1
|
Zhang S, Liu C, Su M, Zhou D, Tao Z, Wu S, Xiao L, Li Y. Development of citric acid-based biomaterials for biomedical applications. J Mater Chem B 2024. [PMID: 39465414 DOI: 10.1039/d4tb01666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The development of bioactive materials with controllable preparation is of great significance for biomedical engineering. Citric acid-based biomaterials are one of the few bioactive materials with many advantages such as simple synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, controllable biodegradability, and further functionalization. In this paper, we review the development of multifunctional citrate-based biomaterials for biomedical applications, and summarize their multifunctional properties in terms of physical, chemical, and biological aspects, and finally the applications of citrate-based biomaterials in biomedical engineering, including bone tissue engineering, skin tissue engineering, drug/cell delivery, vascular and neural tissue engineering, and bioimaging.
Collapse
Affiliation(s)
- Shihao Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cailin Liu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Meng Su
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| | - Dong Zhou
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ziwei Tao
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Lan Xiao
- School of Medicine and Dentistry, Griffith University, QLD 4222, Australia.
| | - Yulin Li
- Engineering Research Center for Biomedical Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Material Science & Engineering, East China University of Science and Technology, Shanghai 200237, China.
- Wenzhou Institute of Shanghai University, Wenzhou 325000, China
| |
Collapse
|
2
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
3
|
Rahmati M, Silva EA, Reseland JE, A Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev 2020; 49:5178-5224. [PMID: 32642749 DOI: 10.1039/d0cs00103a] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomedical scientists use chemistry-driven processes found in nature as an inspiration to design biomaterials as promising diagnostic tools, therapeutic solutions, or tissue substitutes. While substantial consideration is devoted to the design and validation of biomaterials, the nature of their interactions with the surrounding biological microenvironment is commonly neglected. This gap of knowledge could be owing to our poor understanding of biochemical signaling pathways, lack of reliable techniques for designing biomaterials with optimal physicochemical properties, and/or poor stability of biomaterial properties after implantation. The success of host responses to biomaterials, known as biocompatibility, depends on chemical principles as the root of both cell signaling pathways in the body and how the biomaterial surface is designed. Most of the current review papers have discussed chemical engineering and biological principles of designing biomaterials as separate topics, which has resulted in neglecting the main role of chemistry in this field. In this review, we discuss biocompatibility in the context of chemistry, what it is and how to assess it, while describing contributions from both biochemical cues and biomaterials as well as the means of harmonizing them. We address both biochemical signal-transduction pathways and engineering principles of designing a biomaterial with an emphasis on its surface physicochemistry. As we aim to show the role of chemistry in the crosstalk between the surface physicochemical properties and body responses, we concisely highlight the main biochemical signal-transduction pathways involved in the biocompatibility complex. Finally, we discuss the progress and challenges associated with the current strategies used for improving the chemical and physical interactions between cells and biomaterial surface.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway. h.j.haugen.odont.uio.no
| | | | | | | | | |
Collapse
|
4
|
Tapia JB, Haines J, Yapor JP, Reynolds MM. Identification of the degradation products of a crosslinked polyester using LC-MS. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.108948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Yang L, Feura ES, Ahonen MJR, Schoenfisch MH. Nitric Oxide-Releasing Macromolecular Scaffolds for Antibacterial Applications. Adv Healthc Mater 2018; 7:e1800155. [PMID: 29756275 PMCID: PMC6159924 DOI: 10.1002/adhm.201800155] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Indexed: 01/03/2023]
Abstract
Exogenous nitric oxide (NO) represents an attractive antibacterial agent because of its ability to both disperse and directly kill bacterial biofilms while avoiding resistance. Due to the challenges associated with administering gaseous NO, NO-releasing macromolecular scaffolds are developed to facilitate NO delivery. This progress report describes the rational design and application of NO-releasing macromolecular scaffolds as antibacterial therapeutics. Special consideration is given to the role of the physicochemical properties of the NO storage vehicles on antibacterial or anti-biofilm activity.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Evan S. Feura
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mona Jasmine R. Ahonen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
6
|
Yapor JP, Neufeld BH, Tapia JB, Reynolds MM. Biodegradable crosslinked polyesters derived from thiomalic acid and S-nitrosothiol analogues for nitric oxide release. J Mater Chem B 2018; 6:4071-4081. [PMID: 31372219 PMCID: PMC6675467 DOI: 10.1039/c8tb00566d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Crosslinked polyesters with Young's moduli similar to that of certain soft biological tissues were prepared via bulk polycondensation of thiomalic acid and 1,8-octanediol alone, and with citric or maleic acid. The copolymers were converted to nitric oxide (NO)-releasing S-nitrosothiol (RSNO) analogues by reaction with tert-butyl nitrite. Additional conjugation steps were avoided by inclusion of the thiolated monomer during the polycondensation to permit thiol conversion to RSNOs. NO release at physiological pH and temperature (pH 7.4, 37 °C) was determined by chemiluminescence-based NO detection. The average total NO content for poly(thiomalic-co-maleic acid-co-1,8-octanediol), poly(thiomalic-co-citric acid-co-1,8-octanediol), and poly(thiomalic acid-co-1,8-octanediol) was 130 ± 39 μmol g-1, 200 ± 35 μmol g-1, and 130 ± 11 μmol g-1, respectively. The antibacterial properties of the S-nitrosated analogues were confirmed against Escherichia coli and Staphylococcus aureus. The hydrolytic degradation products were analyzed by time-of-flight mass spectrometry after a 10-week study to investigate their composition. Tensile mechanical tests were performed on the non-nitrosated polymers as well as their S-nitrosated derivatives and suggested that the materials have appropriate Young's moduli and elongation values for biomedical applications.
Collapse
Affiliation(s)
- Janet P. Yapor
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Bella H. Neufeld
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Jesus B. Tapia
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa M. Reynolds
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
7
|
Hoang Thi TT, Lee Y, Le Thi P, Park KD. Nitric oxide-releasing injectable hydrogels with high antibacterial activity through in situ formation of peroxynitrite. Acta Biomater 2018; 67:66-78. [PMID: 29269330 DOI: 10.1016/j.actbio.2017.12.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is an endogenous molecule with many critical biological functions that depend on its concentration. At high levels, NO provides broad-spectrum antibacterial effects through both its pathogen inhibition and killing abilities. However, its short half-life has been a great challenge to its clinical application in pharmaceutical forms. In this study, we incorporated the NO donor S-nitrosothiolated gelatin (GelSNO) into injectable gelatin-based hydrogels (GHs) to controllably release NO. Under catalysis by horseradish peroxidase, H2O2 oxidizes phenol moieties functionalized on gelatin to quickly form phenol-phenol crosslinks that encapsulate GelSNO. Through thermal, visible light, and oxidizing agent-driven mechanisms, NO is released from the GH/GelSNO hydrogels. By varying the GelSNO concentration, the release of NO was controllable in a wide range, 0.054-2.050 μmol/mL, for up to 14 days. In addition, NO release was fine-tunable as a function of H2O2 concentration. Notably, the in situ formation of peroxynitrite (ONOO-) that produces potent antibacterial effects originated from H2O2 residues and nitrous acid formed by NO and oxygen in aqueous solution. The Kirby-Bauer method indicated that there was an inhibition zone against both Escherichia coli and Staphylococcus aureus incubated with GH/GelSNO hydrogels. The AlarmaBlue assay showed that E. coli and S. aureus were completely killed at NO concentrations of 0.39 and 0.58 μmol/mL. Cytotoxicity tests of GH/GelSNO hydrogels on human dermal fibroblasts at the indicated bactericidal NO concentrations induced no cell toxicity. In summary, GH/GelSNO hydrogels may provide a new platform for topical delivery of NO in treating wound infections and for various biomedical applications. STATEMENT OF SIGNIFICANCE NO is an effective antibacterial agent even in cases of antibiotic-resistant bacteria. Moreover, its intermediate, peroxynitrite, has been reported to have a much higher ability to kill bacteria. In this study, we utilized injectable GH/GelSNO hydrogels formed by HRP/H2O2 reaction not only to control NO release but also to generate peroxynitrite in situ from released NO and H2O2 residues. The GH/GelSNO hydrogels showed significant antibacterial ability on both gram-positive and negative bacteria, while no cytotoxicity was induced on human dermal fibroblasts. In addition, their tunable chemico-physical properties and controllable NO release within a wide range but narrow scale will make the hydrogels useful in various biomedical applications.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Yunki Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Phuong Le Thi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
8
|
Pant J, Goudie MJ, Hopkins S, Brisbois EJ, Handa H. Tunable Nitric Oxide Release from S-Nitroso-N-acetylpenicillamine via Catalytic Copper Nanoparticles for Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15254-15264. [PMID: 28409633 PMCID: PMC8007131 DOI: 10.1021/acsami.7b01408] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The quest for novel therapies to prevent bacterial infections and blood clots (thrombosis) is of utmost importance in biomedical research due to the exponential growth in the cases of thrombosis and blood infections and the emergence of multi-drug-resistant strains of bacteria. Endogenous nitric oxide (NO) is a cellular signaling molecule that plays a pivotal role in host immunity against pathogens, prevention of clotting, and regulation of systemic blood pressure, among several other biological functions. The physiological effect of NO is dose dependent, which necessitates the study of its tunable release kinetics, which is the objective of this study. In the present study, polymer composites were fabricated by incorporating S-nitroso-N-acetylpenicillamine (SNAP) in a medical-grade polymer, Carbosil, and top-coated with varying concentrations of catalytic copper nanoparticles (Cu-NPs). The addition of the Cu-NPs increased the NO release, as well as the overall antimicrobial activity via the oligodynamic effect of Cu. SNAP (10 wt %) composites without Cu-NP coatings showed a NO flux of 1.32 ± 0.6 × 10-10 mol min-1 cm-2, whereas Cu-NP-incorporated SNAP films exhibited fluxes of 4.48 ± 0.5 × 10-10, 4.84 ± 0.3 × 10-10, and 11.7 ± 3.6 × 10-10 mol min-1 cm-2 with 1, 3, and 5 wt % Cu-NPs, respectively. This resulted in a significant reduction (up to 99.8%) in both gram-positive and gram-negative bacteria, with very low platelet adhesion (up to 92% lower) as compared to that of the corresponding controls. Copper leachates from the SNAP films were detected using the inductively coupled plasma-mass spectrometry technique and were found to be significantly lower in concentration than the recommended safety limit by the FDA. The cell viability test performed on mouse fibroblast 3T3 cells provided supportive evidence for the biocompatibility of the material in vitro.
Collapse
Affiliation(s)
- Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
| | - Marcus J. Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
| | - Sean Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
| | | | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, USA
- Corresponding author: Hitesh Handa, School of Chemical, Materials, and Biomedical Engineering, University of Georgia, 220 Riverbend Road, Athens, GA 30605, Telephone: (706) 542-8109,
| |
Collapse
|
9
|
A facile and green emulsion casting method to prepare chitin nanocrystal reinforced citrate-based bioelastomer. Carbohydr Polym 2016; 157:620-628. [PMID: 27987970 DOI: 10.1016/j.carbpol.2016.10.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/08/2016] [Accepted: 10/12/2016] [Indexed: 12/22/2022]
Abstract
Chitin nanocrystal (ChiNC) is a promising reinforcing nanofiller for biomedical polymers. However, its self-aggregation characteristics caused processing difficulty in developing ChiNC-based nanocomposites. Herein, a new degradable crosslinked bioelastomer, designated as poly(1,8-octanediol-co-Pluronic F127 citrate) (POFC) was synthesized by melt polycondensation of citric acid, 1,8-octanediol, and Pluronic F127. In comparison to poly(1,8-octanediol citrate) (POC), POFC pre-polymer exhibited self-emulsifying property. Once ChiNC was introduced into the emulsion, a ChiNC stabilized Pickering emulsion was formed. Coupled with a facile green emulsion casting/evaporation method, the ChiNC ultimately reinforced ChiNC/POFC nanocomposite elastomer was fabricated. The presence of F127 segments endowed POFC with better hydrophilicity and shorter degradation time relative to POC. The incorporation of ChiNC into POFC network led to highly increased tensile modulus and strength. In vitro cytotoxicity tests indicated that the ChiNC/POFC elastomer nanocomposite had a good cytocompatibility and it appeared as a potential biomaterial for tissue engineering application.
Collapse
|
10
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
11
|
Lutzke A, Neufeld BH, Neufeld MJ, Reynolds MM. Nitric oxide release from a biodegradable cysteine-based polyphosphazene. J Mater Chem B 2016; 4:1987-1998. [DOI: 10.1039/c6tb00037a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
First report of nitric oxide (NO) release from a biodegradable polyphosphazene containing theS-nitrosothiol NO donor group.
Collapse
Affiliation(s)
- Alec Lutzke
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
| | | | | | - Melissa M. Reynolds
- Department of Chemistry
- Colorado State University
- Fort Collins
- USA
- School of Biomedical Engineering
| |
Collapse
|
12
|
Yang L, Lu Y, Soto RJ, Shah A, Ahonen MJR, Schoenfisch MH. S-Nitrosothiol-modified hyperbranched polyesters. Polym Chem 2016. [DOI: 10.1039/c6py01516f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
S-Nitrosothiol-modified hyperbranched polyesters as a novel biodegradable nitric oxide-releasing scaffold.
Collapse
Affiliation(s)
- Lei Yang
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Yuan Lu
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Robert J. Soto
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | - Anand Shah
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| | | | - Mark H. Schoenfisch
- Department of Chemistry
- University of North Carolina – Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|