1
|
Kiwumulo HF, Muwonge H, Ibingira C, Lubwama M, Kirabira JB, Ssekitoleko RT. A di-electrophoretic simulation procedure of iron-oxide micro-particle drug attachment system for leukemia treatment using COMSOL software: a potential treatment reference for LMICs. FRONTIERS IN MEDICAL TECHNOLOGY 2023; 5:1250964. [PMID: 37901748 PMCID: PMC10602814 DOI: 10.3389/fmedt.2023.1250964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
Background Leukemia encompasses various subtypes, each with unique characteristics and treatment approaches. The challenge lies in developing targeted therapies that can effectively address the specific genetic mutations or abnormalities associated with each subtype. Some leukemia cases may become resistant to existing treatments over time making them less susceptible to chemotherapy or other standard therapies. Objective Developing new treatment strategies to overcome resistance is an ongoing challenge particularly in Low and Middle Income Countries (LMICs). Computational studies using COMSOL software could provide an economical, fast and resourceful approach to the treatment of complicated cancers like leukemia. Methods Using COMSOL Multiphysics software, a continuous flow microfluidic device capable of delivering anti-leukemia drugs to early-stage leukemia cells has been computationally modeled using dielectrophoresis (DEP). Results The cell size difference enabled the micro-particle drug attachment to the leukemia cells using hydrodynamic focusing from the dielectrophoretic force. This point of care application produced a low voltage from numerically calculated electrical field and flow speed simulations. Conclusion Therefore, such a dielectrophoretic low voltage application model can be used as a computational treatment reference for early-stage leukemia cells with an approximate size of 5 μm.
Collapse
Affiliation(s)
- Henry Fenekansi Kiwumulo
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| | - Haruna Muwonge
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
- Habib Medical School, Islamic University in Uganda (IUIU), Kampala, Uganda
| | - Charles Ibingira
- Department of Human Anatomy, Makerere University, Kampala, Uganda
| | - Michael Lubwama
- Department of Mechanical Engineering, Makerere University, Kampala, Uganda
| | | | - Robert Tamale Ssekitoleko
- Department of Medical Physiology, Biomedical Engineering Program, Makerere University, Kampala, Uganda
| |
Collapse
|
2
|
Ashton MD, Cooper PA, Municoy S, Desimone MF, Cheneler D, Shnyder SD, Hardy JG. Controlled Bioactive Delivery Using Degradable Electroactive Polymers. Biomacromolecules 2022; 23:3031-3040. [PMID: 35748772 PMCID: PMC9277582 DOI: 10.1021/acs.biomac.2c00516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
![]()
Biomaterials capable
of precisely controlling the delivery of agrochemicals/biologics/drugs/fragrances
have significant markets in the agriscience/healthcare industries.
Here, we report the development of degradable electroactive polymers
and their application for the controlled delivery of a clinically
relevant drug (the anti-inflammatory dexamethasone phosphate, DMP).
Electroactive copolymers composed of blocks of polycaprolactone (PCL)
and naturally occurring electroactive pyrrole oligomers (e.g., bilirubin,
biliverdin, and hemin) were prepared and solution-processed to produce
films (optionally doped with DMP). A combination of in silico/in vitro/in
vivo studies demonstrated the cytocompatibility of the polymers. The
release of DMP in response to the application of an electrical stimulus
was observed to be enhanced by ca. 10–30% relative to the passive
release from nonstimulated samples in vitro. Such stimuli-responsive
biomaterials have the potential for integration devices capable of
delivering a variety of molecules for technical/medical applications.
Collapse
Affiliation(s)
- Mark D Ashton
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Patricia A Cooper
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Sofia Municoy
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - Martin F Desimone
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Consejo Nacional de Investigaciones, Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Junín 956, Piso 3° (1113), Buenos Aires 1113, Argentina
| | - David Cheneler
- Department of Engineering, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YW, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| | - Steven D Shnyder
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, U.K
| | - John G Hardy
- Department of Chemistry, Faculty of Science and Technology, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K.,Materials Science Institute, Lancaster University, Bailrigg, Lancaster LA1 4YB, U.K
| |
Collapse
|
3
|
Shahkarami F, Kabiri K, Piri F, Moini N, Jahandideh A. Quick and green toward conductive thermally‐stable biobased
star‐shaped
oligomers. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fatemeh Shahkarami
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan Iran
| | - Kourosh Kabiri
- Adhesive and Resin Department, Polymer Processing Faculty Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
- Biobased Monomers and Polymers Division (BIOBASED Division) Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Farideh Piri
- Department of Chemistry, Faculty of Science University of Zanjan Zanjan Iran
| | - Nasrin Moini
- Adhesive and Resin Department, Polymer Processing Faculty Iran Polymer and Petrochemical Institute (IPPI) Tehran Iran
| | - Arash Jahandideh
- Pharmacology Research Center Zahedan University of Medical Sciences Zahedan Iran
| |
Collapse
|
4
|
Li C, Ok M, Choi H, Jung JH. Metallosupramolecular polymers formed with silver(i) ions in aqueous solution. NEW J CHEM 2022. [DOI: 10.1039/d1nj05146f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Supramolecular polymers of a terpyridine-based ligand (L) at three different concentrations of AgNO3 (0, 0.5, and 1.0 equiv.).
Collapse
Affiliation(s)
- Chenxing Li
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Mirae Ok
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| |
Collapse
|
5
|
Moini N, Jahandideh A, Shahkarami F, Kabiri K, Piri F. Linear and star-shaped π-conjugated oligoanilines: a review on molecular design in syntheses and properties. Polym Chem 2022. [DOI: 10.1039/d2py00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Molecular Design and Synthesis of Linear and Star-shaped π-conjugated Oligoanilines with reversible optoelectrochemical properties.
Collapse
Affiliation(s)
- N. Moini
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
| | - A. Jahandideh
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Pharmacology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - F. Shahkarami
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| | - K. Kabiri
- Adhesive and Resin Department, Polymer Processing Faculty, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14975-112, Tehran, Iran
- Biobased Monomers and Polymers Division (BIOBASED Division), Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965-115, Tehran, Iran
| | - F. Piri
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, 45371-38791, Iran
| |
Collapse
|
6
|
Garifullin R, Guler MO. Electroactive peptide-based supramolecular polymers. Mater Today Bio 2021; 10:100099. [PMID: 33778465 PMCID: PMC7985408 DOI: 10.1016/j.mtbio.2021.100099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
The electroactivity as a supramolecular feature of intelligently designed self-assembled systems stimulates a wide interest in development of new stimuli-responsive biomaterials. A diverse set of nanostructures are fabricated through programmed self-assembly of molecules for functional materials. Electroactive groups are conjugated as a functional moiety for organic semiconductor applications. In this review, we present recent examples of self-assembling peptide molecules and electroactive units for supramolecular functional electronic and optical materials with potential biomedical and bioelectronics applications.
Collapse
Affiliation(s)
- Ruslan Garifullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420021 Kazan, Russian Federation
| | - Mustafa O. Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
De A. Machado AE, Da Silva JAB, De Almeida WB, Dos Santos HF. Nonlinear Optical and Spectroscopical Properties of Functionalized Oligoanilines. ChemistrySelect 2021. [DOI: 10.1002/slct.202004152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ana E. De A. Machado
- Núcleo Interdisciplinar de Ciências Exatas e da Natureza Centro Acadêmico do Agreste (CAA) Universidade Federal de Pernambuco (UFPE) Nova Caruaru Caruaru PE 55014-900 Brazil
| | - Juliana A. B. Da Silva
- Núcleo Interdisciplinar de Ciências Exatas e da Natureza Centro Acadêmico do Agreste (CAA) Universidade Federal de Pernambuco (UFPE) Nova Caruaru Caruaru PE 55014-900 Brazil
| | - Wagner B. De Almeida
- Laboratório de Química Computacional e Modelagem Molecular (LQC-MM) Departamento de Química Inorgânica Instituto de Química Universidade Federal Fluminense (UFF) Niterói RJ 24020-141 Brazil
| | - Hélio F. Dos Santos
- Núcleo de Estudos em Química Computacional (NEQC) Departamento de Química ICE Universidade Federal de Juiz de Fora (UFJF) Campus Universitário Martelos Juiz de Fora MG 36036-330 Brazil
| |
Collapse
|
8
|
Heo S, Kim KY, Choi H, Kang SG, Choi W, Lee SS, Jung SH, Jung JH. Exciplex emissive supramolecular polymer formed by tuning molecular conformation. NANOSCALE 2020; 12:16685-16689. [PMID: 32785324 DOI: 10.1039/d0nr04876c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrated the exciplex emission of supramolecular polymers (Bipy-1) possessing bipyridine and pyrene moieties. The distinctive exciplex emission of the supramolecular polymers was controlled by tuning the molecular conformation in different composition ratios of a mixed DMSO/H2O solution. The strong exciplex emission of the supramolecular polymer I with yellow emission was a consequence of the intramolecular charge-transfer interactions in a mixed DMSO/H2O (60 : 40-1 : 99 v/v) solution.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Seok Gyu Kang
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Wonjin Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| | - Sung Ho Jung
- Department of Liberal Arts, Gyeongnam National University of Science and Technology (GNTECH), Jinju, 52725, Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea.
| |
Collapse
|
9
|
Ashton MD, Appen IC, Firlak M, Stanhope NE, Schmidt CE, Eisenstadt WR, Hur B, Hardy JG. Wirelessly triggered bioactive molecule delivery from degradable electroactive polymer films. POLYM INT 2020. [DOI: 10.1002/pi.6089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mark D Ashton
- Department of Chemistry Lancaster University Lancaster UK
| | - Isabel C Appen
- Department of Chemistry Lancaster University Lancaster UK
| | - Melike Firlak
- Department of Chemistry Lancaster University Lancaster UK
- Department of Chemistry Gebze Technical University Kocaeli Turkey
| | | | - Christine E Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
| | - William R Eisenstadt
- Department of Electrical and Computer Engineering University of Florida, New Engineering Building Gainesville FL USA
| | - Byul Hur
- Department of Engineering Technology and Industrial Distribution Texas A&M University College Station TX USA
| | - John G Hardy
- Department of Chemistry Lancaster University Lancaster UK
- J. Crayton Pruitt Family Department of Biomedical Engineering University of Florida, Biomedical Sciences Building JG‐53 Gainesville FL USA
- Materials Science Institute, Lancaster University Lancaster UK
| |
Collapse
|
10
|
Xiang J, Shen L, Hong Y. Status and future scope of hydrogels in wound healing: Synthesis, materials and evaluation. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109609] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Khatoon SS, Chen Y, Zhao H, Lv F, Liu L, Wang S. In situ self-assembly of conjugated polyelectrolytes for cancer targeted imaging and photodynamic therapy. Biomater Sci 2020; 8:2156-2163. [PMID: 32073034 DOI: 10.1039/c9bm01912j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The construction of intelligent self-assembly systems with cancer targeting photodynamic therapy abilities is highly required for increasing the precise therapeutic efficiency in clinical treatment. Herein, a cationic water soluble conjugated polymer (PFT-SH) functionalized with thiol groups was designed and synthesized via a palladium-catalyzed Suzuki coupling reaction. Firstly, PFT-SH can enter cells and form loose aggregations by hydrophobic and π-π stacking interactions. Secondly, a high level of H2O2 in cancer cells oxidizes sulfhydryl groups to disulfide bonds and then forms more and larger aggregations. Finally, PFT-SH showed remarkable ROS producing ability under white light irradiation with 78% quantum yields (ΦΔ). Due to this unique self-aggregation property, PFT-SH was successfully used to achieve in situ self-assembly specifically inside cancer cells for targeted imaging. Both the specific aggregation of PFT-SH in cancer cells and its ROS producing ability led to its use in the targeted killing of cancer cells through efficient photodynamic therapy.
Collapse
Affiliation(s)
- Syeda Sadia Khatoon
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | | | | | | | | | | |
Collapse
|
12
|
Zhou J, Gao ZJ, Cai JQ, Li LL, Wang H. Synthesis and Self-Assembly Behavior of Chlorophyll Derivatives for Ratiometric Photoacoustic Signal Optimization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1559-1568. [PMID: 32030985 DOI: 10.1021/acs.langmuir.9b03652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Self-assembly provides researchers powerful tools for creating ordered functional structures and complex architectures. Investigation of in vivo self-assembly reveals the assembly/aggregation-induced retention (AIR) effect and enhanced targeting effect, which can be applied to promising biomedical applications by enhancing molecular accumulation in the target region. These unique bioeffects inspire the interest of researchers in construction of self-assembled nanomaterials in biological systems. Although many efforts have been achieved, the in-depth analysis of the relationship between assemblies and functions is rarely reported. Here, we focus on the relationship of chlorophyll-derivative assemblies and their photoacoustic signals and attempt to establish a method for monitoring the aggregation efficiency in vivo based on photoacoustic signals. Three arginine-rich peptide-purpurin molecules were designed and synthesized. The assembled capabilities and assembly processes of these molecules were characterized and monitored by UV, fluorescence, and CD spectra images of gradually changing polarities in mixed solvents, and the morphologies of the assemblies were observed by TEM. Furthermore, the relationship between the aggregation ratios of the molecules and the ratiometric photoacoustic signals was systemically studied. We prospect that the fundamental research in revealing objective laws will be useful for future guidance in optimizing photoacoustic detection windows and assembled molecule design.
Collapse
Affiliation(s)
- Jin Zhou
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Standardization and Measurement for Nanotechnology , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Zi-Jun Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Jun-Quan Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Li-Li Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety , National Center for Nanoscience and Technology , Beijing 100190 , P. R. China
| |
Collapse
|
13
|
Centore R, Totsingan F, Amason AC, Lyons S, Zha RH, Gross RA. Self-Assembly-Assisted Kinetically Controlled Papain-Catalyzed Formation of mPEG- b-Phe(Leu) x. Biomacromolecules 2020; 21:493-507. [PMID: 31820938 DOI: 10.1021/acs.biomac.9b01237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembling peptide materials are promising next-generation materials with applications that include tissue engineering scaffolds, drug delivery, bionanomedicine, and enviro-responsive materials. Despite these advances, synthetic methods to form peptides and peptide-polymer conjugates still largely rely on solid-phase peptide synthesis (SPPS) and N-carboxyanhydride ring-opening polymerization (NCA-ROP), while green methods remain largely undeveloped. This work demonstrates a protease-catalyzed peptide synthesis (PCPS) capable of directly grafting leucine ethyl ester (Leu-OEt) from the C-terminus of a methoxy poly(ethylene glycol)-phenylalanine ethyl ester macroinitiator in a one-pot, aqueous reaction. By using the natural tendency of the growing hydrophobic peptide segment to self-assemble, a large narrowing of the (Leu)x distributions for both mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts, relative to oligo(Leu)x synthesized in the absence of a macroinitiator (mPEG45-Phe-OEt), was achieved. A mechanism is described where in situ β-sheet coassembly of mPEG45-b-Phe(Leu)x and oligo(Leu)x coproducts during polymerization prevents peptide hydrolysis, providing a means to control the degree of polymerization (DP) and dispersity of diblock (Leu)x segments (matrix-assisted laser desorption time-of-flight (MALDI-TOF) x = 5.1, dispersity ≤ 1.02). The use of self-assembly to control the uniformity of peptides synthesized by PCPS paves the way for precise peptide block copolymer architectures with various polymer backbones and amino acid compositions synthesized by a green process.
Collapse
|
14
|
Drug delivery systems based on intrinsically conducting polymers. J Control Release 2019; 309:244-264. [DOI: 10.1016/j.jconrel.2019.07.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 11/23/2022]
|
15
|
Zhu M, Hao Y, Ma X, Feng L, Zhai Y, Ding Y, Cheng G. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Adv 2019; 9:12667-12674. [PMID: 35515836 PMCID: PMC9063647 DOI: 10.1039/c9ra00800d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022] Open
Abstract
A biocompatible conductive composite electrode GN–PPy–FL can realize controlled release of a drug model triggered by low voltages.
Collapse
Affiliation(s)
- Mo Zhu
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
- CAS Key Laboratory of Nano-Bio Interface
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Xun Ma
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Lin Feng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yuanxin Zhai
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| | - Yaping Ding
- Department of Chemistry
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Guosheng Cheng
- CAS Key Laboratory of Nano-Bio Interface
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- P. R. China
| |
Collapse
|
16
|
Hathout RM, Metwally AA, El-Ahmady SH, Metwally ES, Ghonim NA, Bayoumy SA, Erfan T, Ashraf R, Fadel M, El-Kholy AI, Hardy JG. Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Richtar J, Heinrichova P, Apaydin DH, Schmiedova V, Yumusak C, Kovalenko A, Weiter M, Sariciftci NS, Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018; 23:E2271. [PMID: 30189689 PMCID: PMC6225382 DOI: 10.3390/molecules23092271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
Flavins are known to be extremely versatile, thus enabling routes to innumerable modifications in order to obtain desired properties. Thus, in the present paper, the group of bio-inspired conjugated materials based on the alloxazine core is synthetized using two efficient novel synthetic approaches providing relatively high reaction yields. The comprehensive characterization of the materials, in order to evaluate the properties and application potential, has shown that the modification of the initial alloxazine core with aromatic substituents allows fine tuning of the optical bandgap, position of electronic orbitals, absorption and emission properties. Interestingly, the compounds possess multichromophoric behavior, which is assumed to be the results of an intramolecular proton transfer.
Collapse
Affiliation(s)
- Jan Richtar
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Patricie Heinrichova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Dogukan Hazar Apaydin
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Veronika Schmiedova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Alexander Kovalenko
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Martin Weiter
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Jozef Krajcovic
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Shah SAA, Firlak M, Berrow SR, Halcovitch NR, Baldock SJ, Yousafzai BM, Hathout RM, Hardy JG. Electrochemically Enhanced Drug Delivery Using Polypyrrole Films. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1123. [PMID: 29966387 PMCID: PMC6073109 DOI: 10.3390/ma11071123] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
The delivery of drugs in a controllable fashion is a topic of intense research activity in both academia and industry because of its impact in healthcare. Implantable electronic interfaces for the body have great potential for positive economic, health, and societal impacts; however, the implantation of such interfaces results in inflammatory responses due to a mechanical mismatch between the inorganic substrate and soft tissue, and also results in the potential for microbial infection during complex surgical procedures. Here, we report the use of conducting polypyrrole (PPY)-based coatings loaded with clinically relevant drugs (either an anti-inflammatory, dexamethasone phosphate (DMP), or an antibiotic, meropenem (MER)). The films were characterized and were shown to enhance the delivery of the drugs upon the application of an electrochemical stimulus in vitro, by circa (ca.) 10⁻30% relative to the passive release from non-stimulated samples. Interestingly, the loading and release of the drugs was correlated with the physical descriptors of the drugs. In the long term, such materials have the potential for application to the surfaces of medical devices to diminish adverse reactions to their implantation in vivo.
Collapse
Affiliation(s)
- Sayed Ashfaq Ali Shah
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Chemistry, Government Post Graduate College No. 1, Abbottabad 22010, Pakistan.
| | - Melike Firlak
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | | | - Sara Jane Baldock
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
| | | | - Rania M Hathout
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt.
- Bioinformatics Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt.
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt.
| | - John George Hardy
- Department of Chemistry, Lancaster University, Lancaster, LA1 4YB, UK.
- Materials Science Institute, Lancaster University, Lancaster, LA1 4YB, UK.
| |
Collapse
|
19
|
Qu J, Zhao X, Ma PX, Guo B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized "smart" drug release. Acta Biomater 2018; 72:55-69. [PMID: 29555459 DOI: 10.1016/j.actbio.2018.03.018] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/25/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Injectable hydrogels with multistimuli responsiveness to electrical field and pH as a drug delivery system have been rarely reported. Herein, we developed a series of injectable conductive hydrogels as "smart" drug carrier with the properties of electro-responsiveness, pH-sensitivity, and inherent antibacterial activity. The hydrogels were prepared by mixing chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD) as a cross-linker. The chemical structures, morphologies, electrochemical property, swelling ratio, conductivity, rheological property, in vitro and in vivo biodegradation, and gelation time of hydrogels were characterized. The pH-responsive behavior was verified by drug release from hydrogels in PBS solutions with different pH values (pH = 7.4 or 5.5) in an in vitro model. As drug carriers with electric-driven release, the release rate of the model drugs amoxicillin and ibuprofen loaded within CP/OD hydrogels dramatically increased when an increase in voltage was applied. Both chitosan and polyaniline with inherent antibacterial properties endowed the hydrogels with excellent antibacterial properties. Furthermore, cytotoxicity tests of the hydrogels using L929 cells confirmed their good cytocompatibility. The in vivo biocompatibility of the hydrogels was verified by H&E staining. Together, all these results suggest that these injectable pH-sensitive conductive hydrogels with antibacterial activity could be ideal candidates as smart drug delivery vehicles for precise doses of medicine to meet practical demand. STATEMENT OF SIGNIFICANCE Stimuli-responsive or "smart" hydrogels have attracted great attention in the field of biotechnology and biomedicine, especially on designing novel drug delivery systems. Compared with traditional implantable electronic delivery devices, the injectable hydrogels with electrical stimuli not only are easy to generate and control electrical field but also could avoid frequent invasive surgeries that offer a new avenue for chronic diseases. In addition, designing a drug carrier with pH-sensitive property could release drug efficiently in targeted acid environment, and it could reinforce the precise doses of medicine. Furthermore, caused by opportunistic microorganisms and rapid spread of antibiotic-resistant microbes, infection is still a serious threat for many clinical utilities. To overcome these barriers, we designed a series of injectable antibacterial conductive hydrogels based on chitosan-graft-polyaniline (CP) copolymer and oxidized dextran (OD), and we demonstrated their potential as "smart" delivery vehicles with electro-responsiveness and pH-responsive properties for triggered and localized release of drugs.
Collapse
|
20
|
Tandon B, Magaz A, Balint R, Blaker JJ, Cartmell SH. Electroactive biomaterials: Vehicles for controlled delivery of therapeutic agents for drug delivery and tissue regeneration. Adv Drug Deliv Rev 2018; 129:148-168. [PMID: 29262296 DOI: 10.1016/j.addr.2017.12.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 11/24/2017] [Accepted: 12/16/2017] [Indexed: 01/09/2023]
Abstract
Electrical stimulation for delivery of biochemical agents such as genes, proteins and RNA molecules amongst others, holds great potential for controlled therapeutic delivery and in promoting tissue regeneration. Electroactive biomaterials have the capability of delivering these agents in a localized, controlled, responsive and efficient manner. These systems have also been combined for the delivery of both physical and biochemical cues and can be programmed to achieve enhanced effects on healing by establishing control over the microenvironment. This review focuses on current state-of-the-art research in electroactive-based materials towards the delivery of drugs and other therapeutic signalling agents for wound care treatment. Future directions and current challenges for developing effective electroactive approach based therapies for wound care are discussed.
Collapse
|
21
|
Hamsici S, Sardan Ekiz M, Cinar Ciftci G, Tekinay AB, Guler MO. Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjug Chem 2017; 28:1491-1498. [PMID: 28441471 DOI: 10.1021/acs.bioconjchem.7b00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800.,Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
22
|
Xu C, Yepez G, Wei Z, Liu F, Bugarin A, Hong Y. Synthesis and characterization of conductive, biodegradable, elastomeric polyurethanes for biomedical applications. J Biomed Mater Res A 2016; 104:2305-14. [PMID: 27124702 PMCID: PMC10947274 DOI: 10.1002/jbm.a.35765] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/23/2016] [Accepted: 04/26/2016] [Indexed: 11/11/2022]
Abstract
Biodegradable conductive polymers are currently of significant interest in tissue repair and regeneration, drug delivery, and bioelectronics. However, biodegradable materials exhibiting both conductive and elastic properties have rarely been reported to date. To that end, an electrically conductive polyurethane (CPU) was synthesized from polycaprolactone diol, hexadiisocyanate, and aniline trimer and subsequently doped with (1S)-(+)-10-camphorsulfonic acid (CSA). All CPU films showed good elasticity within a 30% strain range. The electrical conductivity of the CPU films, as enhanced with increasing amounts of CSA, ranged from 2.7 ± 0.9 × 10(-10) to 4.4 ± 0.6 × 10(-7) S/cm in a dry state and 4.2 ± 0.5 × 10(-8) to 7.3 ± 1.5 × 10(-5) S/cm in a wet state. The redox peaks of a CPU1.5 film (molar ratio CSA:aniline trimer = 1.5:1) in the cyclic voltammogram confirmed the desired good electroactivity. The doped CPU film exhibited good electrical stability (87% of initial conductivity after 150 hours charge) as measured in a cell culture medium. The degradation rates of CPU films increased with increasing CSA content in both phosphate-buffered solution (PBS) and lipase/PBS solutions. After 7 days of enzymatic degradation, the conductivity of all CSA-doped CPU films had decreased to that of the undoped CPU film. Mouse 3T3 fibroblasts proliferated and spread on all CPU films. This developed biodegradable CPU with good elasticity, electrical stability, and biocompatibility may find potential applications in tissue engineering, smart drug release, and electronics. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2305-2314, 2016.
Collapse
Affiliation(s)
- Cancan Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| | - Gerardo Yepez
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Zi Wei
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Fuqiang Liu
- Department of Material Science and Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Alejandro Bugarin
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Joint Biomedical Engineering Program, University of Texas Southwestern Medical Center, Dallas, TX 75093, USA
| |
Collapse
|
23
|
Kozin ED, Black NL, Cheng JT, Cotler MJ, McKenna MJ, Lee DJ, Lewis JA, Rosowski JJ, Remenschneider AK. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear Res 2016; 340:191-203. [PMID: 26994661 DOI: 10.1016/j.heares.2016.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/07/2016] [Accepted: 03/09/2016] [Indexed: 10/22/2022]
Abstract
The tympanic membrane (TM) is an exquisite structure that captures and transmits sound from the environment to the ossicular chain of the middle ear. The creation of TM grafts by multi-material three-dimensional (3D) printing may overcome limitations of current graft materials, e.g. temporalis muscle fascia, used for surgical reconstruction of the TM. TM graft scaffolds with either 8 or 16 circumferential and radial filament arrangements were fabricated by 3D printing of polydimethylsiloxane (PDMS), flex-polyactic acid (PLA) and polycaprolactone (PCL) materials followed by uniform infilling with a fibrin-collagen composite hydrogel. Digital opto-electronic holography (DOEH) and laser Doppler vibrometry (LDV) were used to measure acoustic properties including surface motions and velocity of TM grafts in response to sound. Mechanical properties were determined using dynamic mechanical analysis (DMA). Results were compared to fresh cadaveric human TMs and cadaveric temporalis fascia. Similar to the human TM, TM grafts exhibit simple surface motion patterns at lower frequencies (400 Hz), with a limited number of displacement maxima. At higher frequencies (>1000 Hz), their displacement patterns are highly organized with multiple areas of maximal displacement separated by regions of minimal displacement. By contrast, temporalis fascia exhibited asymmetric and less regular holographic patterns. Velocity across frequency sweeps (0.2-10 kHz) measured by LDV demonstrated consistent results for 3D printed grafts, while velocity for human fascia varied greatly between specimens. TM composite grafts of different scaffold print materials and varied filament count (8 or 16) displayed minimal, but measurable differences in DOEH and LDV at tested frequencies. TM graft mechanical load increased with higher filament count and is resilient over time, which differs from temporalis fascia, which loses over 70% of its load bearing properties during mechanical testing. This study demonstrates the design, fabrication and preliminary in vitro acoustic and mechanical evaluation of 3D printed TM grafts. Data illustrate the feasibility of creating TM grafts with acoustic properties that reflect sound induced motion patterns of the human TM; furthermore, 3D printed grafts have mechanical properties that demonstrate increased resistance to deformation compared to temporalis fascia.
Collapse
Affiliation(s)
- Elliott D Kozin
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Nicole L Black
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jeffrey T Cheng
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Max J Cotler
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Michael J McKenna
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Daniel J Lee
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Lewis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - John J Rosowski
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
| | - Aaron K Remenschneider
- Department Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA; Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
24
|
Yilmaz T, Guler E, Gumus ZP, Akbulut H, Aldemir E, Coskunol H, Goen Colak D, Cianga I, Yamada S, Timur S, Endo T, Yagci Y. Synthesis and application of a novel poly-l-phenylalanine electroactive macromonomer as matrix for the biosensing of ‘Abused Drug’ model. Polym Chem 2016. [DOI: 10.1039/c6py01764a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The synthesis and biosensing application of a novel poly-l-phenylalanine-bearing electroactive macromonomer has been carried out.
Collapse
|
25
|
Pei Q, Hu X, Li Z, Xie Z, Jing X. Small molecular nanomedicines made from a camptothecin dimer containing a disulfide bond. RSC Adv 2015. [DOI: 10.1039/c5ra18586f] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Small molecules camptothecin (CPT) dimer could self-assemble into stable nanoparticles in aqueous solution, which indicated high cellular proliferation inhibition toward HeLa and HepG2 cells.
Collapse
Affiliation(s)
- Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhensheng Li
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|