mg g-1, respectively. The integrated fluorescence probes in microspheres can detect low concentration (9.8 ppb) of Hg2+. Microspheres integrated with Fe3O4 nanoparticles have a magnetic susceptibility of 6.01 emu g-1 and can be easily removed from wastewater by applying an external magnetic. Due to the stability of inorganic building blocks, each function in the assembled system is well performed, and multi-functional "All-in-One" materials can be easily fabricated.
Collapse
Affiliation(s)
- Baojun Ding
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Jie Wang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shengyang Tao
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China.
| | - Yunzhe Ding
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Lijing Zhang
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Ning Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Guangtao Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Haonan Shi
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Weijun Li
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Shuo Ge
- Department of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
27
|
Maity A, Polshettiwar V. Dendritic Fibrous Nanosilica for Catalysis, Energy Harvesting, Carbon Dioxide Mitigation, Drug Delivery, and Sensing. CHEMSUSCHEM 2017; 10:3866-3913. [PMID: 28834600 PMCID: PMC5698778 DOI: 10.1002/cssc.201701076] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/18/2017] [Indexed: 05/07/2023]
Abstract
Morphology-controlled nanomaterials such as silica play a crucial role in the development of technologies for addressing challenges in the fields of energy, environment, and health. After the discovery of Stöber silica, followed by that of mesoporous silica materials, such as MCM-41 and SBA-15, a significant surge in the design and synthesis of nanosilica with various sizes, shapes, morphologies, and textural properties has been observed in recent years. One notable invention is dendritic fibrous nanosilica, also known as KCC-1. This material possesses a unique fibrous morphology, unlike the tubular porous structure of various conventional silica materials. It has a high surface area with improved accessibility to the internal surface, tunable pore size and pore volume, controllable particle size, and, importantly, improved stability. Since its discovery, a large number of studies have been reported concerning its use in applications such as catalysis, solar-energy harvesting, energy storage, self-cleaning antireflective coatings, surface plasmon resonance-based ultrasensitive sensors, CO2 capture, and biomedical applications. These reports indicate that dendritic fibrous nanosilica has excellent potential as an alternative to popular silica materials such as MCM-41, SBA-15, Stöber silica, and mesoporous silica nanoparticles. This Review provides a critical survey of the dendritic fibrous nanosilica family of materials, and the discussion includes the synthesis and formation mechanism, applications in catalysis and photocatalysis, applications in energy harvesting and storage, applications in magnetic and composite materials, applications in CO2 mitigation, biomedical applications, and analytical applications.
Collapse
Affiliation(s)
- Ayan Maity
- Nanocatalysis Laboratories (NanoCat)Department of Chemical SciencesTata Institute of Fundamental Research (TIFR)Homi Bhabha Road, ColabaMumbaiIndia
| | - Vivek Polshettiwar
- Nanocatalysis Laboratories (NanoCat)Department of Chemical SciencesTata Institute of Fundamental Research (TIFR)Homi Bhabha Road, ColabaMumbaiIndia
| |
Collapse
|
28
|
Lashgari N, Badiei A, Mohammadi Ziarani G. Selective detection of Hg2+
ion in aqueous medium with the use of 3-(pyrimidin-2-ylimino)indolin-2-one-functionalized SBA-15. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Negar Lashgari
- School of Chemistry, College of Science; University of Tehran; Tehran Iran
| | - Alireza Badiei
- School of Chemistry, College of Science; University of Tehran; Tehran Iran
- Nanobiomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center; University of Tehran; Tehran Iran
| | | |
Collapse
|
29
|
Chatterjee S, Gohil H, Paital AR. Dual Functions of Selective Ferric Ion Detection and Removal by a Recyclable Fluorescence Active Multifunctional Silica Material and Toxic Dye Removal from Aqueous Solution. ChemistrySelect 2017. [DOI: 10.1002/slct.201700813] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sobhan Chatterjee
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| | - Hardipsinh Gohil
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| | - Alok Ranjan Paital
- Sobhan Chatterjee, Hardipsinh Gohil, Dr. Alok R. Paital, Salt and Marine Chemicals Division & Academy of Scientific and Innovative Research (AcSIR); CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg; Bhavnagar- 364002, Gujarat India
| |
Collapse
|
30
|
Ye S, Liang Q, Li Z, Xu S, Yao C. A highly sensitive and selective naked-eye probe for detection of Fe3+ based on a 2,5-bis[3-benzyl-2-methylbenzothiazole]-croconaine. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Silica-based optical chemosensors for detection and removal of metal ions. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2017. [DOI: 10.1007/s13738-016-0967-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Radhakrishnan K, Panneerselvam P, Ravikumar A. A hybrid magnetic core–shell fibrous silica nanocomposite for a chemosensor-based highly effective fluorescent detection of Cu(ii). RSC Adv 2017. [DOI: 10.1039/c7ra08821c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel hybrid magnetic core–shell fibrous silica nanocomposite (RhB–Fe3O4/MnO2/SiO2/KCC-1) probe-based chemosensor was designed and its behaviour towards Cu(ii) metal ion was investigated using a fluorescence spectrometer.
Collapse
Affiliation(s)
| | | | - A. Ravikumar
- Department of Chemistry
- SRM University
- Chennai
- India
| |
Collapse
|
33
|
Bayal N, Singh B, Singh R, Polshettiwar V. Size and Fiber Density Controlled Synthesis of Fibrous Nanosilica Spheres (KCC-1). Sci Rep 2016; 6:24888. [PMID: 27118152 PMCID: PMC4846819 DOI: 10.1038/srep24888] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
We report a facile protocol for the synthesis of fibrous nano-silica (KCC-1) with controllable size and fiber density. In this work, we have shown that the particle size, fiber density, surface area and pore volume of KCC-1 can be effectively controlled and tuned by changing various reaction parameters, such as the concentrations of urea, CTAB, 1-pentanol, reaction time, temperature, solvent ratio, and even outside stirring time. For the first time, we were able to control the particle size ranging from as small as 170 nm to as large as 1120 nm. We were also able to control the fiber density from low to medium to very dense, which consequently allowed the tuning of the pore volume. We were able to achieve a pore volume of 2.18 cm(3)/g, which is the highest reported for such a fibrous material. Notably we were even able to increase the surface area up to 1244 m(2)/g, nearly double the previously reported surface area of KCC-1. Thus, one can now synthesize KCC-1 with various degrees of size, surface area, pore volume, and fiber density.
Collapse
Affiliation(s)
- Nisha Bayal
- Nanocatalysis Laboratories (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India
| | - Baljeet Singh
- Nanocatalysis Laboratories (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India
| | - Rustam Singh
- Nanocatalysis Laboratories (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India
| | - Vivek Polshettiwar
- Nanocatalysis Laboratories (NanoCat), Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India
| |
Collapse
|
34
|
Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2015.10.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Biswal B, Mallick D, Bag B. Signaling preferences of substituted pyrrole coupled six-membered rhodamine spirocyclic probes for Hg2+ ion detection. Org Biomol Chem 2016; 14:2241-8. [DOI: 10.1039/c5ob02606g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Six-membered spiro-ring expanded probes in rhodamine scaffolds exhibit Hg2+ ion specific dual mode signaling responses; specificity is achieved with tuning substituents on the appended pyrrole receptor.
Collapse
Affiliation(s)
- Biswonath Biswal
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Debajani Mallick
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Bamaprasad Bag
- Colloids and Materials Chemistry Department
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| |
Collapse
|
36
|
Sadeghzadeh SM. Bis(4-pyridylamino)triazine-stabilized magnetite KCC-1: a chemoselective, efficient, green and reusable nanocatalyst for the synthesis of N-substituted 1,4-dihydropyridines. RSC Adv 2016. [DOI: 10.1039/c6ra20488k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fe3O4/KCC-1/BPAT as a novel nanostructured compound catalyzed the synthesis of N-substituted 1,4-dihydropyridines.
Collapse
|
37
|
Sun Z, Cui G, Li H, Liu Y, Tian Y, Yan S. Multifunctional optical sensing probes based on organic–inorganic hybrid composites. J Mater Chem B 2016; 4:5194-5216. [DOI: 10.1039/c6tb01468b] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Several hybrid sensing materials, which are prepared by the covalent grafting of organic fluorescent molecules onto inorganic supports, have emerged as a novel and promising class of hybrid sensing probes and have attracted tremendous interest.
Collapse
Affiliation(s)
- Zebin Sun
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Guijia Cui
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Haizhen Li
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yan Liu
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yaxi Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shiqiang Yan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
38
|
Tian Y, Liu Y, Sun Z, Li H, Cui G, Yan S. Fibrous porous silica microspheres decorated with Mn3O4 for effective removal of methyl orange from aqueous solution. RSC Adv 2015. [DOI: 10.1039/c5ra21783k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, trimanganese tetraoxide (Mn3O4) functionalized fibrous porous silica microspheres (KCC-1) with well-dispersed and excellent adsorption capacities were successfully synthesized by a simple and mild method for the first time.
Collapse
Affiliation(s)
- Yaxi Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Yan Liu
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zebin Sun
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Haizhen Li
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Guijia Cui
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Shiqiang Yan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
39
|
Pal A, Bag B. Dual mode signaling responses of a rhodamine based probe and its immobilization onto a silica gel surface for specific mercury ion detection. Dalton Trans 2015; 44:15304-15. [DOI: 10.1039/c5dt01334h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amino-ethyl-rhodamine-B based probe 2 appended with a 3-aminomethyl-(2-amino-1-pyridyl) group retained its Hg(ii)-specific chromogenic and fluorogenic signaling responses in an aqueous medium even upon immobilization onto a silica gel surface for selective detection and extraction of Hg(ii) ions.
Collapse
Affiliation(s)
- Ajoy Pal
- Colloids and Materials Chemistry Department
- Academy of Scientific and Innovative Research
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| | - Bamaprasad Bag
- Colloids and Materials Chemistry Department
- Academy of Scientific and Innovative Research
- CSIR-Institute of Minerals and Materials Technology
- Bhubaneswar-751 013
- India
| |
Collapse
|
40
|
Razi SS, Ali R, Srivastava P, Misra A. Smart excimer fluorescence probe for visual detection, cell imaging and extraction of Hg2+. RSC Adv 2015. [DOI: 10.1039/c5ra13021b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Smart pyrene-based simple fluorescent probes 2 and 4 were designed, synthesized and characterized by different spectroscopic methods.
Collapse
Affiliation(s)
- Syed S. Razi
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi – 221 005
- India
| | - Rashid Ali
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi – 221 005
- India
| | - Priyanka Srivastava
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi – 221 005
- India
| | - Arvind Misra
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi – 221 005
- India
| |
Collapse
|