1
|
Liang X, Guo S, Kuang X, Wan X, Liu L, Zhang F, Jiang G, Cong H, He H, Tan SC. Recent advancements and perspectives on processable natural biopolymers: Cellulose, chitosan, eggshell membrane, and silk fibroin. Sci Bull (Beijing) 2024:S2095-9273(24)00603-0. [PMID: 39244421 DOI: 10.1016/j.scib.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/09/2024]
Abstract
With the rapid development of the global economy and the continuous consumption of fossil resources, sustainable and biodegradable natural biomass has garnered extensive attention as a promising substitute for synthetic polymers. Due to their hierarchical and nanoscale structures, natural biopolymers exhibit remarkable mechanical properties, along with excellent innate biocompatibility and biodegradability, demonstrating significant potential in various application scenarios. Among these biopolymers, proteins and polysaccharides are the most commonly studied due to their low cost, abundance, and ease of use. However, the direct processing/conversion of proteins and polysaccharides into their final products has been a long-standing challenge due to their natural morphology and compositions. In this review, we emphasize the importance of processing natural biopolymers into high-value-added products through sustainable and cost-effective methods. We begin with the extraction of four types of natural biopolymers: cellulose, chitosan, eggshell membrane, and silk fibroin. The processing and post-functionalization strategies for these natural biopolymers are then highlighted. Alongside their unique structures, the versatile potential applications of these processable natural biopolymers in biomedical engineering, biosensors, environmental engineering, and energy applications are illustrated. Finally, we provide a summary and future outlook on processable natural biopolymers, underscoring the significance of converting natural biopolymers into valuable biomaterial platforms.
Collapse
Affiliation(s)
- Xinhua Liang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Xiaoju Kuang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Xiaoqian Wan
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Lu Liu
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Fei Zhang
- Department of Sport Medicine, The Ninth People's Hospital affiliated to Soochow University, Wuxi 215200, China
| | - Gaoming Jiang
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Honglian Cong
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China
| | - Haijun He
- Engineering Research Center for Knitting Technology (Ministry of Education), Jiangnan University, Wuxi 214122, China.
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.
| |
Collapse
|
2
|
Pimsawat N, Theerakulpisut S, Kamwilaisak K. Tailoring visible-light active TiO 2/cellulose nanocomposites with controlled crystalline structure for enhanced photocatalytic performance. Sci Rep 2024; 14:101. [PMID: 38168572 PMCID: PMC10762182 DOI: 10.1038/s41598-023-50749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
This work involves a green and simple synthesis of TiO2 nanoparticles on cellulose under mild conditions without the need for calcination via hydrolysis of titanium oxysulfate (TiOSO4). The synthesis conditions, such as sulfuric acid concentration (0-10% wt), temperature (70-90 ℃), and time (4-8 h), focused on precisely controlling the structure of TiO2 to enhance its photocatalytic effectiveness under visible light. At a lower 2.5 wt% sulfuric acid concentration, pure anatase was formed on the cellulose, while an increase in the range of 5.0-7.5 wt% sulfuric acid concentration yielded a rutile phase, resulting in a mixed phase of anatase and rutile on the cellulose. The pure rutile phase was found at a low temperature (70 ℃), while increased temperature led to the formation of the anatase phase. These results confirmed that the formation of crystalline TiO2 phase on the cellulose depended on sulfuric acid concentration and temperature for hydrolysis. Additionally, the photocatalytic properties of the obtained materials were evaluated by degradationvisible of Rhodamine B (RhB) under UV and visible light. The findings revealed that the mixed phase (anatase/rutile) of TiO2 on the cellulose demonstrated a superior photocatalytic efficiency (99.2%) compared to pure anatase (85.75%) and rutile (75.08%) when exposed to visible light.
Collapse
Affiliation(s)
- Nutsupa Pimsawat
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Somnuk Theerakulpisut
- Energy Management and Conservation Office, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Khanita Kamwilaisak
- Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
3
|
Vidakis N, Petousis M, Michailidis N, Kechagias JD, Mountakis N, Argyros A, Boura O, Grammatikos S. High-performance medical-grade resin radically reinforced with cellulose nanofibers for 3D printing. J Mech Behav Biomed Mater 2022; 134:105408. [DOI: 10.1016/j.jmbbm.2022.105408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/23/2022]
|
4
|
Hussain Z, Thu HE, Rawas-Qalaji M, Naseem M, Khan S, Sohail M. Recent developments and advanced strategies for promoting burn wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
5
|
Mali P, Sherje AP. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr Polym 2022; 275:118668. [PMID: 34742407 DOI: 10.1016/j.carbpol.2021.118668] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/19/2022]
Abstract
The present review explores the recent developments of cellulose nanocrystals, a class of captivating nanomaterials in variety of applications. CNCs are made by acid hydrolysing cellulosic materials like wood, cotton, tunicate, flax fibers by sonochemistry. It has many desirable properties, including a high tensile strength, wide surface area, stiffness, exceptional colloidal stability, and the ability to be modified. CNCs are colloidally stable, hydrophilic, and rigid rod-shaped bio-based nanomaterials in the form of rigid rods with high strength and surface area that has a diverse set of applications and properties. The intriguing features emerging from numerous fibers studies, such as renewable character and biodegradability, piqued the curiosity of many researchers who worked on lowering the size of these fibers. Physicochemical properties such as rheological, mechanical, thermal, lipid crystalline, swelling capacity, microstructural properties result in affecting surface-area to volume ratio and crystallinity of cellulose nanocrystals. The present article highlights the fundamentals of cellulose nanocrystals such as sources, isolation, fabrication, properties and surface modification with an emphasis on plethora of biomedical applications. Selected nanocellulose studies with significant findings on cellular labelling and bioimaging, tissue engineering, biosensors, gene delivery, anti-viral property, anti-bacterial property, ocular delivery, modified drug release, anti-cancer activity and enzyme immobilization are emphasized.
Collapse
Affiliation(s)
- Prajakta Mali
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India
| | - Atul P Sherje
- SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400 056, India.
| |
Collapse
|
6
|
Rashki S, Shakour N, Yousefi Z, Rezaei M, Homayoonfal M, Khabazian E, Atyabi F, Aslanbeigi F, Safaei Lapavandani R, Mazaheri S, Hamblin MR, Mirzaei H. Cellulose-Based Nanofibril Composite Materials as a New Approach to Fight Bacterial Infections. Front Bioeng Biotechnol 2021; 9:732461. [PMID: 34858953 PMCID: PMC8631928 DOI: 10.3389/fbioe.2021.732461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistant microorganisms have become an enormous global challenge, and are predicted to cause hundreds of millions of deaths. Therefore, the search for novel/alternative antimicrobial agents is a grand global challenge. Cellulose is an abundant biopolymer with the advantages of low cost, biodegradability, and biocompatibility. With the recent growth of nanotechnology and nanomedicine, numerous researchers have investigated nanofibril cellulose to try to develop an anti-bacterial biomaterial. However, nanofibril cellulose has no inherent antibacterial activity, and therefore cannot be used on its own. To empower cellulose with anti-bacterial properties, new efficient nanomaterials have been designed based on cellulose-based nanofibrils as potential wound dressings, food packaging, and for other antibacterial applications. In this review we summarize reports concerning the therapeutic potential of cellulose-based nanofibrils against various bacterial infections.
Collapse
Affiliation(s)
- Somaye Rashki
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Yousefi
- School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Marzieh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Aslanbeigi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Samaneh Mazaheri
- Department of Analytical Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
7
|
Yang Y, Lu Y, Zeng K, Heinze T, Groth T, Zhang K. Recent Progress on Cellulose-Based Ionic Compounds for Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000717. [PMID: 32270900 PMCID: PMC11469321 DOI: 10.1002/adma.202000717] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 05/06/2023]
Abstract
Glycans play important roles in all major kingdoms of organisms, such as archea, bacteria, fungi, plants, and animals. Cellulose, the most abundant polysaccharide on the Earth, plays a predominant role for mechanical stability in plants, and finds a plethora of applications by humans. Beyond traditional use, biomedical application of cellulose becomes feasible with advances of soluble cellulose derivatives with diverse functional moieties along the backbone and modified nanocellulose with versatile functional groups on the surface due to the native features of cellulose as both cellulose chains and supramolecular ordered domains as extractable nanocellulose. With the focus on ionic cellulose-based compounds involving both these groups primarily for biomedical applications, a brief introduction about glycoscience and especially native biologically active glycosaminoglycans with specific biomedical application areas on humans is given, which inspires further development of bioactive compounds from glycans. Then, both polymeric cellulose derivatives and nanocellulose-based compounds synthesized as versatile biomaterials for a large variety of biomedical applications, such as for wound dressings, controlled release, encapsulation of cells and enzymes, and tissue engineering, are separately described, regarding the diverse routes of synthesis and the established and suggested applications for these highly interesting materials.
Collapse
Affiliation(s)
- Yang Yang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
- State Key Laboratory of Pulp and Paper EngineeringSouth China University of TechnologyWushan Road 381Guangzhou510640P. R. China
| | - Yi‐Tung Lu
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
| | - Kui Zeng
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| | - Thomas Heinze
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University of JenaCentre of Excellence for Polysaccharide ResearchHumboldt Straße 10JenaD‐07743Germany
| | - Thomas Groth
- Department Biomedical MaterialsInstitute of PharmacyMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Strasse 4Halle (Saale)06120Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHalle (Saale)06120Germany
- Laboratory of Biomedical NanotechnologiesInstitute of Bionic Technologies and EngineeringI. M. Sechenov First Moscow State UniversityTrubetskaya Street 8119991MoscowRussian Federation
| | - Kai Zhang
- Wood Technology and Wood ChemistryUniversity of GoettingenBüsgenweg 4Göttingen37077Germany
| |
Collapse
|
8
|
Svensson FG, Manivel VA, Seisenbaeva GA, Kessler VG, Nilsson B, Ekdahl KN, Fromell K. Hemocompatibility of Nanotitania-Nanocellulose Hybrid Materials. NANOMATERIALS 2021; 11:nano11051100. [PMID: 33923181 PMCID: PMC8146062 DOI: 10.3390/nano11051100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 01/01/2023]
Abstract
In order to develop a new type of improved wound dressing, we combined the wound healing properties of nanotitania with the advantageous dressing properties of nanocellulose to create three different hybrid materials. The hemocompatibility of the synthesized hybrid materials was evaluated in an in vitro human whole blood model. To our knowledge, this is the first study of the molecular interaction between hybrid nanotitania and blood proteins. Two of the hybrid materials prepared with 3 nm colloidal titania and 10 nm hydrothermally synthesized titania induced strong coagulation and platelet activation but negligible complement activation. Hence, they have great potential as a new dressing for promoting wound healing. Unlike the other two, the third hybrid material using molecular ammonium oxo-lactato titanate as a titania source inhibited platelet consumption, TAT generation, and complement activation, apparently via lowered pH at the surface interface. It is therefore suitable for applications where a passivating surface is desired, such as drug delivery systems and extracorporeal circuits. This opens the possibility for a tailored blood response through the surface functionalization of titania.
Collapse
Affiliation(s)
- Fredric G. Svensson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Vivek Anand Manivel
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Vadim G. Kessler
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden; (F.G.S.); (G.A.S.); (V.G.K.)
| | - Bo Nilsson
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
| | - Kristina N. Ekdahl
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
- Linnæus Centre for Biomaterials Chemistry, Linnæus University, SE-391 82 Kalmar, Sweden
| | - Karin Fromell
- Rudbeck Laboratory C5:3, Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden; (V.A.M.); (B.N.); (K.N.E.)
- Correspondence:
| |
Collapse
|
9
|
Kozlov DA, Tikhonova SA, Evdokimov PV, Putlyaev VI, Garshev AV. Stereolithography 3D Printing from Suspensions Containing Titanium Dioxide. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620120098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Kupnik K, Primožič M, Kokol V, Leitgeb M. Nanocellulose in Drug Delivery and Antimicrobially Active Materials. Polymers (Basel) 2020; 12:E2825. [PMID: 33261198 PMCID: PMC7760654 DOI: 10.3390/polym12122825] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/22/2022] Open
Abstract
In recent years, nanocellulose (NC) has also attracted a great deal of attention in drug delivery systems due to its unique physical properties, specific surface area, low risk of cytotoxicity, and excellent biological properties. This review is focused on nanocellulose based systems acting as carriers to be used in drug or antimicrobial delivery by providing different but controlled and sustained release of drugs or antimicrobial agents, respectively, thus showing potential for different routes of applications and administration. Microorganisms are increasingly resistant to antibiotics, and because, generally, the used metal or metal oxide nanoparticles at some concentration have toxic effects, more research has focused on finding biocompatible antimicrobial agents that have been obtained from natural sources. Our review contains the latest research from the last five years that tested nanocellulose-based materials in the field of drug delivery and antimicrobial activity.
Collapse
Affiliation(s)
- Kaja Kupnik
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Mateja Primožič
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
| | - Vanja Kokol
- Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia;
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia; (K.K.); (M.P.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
11
|
Xu Y, Zhang H, Liu XW. Antimicrobial Carbohydrate-Based Macromolecules: Their Structures and Activities. J Org Chem 2020; 85:15827-15836. [DOI: 10.1021/acs.joc.0c01597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yuan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
12
|
Anton-Sales I, Roig-Sanchez S, Sánchez-Guisado MJ, Laromaine A, Roig A. Bacterial Nanocellulose and Titania Hybrids: Cytocompatible and Cryopreservable Cell Carriers. ACS Biomater Sci Eng 2020; 6:4893-4902. [PMID: 33455286 DOI: 10.1021/acsbiomaterials.0c00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Carrier-assisted cell transplantation offers new strategies to improve the clinical outcomes of cellular therapies. Bacterial nanocellulose (BC) is an emerging biopolymer that might be of great value in the development of animal-free, customizable, and temperature-stable novel cell carriers. Moreover, BC exhibits a myriad of modification possibilities to incorporate additional functionalities. Here, we have synthesized BC-titanium dioxide (TiO2) nanocomposites (BC/TiO2) to evaluate and compare the suitability of not only BC but also a model hybrid nanobiomaterial as cell transplantation supports. This work provides thorough information on the interactions between BC-based substrates and model human cells in terms of cell attachment, morphology, proliferation rate, and metabolic activity. Two methods to partially retrieve the adhered cells are also reported. Both BC and BC/TiO2 substrates are positively evaluated in terms of cytocompatibility and endotoxin content without detecting major differences between BC and BC nanocomposites. Lastly, the effective cryopreservation of cells-BC and cells-BC/TiO2 constructs, yielding high cell viability and intact cell carrier's characteristics after thawing, is demonstrated. Taken together, our results show that both BC and BC/TiO2 enable to integrate the processes of expansion and long-term storage of human cells in transportable, robust and easy to manipulate supports.
Collapse
Affiliation(s)
- Irene Anton-Sales
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Soledad Roig-Sanchez
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | | | - Anna Laromaine
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
13
|
Patel DK, Dutta SD, Lim KT. Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 2019; 9:19143-19162. [PMID: 35516880 PMCID: PMC9065078 DOI: 10.1039/c9ra03261d] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 01/03/2023] Open
Abstract
Nanocellulose, derived from cellulose hydrolysis, has unique optical and mechanical properties, high surface area, and good biocompatibility. It is frequently used as a reinforcing agent to improve the native properties of materials. The presence of functional groups in its surface enables the alteration of its behavior and its use under different conditions. Nanocellulose is typically used in the form of cellulose nanocrystals (CNCs), cellulose nanofibers (CNFs), or bacterial nanocellulose (BNC). CNCs and CNFs have a high aspect ratio with typical lengths of ∼100-250 nm and 0.1-2 μm, respectively; BNC is nanostructured cellulose produced by bacteria. Nanohybrid materials are a combination of organic or inorganic nanomaterials with macromolecules forming a single composite and typically exhibit superior optical, thermal, and mechanical properties to those of native polymers, owing to the greater interactions between the macromolecule matrix and the nanomaterials. Excellent biocompatibility and biodegradability make nanocellulose an ideal material for applications in biomedicine. Unlike native polymers, nanocellulose-based nanohybrids exhibit a sustained drug release ability, which can be further optimized by changing the content or chemical environment of the nanocellulose, as well as the external stimuli, such as the pH and electric fields. In this review, we describe the process of extraction of nanocellulose from different natural sources; its effects on the structural, morphological, and mechanical properties of polymers; and its various applications.
Collapse
Affiliation(s)
- Dinesh K Patel
- The Institute of Forest Science, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
14
|
Torlopov MA, Martakov IS, Mikhaylov VI, Legki PV, Golubev YA, Krivoshapkina EF, Tracey C, Sitnikov PA, Udoratina EV. Manipulating the colloidal properties of (non-)sulfated cellulose nanocrystals via stepwise surface cyanoethylation/carboxylation. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Karimian A, Parsian H, Majidinia M, Rahimi M, Mir SM, Samadi Kafil H, Shafiei-Irannejad V, Kheyrollah M, Ostadi H, Yousefi B. Nanocrystalline cellulose: Preparation, physicochemical properties, and applications in drug delivery systems. Int J Biol Macromol 2019; 133:850-859. [PMID: 31002901 DOI: 10.1016/j.ijbiomac.2019.04.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/07/2019] [Accepted: 04/16/2019] [Indexed: 02/09/2023]
Abstract
Cancer is the leading cause of death all over the world and chemotherapy is an important approach to fight cancer, however, there are many obstacles against successful cancer chemotherapy such as development of multidrug resistance, poor solubility of chemotherapeutic agents and adverse side effects to healthy tissues. An important strategy to overcome these obstacles, is the use of nanotechnology. In recent years, natural polymers such as cellulose and its nanoform structure, nanocrystalline cellulose (NCC), have attracted the interest of researchers in the field of nanotechnology and specially drug delivery systems, due to biocompatibility and biodegradability of NCC. Cellulose is the most abundant natural biopolymer and changes to NCC by several chemical and mechanical methods. In this review, we mainly focus on the methods for production of NCC, physicochemical properties and medical applications of NCC (e.g. regenerative medicine, replacement of vascular grafts, tissue engineering, anti-bacterial/anti-viral applications, diagnosis and biosensing) with a special emphasize on drug delivery systems.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Student Research Committee, Babol University of medical sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Rahimi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Seyed Mostafa Mir
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Kheyrollah
- Department of Biology, Faculty of Biological Science, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Hassan Ostadi
- Department of Biology, Faculty of Biological Science, Nour Danesh Institute of Higher Education, Meymeh, Isfahan, Iran; Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Yousefi
- Student Research Committee, Babol University of medical sciences, Babol, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
16
|
Younas M, Noreen A, Sharif A, Majeed A, Hassan A, Tabasum S, Mohammadi A, Zia KM. A review on versatile applications of blends and composites of CNC with natural and synthetic polymers with mathematical modeling. Int J Biol Macromol 2019; 124:591-626. [PMID: 30447361 DOI: 10.1016/j.ijbiomac.2018.11.064] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/04/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022]
Abstract
Cellulose is world's most abundant, renewable and recyclable polysaccharide on earth. Cellulose is composed of both amorphous and crystalline regions. Cellulose nanocrystals (CNCs) are extracted from crystalline region of cellulose. The most attractive feature of CNC is that it can be used as nanofiller to reinforce several synthetic and natural polymers. In this article, a comprehensive overview of modification of several natural and synthetic polymers using CNCs as reinforcer in respective polymer matrix is given. The immense activities of CNCs are successfully utilized to enhance the mechanical properties and to broaden the field of application of respective polymer. All the technical scientific issues have been discussed highlighting the recent advancement in biomedical and packaging field.
Collapse
Affiliation(s)
- Muhammad Younas
- Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Aqdas Noreen
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Aqsa Sharif
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Ayesha Majeed
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abida Hassan
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Shazia Tabasum
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan
| | - Abbas Mohammadi
- Department of Polymer Chemistry, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Khalid Mahmood Zia
- Institute of Chemistry, Government College University, Faisalabad 38030, Pakistan.
| |
Collapse
|
17
|
Li J, Cha R, Mou K, Zhao X, Long K, Luo H, Zhou F, Jiang X. Nanocellulose-Based Antibacterial Materials. Adv Healthc Mater 2018; 7:e1800334. [PMID: 29923342 DOI: 10.1002/adhm.201800334] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/18/2018] [Indexed: 11/12/2022]
Abstract
In recent years, nanocellulose-based antimicrobial materials have attracted a great deal of attention due to their unique and potentially useful features. In this review, several representative types of nanocellulose and modification methods for antimicrobial applications are mainly focused on. Recent literature related with the preparation and applications of nanocellulose-based antimicrobial materials is reviewed. The fabrication of nanocellulose-based antimicrobial materials for wound dressings, drug carriers, and packaging materials is the focus of the research. The most important additives employed in the preparation of nanocellulose-based antimicrobial materials are presented, such as antibiotics, metal, and metal oxide nanoparticles, as well as chitosan. These nanocellulose-based antimicrobial materials can benefit many applications including wound dressings, drug carriers, and packaging materials. Finally, the challenges of industrial production and potentials for development of nanocellulose-based antimicrobial materials are discussed.
Collapse
Affiliation(s)
- Juanjuan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Ruitao Cha
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Kaiwen Mou
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; University of Chinese Academy of Sciences; Qingdao 266101 China
| | - Xiaohui Zhao
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Keying Long
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
| | - Huize Luo
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Fengshan Zhou
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes; National Laboratory of Mineral Materials; School of Materials Science and Technology; China University of Geosciences (Beijing); Beijing 100083 China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for NanoScience and Technology; Beijing 100190 China
- Sino-Danish College, University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
18
|
Sekar AD, Muthukumar H, Chandrasekaran NI, Matheswaran M. Photocatalytic degradation of naphthalene using calcined FeZnO/ PVA nanofibers. CHEMOSPHERE 2018; 205:610-617. [PMID: 29715675 DOI: 10.1016/j.chemosphere.2018.04.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/18/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Recently, the incorporation of metal oxide nanoparticles into polymers has gained great attention owing to their ample of applications. The green mediated synthesis Fe-doped ZnO nanoparticles have been incorporated into PVA nanofibers through electro spinning for the application of photocatalytic degradation. The PVA polymer concentration was optimized to obtain uniform fibers without beads. The Fe-doped ZnO nanofibers were characterized by various analyzing techniques. The results show that good physicochemical with high surface area, uniformity in fiber with an average diameter ranges from 150 to 300 and 50-200 nm for un-calcined and calcined Fe-doped ZnO nanofiber respectively. The photocatalytic activity of nanofibers was examined by the degradation of naphthalene. The efficiency was observed 96 and 81% for calcined and un-calcined nanofibers, respectively. The reusable efficacy of Fe-doped ZnO calcined nanofiber as a catalyst was studied. These studies corroborated that the calcined Fe-doped ZnO nanofiber as promising material for catalytic applications.
Collapse
Affiliation(s)
- Aiswarya Devi Sekar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | - Harshiny Muthukumar
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
| | | | - Manickam Matheswaran
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India.
| |
Collapse
|
19
|
Evdokimova OL, Svensson FG, Agafonov AV, Håkansson S, Seisenbaeva GA, Kessler VG. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania-Synthesis and Antibacterial Properties. NANOMATERIALS 2018; 8:nano8040228. [PMID: 29642486 PMCID: PMC5923558 DOI: 10.3390/nano8040228] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 12/12/2022]
Abstract
Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC) production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II) solution in aqueous ammonia followed by acid hydrolysis with diluted H2SO4. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus. It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents.
Collapse
Affiliation(s)
- Olga L Evdokimova
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St.1, 153045 Ivanovo, Russia.
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Science, 750 07 Uppsala, Sweden.
| | - Fredric G Svensson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Science, 750 07 Uppsala, Sweden.
| | - Alexander V Agafonov
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya St.1, 153045 Ivanovo, Russia.
| | - Sebastian Håkansson
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Science, 750 07 Uppsala, Sweden.
| | - Gulaim A Seisenbaeva
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Science, 750 07 Uppsala, Sweden.
| | - Vadim G Kessler
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Science, 750 07 Uppsala, Sweden.
| |
Collapse
|
20
|
Hassanpour A, Asghari S, Mansour Lakouraj M, Mohseni M. Preparation and characterization of contact active antibacterial surface based on chemically modified nanofibrillated cellulose by phenanthridinium silane salt. Int J Biol Macromol 2018; 115:528-539. [PMID: 29581000 DOI: 10.1016/j.ijbiomac.2018.03.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 02/08/2023]
Abstract
The main object of this research is chemical modification of the nanofibrillated cellulose (NFC) surface with a phenanthridinium silane salt to develop durable non-leaching antibacterial surface. Initially, (3-trimethoxysilylpropyl) phenanthridinium iodide (TMSPhI) as an antibacterial agent was synthesized using (3-chloropropyl trimethoxysilane) (CPTMS) and phenanthridine in the presence of potassium iodide. Subsequently, NFC was cationized by reaction of its hydroxyl groups with the trimethoxysilane group of TMSPhI to prepare the modified sample (NFC-TMSPhI). The synthesized TMSPhI was characterized by FT-IR, 1H and 13C NMR spectroscopies. The modified NFC samples were also characterized by FE-SEM/EDX, XRD, TGA, elemental analysis, contact angle measurement, FT-IR, UV-Visible and fluorescence spectroscopies. The obtained NFC-TMSPhI samples presented fluorescence property at the maximum emission wavelength in the range of 539-549 nm. Additionally, the antibacterial activity of the modified samples were evaluated quantitatively against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria. All the modified samples displayed promising results with at least bacteriostatic effect or bactericidal properties. Finally, the cytotoxic effect of the modified sample on human dermal fibroblasts (HDFs) and two cancer cell lines (MCF-7 and Hela) was investigated that showed dose- and surface charge-dependent toxicity.
Collapse
Affiliation(s)
- Anita Hassanpour
- Department of Chemistry, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran
| | - Sakineh Asghari
- Department of Chemistry, University of Mazandaran, P. O. Box 47416-95447, Babolsar, Iran; Nano and Biotechnology Research Group, University of Mazandaran, Babolsar, Iran.
| | | | - Mojtaba Mohseni
- Department of Biology, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
21
|
Bera A, Trivedi JS, Kumar SB, Chandel AKS, Haldar S, Jewrajka SK. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions. JOURNAL OF HAZARDOUS MATERIALS 2018; 343:86-97. [PMID: 28946135 DOI: 10.1016/j.jhazmat.2017.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 05/26/2023]
Abstract
Propensity towards anti-organic fouling, anti-biofouling property and low rejection of multivalent cation (monovalent counter ion) restricts the application of the state-of-art poly(piperazineamide) [poly(PIP)] thin film composite (TFC) nanofiltration (NF) membrane for the treatment of water containing toxic heavy metal ions, organic fouling agents and microbes. Herein, we report the preparation of thin film nanocomposite (TFNC) NF membranes with improved heavy metal ions rejection efficacy, anti-biofouling property, and anti-organic fouling properties compared to that of poly(PIP) TFC NF membrane. The TFNC NF membranes were prepared by the interfacial polymerization (IP) between PIP and trimesoyl chloride followed by post-treatment with polyethyleneimine (PEI) or PEI-polyethylene glycol conjugate and then immobilization of Ag NP. The IP was conducted on a polyethersulfone/poly(methyl methacrylate)-co-poly(vinyl pyrollidone)/silver nanoparticle (Ag NP) blend ultrafiltration membrane support. The TFNC membranes exhibited >99% rejection of Pb2+, 91-97% rejection of Cd2+, 90-96% rejection of Co2+ and 95-99% rejection of Cu2+ with permeate flux ∼40Lm-2h-1 at applied pressure 0.5MPa. The improved heavy metal ions rejection efficacy of the modified NF membranes is attributed to the development of positive surface charge as well as lowering of surface pore size compared to that of unmodified poly(PIP) TFC NF membrane.
Collapse
Affiliation(s)
- Anupam Bera
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Reverse Osmosis Membrane Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Jaladhi S Trivedi
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Reverse Osmosis Membrane Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Sweta Binod Kumar
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Arvind K Singh Chandel
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Reverse Osmosis Membrane Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Soumya Haldar
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Marine Biotechnology and Ecology Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India
| | - Suresh K Jewrajka
- AcSIR-Central Salt & Marine Chemicals Research Institute, G. B Marg, Bhavnagar, 364002, Gujarat, India; Reverse Osmosis Membrane Division, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar-364002, Gujarat, India.
| |
Collapse
|
22
|
Garusinghe UM, Raghuwanshi VS, Batchelor W, Garnier G. Water Resistant Cellulose - Titanium Dioxide Composites for Photocatalysis. Sci Rep 2018; 8:2306. [PMID: 29396459 PMCID: PMC5797173 DOI: 10.1038/s41598-018-20569-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/17/2018] [Indexed: 11/30/2022] Open
Abstract
Novel water resistant photocatalytic composites of microfibrillated cellulose (MFC)-polyamide-amine-epichlorohydrin (PAE)-TiO2 nanoparticles (NPs) were prepared by a simple two-step mixing process. The composites produced are flexible, uniform, reproducible and reusable; they can readily be removed from the pollutant once used. Small amount of TiO2 NPs are required for the loaded composites to exhibit a remarkable photocatalytic activity which is quantified here as achieving at least 95% of methyl orange degradation under 150 min of UV light irradiation for the composite with best combination. The cellulose network combined with PAE strongly retains NPs and hinders their release in the environment. PAE dosage (10 and 50 mg/g MFC) controls the NP retention in the cellulose fibrous matrix. As TiO2 content increases, the photocatalytic activity of the composites levels off to a constant; this is reached at 2wt% TiO2 NPs for 10 mg/g PAE and 20wt% for 50 mg/g PAE. SEM and SAXS analysis confirms the uniform distribution of NPs and their formation of aggregates in the cellulose fibre network. These economical and water resistant photocatalytic paper composites made by a simple, robust and easily scalable process are ideal for applications such as waste water treatment where efficiency, reusability and recyclability are important.
Collapse
Affiliation(s)
- Uthpala M Garusinghe
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - Vikram S Raghuwanshi
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia
| | - Warren Batchelor
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia.
| | - Gil Garnier
- BioResource Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, 3800, Victoria, Australia.
| |
Collapse
|
23
|
Seisenbaeva GA, Fromell K, Vinogradov VV, Terekhov AN, Pakhomov AV, Nilsson B, Ekdahl KN, Vinogradov VV, Kessler VG. Dispersion of TiO 2 nanoparticles improves burn wound healing and tissue regeneration through specific interaction with blood serum proteins. Sci Rep 2017; 7:15448. [PMID: 29133853 PMCID: PMC5684224 DOI: 10.1038/s41598-017-15792-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/02/2017] [Indexed: 12/30/2022] Open
Abstract
Burn wounds are one of the most important causes of mortality and especially morbidity around the world. Burn wound healing and skin tissue regeneration remain thus one of the most important challenges facing the mankind. In the present study we have addressed this challenge, applying a solution-stabilized dispersion TiO2 nanoparticles, hypothesizing that their ability to adsorb proteins will render them a strong capacity in inducing body fluid coagulation and create a protective hybrid material coating. The in vitro study of interaction between human blood and titania resulted at enhanced TiO2 concentrations in formation of rather dense gel composite materials and even at lower content revealed specific adsorption pattern initiating the cascade response, promising to facilitate the regrowth of the skin. The subsequent in vivo study of the healing of burn wounds in rats demonstrated formation of a strongly adherent crust of a nanocomposite, preventing infection and inflammation with quicker reduction of wound area compared to untreated control. The most important result in applying the TiO2 dispersion was the apparently improved regeneration of damaged tissues with appreciable decrease in scar formation and skin color anomalies.
Collapse
Affiliation(s)
- Gulaim A Seisenbaeva
- Department of Chemistry and Biotechnology, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Vasiliy V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Kronverksky Pr. 49, St, Petersburg, 197101, Russian Federation
| | - Aleksey N Terekhov
- Ivanovo State Medical Academy, Sheremetevskiy prosp. 8, Ivanovo, 153012, Russian Federation
| | - Andrey V Pakhomov
- Ivanovo State Medical Academy, Sheremetevskiy prosp. 8, Ivanovo, 153012, Russian Federation
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Kristina Nilsson Ekdahl
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory C5:3, Uppsala University, SE-751 85, Uppsala, Sweden
- Linnæus Centre for Biomaterials Chemistry, Linnæus University, SE-391 82, Kalmar, Sweden
| | - Vladimir V Vinogradov
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Kronverksky Pr. 49, St, Petersburg, 197101, Russian Federation
| | - Vadim G Kessler
- Department of Chemistry and Biotechnology, BioCenter, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden.
| |
Collapse
|
24
|
Fedorov P, Luginina A, Kuznetsov S, Voronov V, Lyapin A, Ryabochkina P, Chernov M, Mayakova M, Pominova D, Uvarov O, Baranchikov A, Ivanov V, Pynenkov A, Nishchev K. Preparation and properties of methylcellulose/nanocellulose/СаF 2 :Но polymer-inorganic composite films for two-micron radiation visualizers. J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.08.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Svensson FG, Seisenbaeva GA, Kessler VG. Mixed-Ligand Titanium “Oxo Clusters”: Structural Insights into the Formation and Binding of Organic Molecules and Transformation into Oxide Nanostructures on Hydrolysis and Thermolysis. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fredric G. Svensson
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Box 7015 75007 Uppsala Sweden
| | - Gulaim A. Seisenbaeva
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Box 7015 75007 Uppsala Sweden
| | - Vadim G. Kessler
- Department of Molecular Sciences; Swedish University of Agricultural Sciences; Box 7015 75007 Uppsala Sweden
| |
Collapse
|
26
|
Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications. INVENTIONS 2017. [DOI: 10.3390/inventions2020009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
27
|
Sarkar G, Orasugh JT, Saha NR, Roy I, Bhattacharyya A, Chattopadhyay AK, Rana D, Chattopadhyay D. Cellulose nanofibrils/chitosan based transdermal drug delivery vehicle for controlled release of ketorolac tromethamine. NEW J CHEM 2017. [DOI: 10.1039/c7nj02539d] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose nanofibrils (CNFs) have attracted attention as a promising material in the biomedical field because of their outstanding properties such as hydrophilicity, biocompatibility, biodegradability, and high surface area.
Collapse
Affiliation(s)
- Gunjan Sarkar
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Jonathan T. Orasugh
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
- Centre for Research in Nanoscience & Nanotechnology, University of Calcutta
- Kolkata 700098
| | - Nayan R. Saha
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Indranil Roy
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Amartya Bhattacharyya
- Department of Polymer Science and Technology, University of Calcutta
- Kolkata 700009
- India
| | - Atis K. Chattopadhyay
- Faculty Council For PG & UG Studies in Science, Jadavpur University
- Kolkata-700032
- India
| | - Dipak Rana
- Department of Chemical and Biological Engineering, Industrial Membrane Research Institute, University of Ottawa
- Ottawa
- Canada
| | | |
Collapse
|
28
|
Castro D, Tabary N, Martel B, Gandini A, Belgacem N, Bras J. Effect of different carboxylic acids in cyclodextrin functionalization of cellulose nanocrystals for prolonged release of carvacrol. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1018-25. [DOI: 10.1016/j.msec.2016.08.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/26/2016] [Accepted: 08/04/2016] [Indexed: 01/08/2023]
|