1
|
Zhang S, Sun J, Guo S, Wang Y, Zhang Y, Lei J, Liu X, Chen H. Balancing functions of antifouling, nitric oxide release and vascular cell selectivity for enhanced endothelialization of assembled multilayers. Regen Biomater 2024; 11:rbae096. [PMID: 39323744 PMCID: PMC11422184 DOI: 10.1093/rb/rbae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024] Open
Abstract
Surface endothelialization is a promising way to improve the hemocompatibility of biomaterials. However, current surface endothelialization strategies have limitations. For example, various surface functions are not well balanced, leading to undesirable results, especially when multiple functional components are introduced. In this work, a multifunctional surface was constructed by balancing the functions of antifouling, nitric oxide (NO) release and endothelial cell promotion via layer-by-layer (LBL) self-assembly. Poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methacrylate) (negatively charged) and polyethyleneimine (positively charged) were deposited on silicon substrates to construct multilayers by LBL self-assembly. Then, organic selenium, which has a NO-releasing function, and the cell-adhesive peptide Gly-Arg-Glu-Asp-Val-Tyr, which selectively promotes endothelial cells, were introduced on the assembled multilayers. Poly(oligo(ethylene glycol) methacrylate) is a hydrophilic component for antifouling properties, and poly(sodium p-styrenesulfonate) is a heparin analog that provides negative charges. By modulating the contents of poly(oligo(ethylene glycol) methacrylate) and poly(sodium p-styrenesulfonate) in the copolymers, the NO release rates catalyzed by the modified surfaces were regulated. Moreover, the behaviors of endothelial cells and smooth muscle cells on modified surfaces were well controlled. The optimized surface strongly promoted endothelial cells and inhibited smooth muscle cells to achieve endothelialization effectively.
Collapse
Affiliation(s)
- Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jun Sun
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
2
|
Pepe A, Laezza A, Armiento F, Bochicchio B. Chemical Modifications in Hyaluronic Acid-Based Electrospun Scaffolds. Chempluschem 2024; 89:e202300599. [PMID: 38507283 DOI: 10.1002/cplu.202300599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Hyaluronic acid (HA) is a natural, non-sulfated glycosaminoglycan (GAG) present in ECM. It is involved in different biological functions with appealing properties in cosmetics and pharmaceutical preparations as well as in tissue engineering. Generally, HA has been electrospun in blends with natural or synthetic polymers to produce fibers having diameters in the order of nano and micro-scale whose pores can host cells able to regenerate damaged tissues. In the last decade, a rich literature on electrospun HA-based materials arose. Chemical modifications were generally introduced in HA scaffolds to favour crosslinking or conjugation with bioactive molecules. Considering the high solubility of HA in water, HA-based electrospun scaffolds are cross-linked to increase the stability in biological fluids. Crosslinking is necessary also to avoid the release of HA from the hybrid scaffold when implanted in-vivo. Furthermore, to endow the HA based scaffolds with new chemical or biological properties, conjugation of bioactive molecules to HA was widely reported. Herein, we review the existing research classifying chemical modifications on HA and HA-based electrospun fibers into three categories: i) in-situ crosslinking of electrospun HA-based scaffolds ii) off-site crosslinking of electrospun HA-based scaffolds; iii) conjugation of biofunctional molecules to HA with focus on peptides.
Collapse
Affiliation(s)
- Antonietta Pepe
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Antonio Laezza
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Francesca Armiento
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Brigida Bochicchio
- Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
3
|
Rodríguez-Soto MA, Riveros-Cortés A, Orjuela-Garzón IC, Fernández-Calderón IM, Rodríguez CF, Vargas NS, Ostos C, Camargo CM, Cruz JC, Kim S, D’Amore A, Wagner WR, Briceño JC. Redefining vascular repair: revealing cellular responses on PEUU-gelatin electrospun vascular grafts for endothelialization and immune responses on in vitro models. Front Bioeng Biotechnol 2024; 12:1410863. [PMID: 38903186 PMCID: PMC11188488 DOI: 10.3389/fbioe.2024.1410863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue-engineered vascular grafts (TEVGs) poised for regenerative applications are central to effective vascular repair, with their efficacy being significantly influenced by scaffold architecture and the strategic distribution of bioactive molecules either embedded within the scaffold or elicited from responsive tissues. Despite substantial advancements over recent decades, a thorough understanding of the critical cellular dynamics for clinical success remains to be fully elucidated. Graft failure, often ascribed to thrombogenesis, intimal hyperplasia, or calcification, is predominantly linked to improperly modulated inflammatory reactions. The orchestrated behavior of repopulating cells is crucial for both initial endothelialization and the subsequent differentiation of vascular wall stem cells into functional phenotypes. This necessitates the TEVG to provide an optimal milieu wherein immune cells can promote early angiogenesis and cell recruitment, all while averting persistent inflammation. In this study, we present an innovative TEVG designed to enhance cellular responses by integrating a physicochemical gradient through a multilayered structure utilizing synthetic (poly (ester urethane urea), PEUU) and natural polymers (Gelatin B), thereby modulating inflammatory reactions. The luminal surface is functionalized with a four-arm polyethylene glycol (P4A) to mitigate thrombogenesis, while the incorporation of adhesive peptides (RGD/SV) fosters the adhesion and maturation of functional endothelial cells. The resultant multilayered TEVG, with a diameter of 3.0 cm and a length of 11 cm, exhibits differential porosity along its layers and mechanical properties commensurate with those of native porcine carotid arteries. Analyses indicate high biocompatibility and low thrombogenicity while enabling luminal endothelialization and functional phenotypic behavior, thus limiting inflammation in in-vitro models. The vascular wall demonstrated low immunogenicity with an initial acute inflammatory phase, transitioning towards a pro-regenerative M2 macrophage-predominant phase. These findings underscore the potential of the designed TEVG in inducing favorable immunomodulatory and pro-regenerative environments, thus holding promise for future clinical applications in vascular tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Carlos Ostos
- Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia, Medellín, Colombia
| | | | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Antonio D’Amore
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine and Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Juan C. Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
- Department of Congenital Heart Disease and Cardiovascular Surgery, Fundación CardioInfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
4
|
Zheng Y, Yang D, Gao B, Huang S, Tang Y, Wa Q, Dong Y, Yu S, Huang J, Huang S. A DNA-inspired injectable adhesive hydrogel with dual nitric oxide donors to promote angiogenesis for enhanced wound healing. Acta Biomater 2024; 176:128-143. [PMID: 38278340 DOI: 10.1016/j.actbio.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
Chronic diabetic wounds are a severe complication of diabetes, often leading to high treatment costs and high amputation rates. Numerous studies have revealed that nitric oxide (NO) therapy is a promising option because it favours wound revascularization. Here, base-paired injectable adhesive hydrogels (CAT) were prepared using adenine- and thymine-modified chitosan (CSA and CST). By further introducing S-nitrosoglutathione (GSNO) and binary l-arginine (bArg), we obtained a NO sustained-release hydrogel (CAT/bArg/GSON) that was more suitable for the treatment of chronic wounds. The results showed that the expression of HIF-1α and VEGF was upregulated in the CAT/bArg/GSON group, and improved blood vessel regeneration was observed, indicating an important role of NO. In addition, the research findings revealed that following treatment with the CAT/bArg/GSON hydrogel, the viability of Staphylococcus aureus and Escherichia coli decreased to 14 ± 2 % and 6 ± 1 %, respectively. Moreover, the wound microenvironment was improved, as evidenced by a 60 ± 1 % clearance of DPPH. In particular, histological examination and immunohistochemical staining results showed that wounds treated with CAT/bArg/GSNO exhibited denser neovascularization, faster epithelial tissue regeneration, and thicker collagen deposition. Overall, this study proposes an effective strategy to prepare injectable hydrogel dressings with dual NO donors. The functionality of CAT/bArg/GSON has been thoroughly demonstrated in research on chronic wound vascular regeneration, indicating that CAT/bArg/GSON could be a potential option for promoting chronic wound healing. STATEMENT OF SIGNIFICANCE: This article prepares a chitosan hydrogel utilizing the principle of complementary base pairing, which offers several advantages, including good adhesion, biocompatibility, and flow properties, making it a good material for wound dressings. Loaded GSNO and bArg can steadily release NO and l-arginine through the degradation of the gel. Then, the released l-arginine not only possesses antioxidant properties but can also continue to generate a small amount of NO under the action of NOS. This design achieves a sustained and stable supply of NO at the wound site, maximizing the angiogenesis-promoting and antibacterial effects of NO. More neovascularization and abundant collagen were observed in the regenerated tissues. This study provides an effective repair hydrogel material for diabetic wound.
Collapse
Affiliation(s)
- Yongsheng Zheng
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Dong Yang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Botao Gao
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Shuai Huang
- Department of Orthopedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, China
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Qingde Wa
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yong Dong
- Department of Oncology, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan, 523106, China
| | - Shan Yu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China
| | - Jun Huang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510632, China.
| | - Sheng Huang
- Department of Orthopedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Le Thi P, Tran DL, Park KM, Lee S, Oh DH, Park KD. Biocatalytic nitric oxide generating hydrogels with enhanced anti-inflammatory, cell migration, and angiogenic capabilities for wound healing applications. J Mater Chem B 2024; 12:1538-1549. [PMID: 38251728 DOI: 10.1039/d3tb01943h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Although wound healing is a normal physiological process in the human body, it is often impaired by bacterial infections, ischemia, hypoxia, and excess inflammation, which can lead to chronic and non-healing wounds. Recently, injectable hydrogels with controlled nitric oxide (NO) release behaviour have become potential wound healing therapeutic agents due to their excellent biochemical, mechanical, and biological properties. Here, we proposed novel multifunctional NO-releasing hydrogels that could regulate various wound healing processes, including hemostasis, inflammation, cell proliferation and angiogenesis. By incorporating the copper nanoparticles (NPs) in the network of dual enzymatically crosslinked gelatin hydrogels (GH/Cu), NO was in situ produced via the Cu-catalyzed decomposition of endogenous RSNOs available in the blood, thus resolving the intrinsic shortcomings of NO therapies, such as the short storage and release time, as well as the burst and uncontrollable release modes. We demonstrated that the NO-releasing gelatin hydrogels enhanced the proliferation and migration of endothelial cells, while promoting the M2 (anti-inflammatory) polarization of the macrophage. Furthermore, the effects of NO release on angiogenesis were evaluated using an in vitro tube formation assay and in ovo chicken chorioallantoic membrane (CAM) assay, which revealed that GH/Cu hydrogels could significantly facilitate neovascularization, consistent with the in vivo results. Therefore, we suggested that these hydrogel systems would significantly enhance the wound healing process through the synergistic effects of the hydrogels and NO, and hence could be used as advanced wound dressing materials.
Collapse
Affiliation(s)
- Phuong Le Thi
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, No. 1B - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Dieu Linh Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, No. 1A - TL29 Street, Thanh Loc Ward, 12th District, Ho Chi Minh City 700000, Vietnam.
| | - Kyung Min Park
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Simin Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Dong Hwan Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| | - Ki Dong Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
6
|
Peng X, Li L, Xing J, Cheng C, Hu M, Luo Y, Shi S, Liu Y, Cui Z, Yu X. Cross-linking porcine peritoneum by oxidized konjac glucomannan: a novel method to improve the properties of cardiovascular substitute material. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-023-00114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractThe use of natural polysaccharide crosslinkers for decellularized matrices is an effective approach to prepare cardiovascular substitute materials. In this research, NaIO4 was applied to oxidize konjac glucomannan to prepare the polysaccharide crosslinker oxidized konjac glucomannan (OKGM). The as-prepared crosslinker was then used to stabilize collagen-rich decellularized porcine peritoneum (DPP) to construct a cardiovascular substitute material (OKGM-fixed DPP). The results demonstrated that compared with GA-fixed DPP and GNP-fixed DPP, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP demonstrated suitable mechanical properties, as well as good hemocompatibility, excellent anti-calcification capability, and anti-enzymolysis in vitro. Furthermore, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was suitable for vascular endothelial cell adhesion and rapid proliferation, and a single layer of endothelial cells was formed on the fifth day of culture. The in vivo experimental results also showed excellent histocompatibility. The current results demonstrted that OKGM was a novel polysaccharide cross-linking reagent for crosslinking natural tissues featured with rich collagen content, and 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was a potential cardiovascular substitute material.
Graphical Abstract
Collapse
|
7
|
Wang B, Wang X, Kenneth A, Drena A, Pacheco A, Kalvin L, Ibrahim ES, Rossi PJ, Thatcher K, Lincoln J. Developing small-diameter vascular grafts with human amniotic membrane: long-term evaluation of transplantation outcomes in a small animal model. Biofabrication 2023; 15. [PMID: 36626826 DOI: 10.1088/1758-5090/acb1da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
While current clinical utilization of large vascular grafts for vascular transplantation is encouraging, tissue engineering of small grafts still faces numerous challenges. This study aims to investigate the feasibility of constructing a small vascular graft from decellularized amniotic membranes (DAMs). DAMs were rolled around a catheter and each of the resulting grafts was crosslinked with (a) 0.1% glutaraldehyde; (b) 1-ethyl-3-(3-dimethylaminopropyl) crbodiimidehydro-chloride (20 mM)-N-hydroxy-succinimide (10 mM); (c) 0.5% genipin; and (d) no-crosslinking, respectively. Our results demonstrated the feasibility of using a rolling technique followed by lyophilization to transform DAM into a vessel-like structure. The genipin-crosslinked DAM graft showed an improved integrated structure, prolonged stability, proper mechanical property, and superior biocompatibility. After transplantation in rat abdominal aorta, the genipin-crosslinked DAM graft remained patent up to 16 months, with both endothelial and smooth muscle cell regeneration, which suggests that the genipin-crosslinked DAM graft has great potential to beimplementedas a small tissue engineered graft for futurevasculartransplantation.
Collapse
Affiliation(s)
- Bo Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Xiaolong Wang
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Allen Kenneth
- Biomedical Resource Center, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Alexander Drena
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America
| | - Arsenio Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, United States of America
| | - Lindsey Kalvin
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Ei-Sayed Ibrahim
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Peter J Rossi
- Heart and Vascular Center, Froedtert Hospital, Milwaukee, WI 53226, United States of America
| | - Kaitlyn Thatcher
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| | - Joy Lincoln
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, United States of America
| |
Collapse
|
8
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
9
|
Zhu T, Zhu J, Lu S, Mo X. Evaluation of electrospun PCL diol-based elastomer fibers as a beneficial matrix for vascular tissue engineering. Colloids Surf B Biointerfaces 2022; 220:112963. [DOI: 10.1016/j.colsurfb.2022.112963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
10
|
Lopera Higuita M, Shortreed NA, Dasari S, Griffiths LG. Basement Membrane of Tissue Engineered Extracellular Matrix Scaffolds Modulates Rapid Human Endothelial Cell Recellularization and Promote Quiescent Behavior After Monolayer Formation. Front Bioeng Biotechnol 2022; 10:903907. [PMID: 35983533 PMCID: PMC9379346 DOI: 10.3389/fbioe.2022.903907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Off-the-shelf small diameter vascular grafts are an attractive alternative to eliminate the shortcomings of autologous tissues for vascular grafting. Bovine saphenous vein (SV) extracellular matrix (ECM) scaffolds are potentially ideal small diameter vascular grafts, due to their inherent architecture and signaling molecules capable of driving repopulating cell behavior and regeneration. However, harnessing this potential is predicated on the ability of the scaffold generation technique to maintain the delicate structure, composition, and associated functions of native vascular ECM. Previous de-cellularization methods have been uniformly demonstrated to disrupt the delicate basement membrane components of native vascular ECM. The antigen removal (AR) tissue processing method utilizes the protein chemistry principle of differential solubility to achieve a step-wise removal of antigens with similar physiochemical properties. Briefly, the cellular components of SV are permeabilized and the actomyosin crossbridges are relaxed, followed by lipophilic antigen removal, sarcomeric disassembly, hydrophilic antigen removal, nuclease digestion, and washout. Here, we demonstrate that bovine SV ECM scaffolds generated using the novel AR approach results in the retention of native basement membrane protein structure, composition (e.g., Collagen IV and laminin), and associated cell modulatory function. Presence of basement membrane proteins in AR vascular ECM scaffolds increases the rate of endothelial cell monolayer formation by enhancing cell migration and proliferation. Following monolayer formation, basement membrane proteins promote appropriate formation of adherence junction and apicobasal polarization, increasing the secretion of nitric oxide, and driving repopulating endothelial cells toward a quiescent phenotype. We conclude that the presence of an intact native vascular basement membrane in the AR SV ECM scaffolds modulates human endothelial cell quiescent monolayer formation which is essential for vessel homeostasis.
Collapse
|
11
|
Zizhou R, Wang X, Houshyar S. Review of Polymeric Biomimetic Small-Diameter Vascular Grafts to Tackle Intimal Hyperplasia. ACS OMEGA 2022; 7:22125-22148. [PMID: 35811906 PMCID: PMC9260943 DOI: 10.1021/acsomega.2c01740] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Small-diameter artificial vascular grafts (SDAVG) are used to bypass blood flow in arterial occlusive diseases such as coronary heart or peripheral arterial disease. However, SDAVGs are plagued by restenosis after a short while due to thrombosis and the thickening of the neointimal wall known as intimal hyperplasia (IH). The specific causes of IH have not yet been deduced; however, thrombosis formation due to bioincompatibility as well as a mismatch between the biomechanical properties of the SDAVG and the native artery has been attributed to its initiation. The main challenges that have been faced in fabricating SDAVGs are facilitating rapid re-endothelialization of the luminal surface of the SDAVG and replicating the complex viscoelastic behavior of the arteries. Recent strategies to combat IH formation have been mostly based on imitating the natural structure and function of the native artery (biomimicry). Thus, most recently, developed grafts contain a multilayered structure with a designated function for each layer. This paper reviews the current polymeric, biomimetic SDAVGs in preventing the formation of IH. The materials used in fabrication, challenges, and strategies employed to tackle IH are summarized and discussed, and we focus on the multilayered structure of current SDAVGs. Additionally, the future aspects in this area are pointed out for researchers to consider in their endeavor.
Collapse
Affiliation(s)
- Rumbidzai Zizhou
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Xin Wang
- Center
for Materials Innovation and Future Fashion (CMIFF), School of Fashion
and Textiles, RMIT University, Brunswick 3056, Australia
| | - Shadi Houshyar
- School
of Engineering, RMIT University, Melbourne 3000, Australia
| |
Collapse
|
12
|
Koch SE, de Kort BJ, Holshuijsen N, Brouwer HFM, van der Valk DC, Dankers PYW, van Luijk JAKR, Hooijmans CR, de Vries RBM, Bouten CVC, Smits AIPM. Animal studies for the evaluation of in situ tissue-engineered vascular grafts - a systematic review, evidence map, and meta-analysis. NPJ Regen Med 2022; 7:17. [PMID: 35197483 PMCID: PMC8866508 DOI: 10.1038/s41536-022-00211-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular in situ tissue engineering (TE) is an approach that uses bioresorbable grafts to induce endogenous regeneration of damaged blood vessels. The evaluation of newly developed in situ TE vascular grafts heavily relies on animal experiments. However, no standard for in vivo models or study design has been defined, hampering inter-study comparisons and translational efficiency. To provide input for formulating such standard, the goal of this study was to map all animal experiments for vascular in situ TE using off-the-shelf available, resorbable synthetic vascular grafts. A literature search (PubMed, Embase) yielded 15,896 studies, of which 182 studies met the inclusion criteria (n = 5,101 animals). The reports displayed a wide variety of study designs, animal models, and biomaterials. Meta-analysis on graft patency with subgroup analysis for species, age, sex, implantation site, and follow-up time demonstrated model-specific variations. This study identifies possibilities for improved design and reporting of animal experiments to increase translational value.
Collapse
Affiliation(s)
- Suzanne E Koch
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Bente J de Kort
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Noud Holshuijsen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hannah F M Brouwer
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Dewy C van der Valk
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Judith A K R van Luijk
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn R Hooijmans
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Rob B M de Vries
- SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE), Department for Health Evidence, Radboud Institute for Health Sciences, Radboud UMC, Nijmegen, The Netherlands
| | - Carlijn V C Bouten
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anthal I P M Smits
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands. .,Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
13
|
Zhang Q, Meyerhoff ME. Nitric Oxide Release for Enhanced Biocompatibility and Analytical Performance of Implantable Electrochemical Sensors. ELECTROANAL 2021. [DOI: 10.1002/elan.202100174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi Zhang
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| | - Mark E. Meyerhoff
- Department of Chemistry University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
14
|
Zeng Z, Hu C, Liang Q, Tang L, Cheng D, Ruan C. Coaxial-printed small-diameter polyelectrolyte-based tubes with an electrostatic self-assembly of heparin and YIGSR peptide for antithrombogenicity and endothelialization. Bioact Mater 2021; 6:1628-1638. [PMID: 33313443 PMCID: PMC7701915 DOI: 10.1016/j.bioactmat.2020.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/27/2022] Open
Abstract
Low patency ratio of small-diameter vascular grafts remains a major challenge due to the occurrence of thrombosis formation and intimal hyperplasia after transplantation. Although developing the functional coating with release of bioactive molecules on the surface of small-diameter vascular grafts are reported as an effective strategy to improve their patency ratios, it is still difficult for current functional coatings cooperating with spatiotemporal control of bioactive molecules release to mimic the sequential requirements for antithrombogenicity and endothelialization. Herein, on basis of 3D-printed polyelectrolyte-based vascular grafts, a biologically inspired release system with sequential release in spatiotemporal coordination of dual molecules through an electrostatic self-assembly was first described. A series of tubes with tunable diameters were initially fabricated by a coaxial extrusion printing method with customized nozzles, in which a polyelectrolyte ink containing of ε-polylysine and sodium alginate was used. Further, dual bioactive molecules, heparin with negative charges and Tyr-Ile-Gly-Ser-Arg (YIGSR) peptide with positive charges were layer-by-layer assembled onto the surface of these 3D-printed tubes. Due to the electrostatic interaction, the sequential release of heparin and YIGSR was demonstrated and could construct a dynamic microenvironment that was thus conducive to the antithrombogenicity and endothelialization. This study opens a new avenue to fabricate a small-diameter vascular graft with a biologically inspired release system based on electrostatic interaction, revealing a huge potential for development of small-diameter artificial vascular grafts with good patency.
Collapse
Affiliation(s)
- Zhiwen Zeng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Chengshen Hu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qingfei Liang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Lan Tang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Delin Cheng
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
15
|
Hopkins SP, Pant J, Goudie MJ, Nguyen DT, Handa H. Electrospun Bioabsorbable Fibers Containing S-Nitrosoglutathione for Tissue Engineering Applications. ACS APPLIED BIO MATERIALS 2020; 3:7677-7686. [PMID: 35019507 DOI: 10.1021/acsabm.0c00862] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Blended and coaxial fibers comprising polycaprolactone and gelatin, containing the endogenous nitric oxide (NO) donor S-nitrosoglutathione (GSNO), were electrospun. Both types of fibers had their NO release profiles tested under physiological conditions to examine their potential applications as biomedical scaffolds. The coaxial fibers exhibited a prolonged and consistent release of NO over the course of 4 d from the core-encapsulated GSNO, while the blended fibers had a large initial release and leaching of GSNO that was exhausted over a shorter period of time. Bacterial testing of both fiber scaffolds was conducted over a 24 h period against Staphylococcus aureus (S. aureus) and demonstrated a 3-log reduction in bacterial viability. In addition, no cytotoxic response was reported when the material was tested on mouse fibroblast cells in vitro. These fibrous matrices were also shown to support cell growth, attachment, and overall activity of fibroblasts when exposed to NO, especially when GSNO was encapsulated within coaxial fibers. From an application point of view, these NO-releasing fibers offer great potential in tissue engineering and biomedical applications because of the crucial role of NO in regulating a variety of biological processes in humans such as angiogenesis, tissue remodeling, and eliminating foreign pathogens.
Collapse
Affiliation(s)
- Sean P Hopkins
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Jitendra Pant
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Marcus J Goudie
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Dieu Thao Nguyen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, Georgia, United States
| |
Collapse
|
16
|
Yang T, Zelikin AN, Chandrawati R. Enzyme Mimics for the Catalytic Generation of Nitric Oxide from Endogenous Prodrugs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907635. [PMID: 32372556 DOI: 10.1002/smll.201907635] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The highly diverse biological roles of nitric oxide (NO) in both physiological and pathophysiological processes have prompted great interest in the use of NO as a therapeutic agent in various biomedical applications. NO can exert either protective or deleterious effects depending on its concentration and the location where it is delivered or generated. This double-edged attribute, together with the short half-life of NO in biological systems, poses a major challenge to the realization of the full therapeutic potential of this molecule. Controlled release strategies show an admirable degree of precision with regard to the spatiotemporal dosing of NO but are disadvantaged by the finite NO deliverable payload. In turn, enzyme-prodrug therapy techniques afford enhanced deliverable payload but are troubled by the inherent low stability of natural enzymes, as well as the requirement to control pharmacokinetics for the exogenous prodrugs. The past decade has seen the advent of a new paradigm in controlled delivery of NO, namely localized bioconversion of the endogenous prodrugs of NO, specifically by enzyme mimics. These early developments are presented, successes of this strategy are highlighted, and possible future work on this avenue of research is critically discussed.
Collapse
Affiliation(s)
- Tao Yang
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| | - Alexander N Zelikin
- Department of Chemistry and iNANO Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, C 8000, Denmark
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW, 2052, Australia
| |
Collapse
|
17
|
Giglio LP, Picheth GF, Løvschall KB, Zelikin AN, de Oliveira MG. S-nitrosothiol-terminated poly(vinyl alcohol): Nitric oxide release and skin blood flow response. Nitric Oxide 2020; 98:41-49. [DOI: 10.1016/j.niox.2020.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
|
18
|
Wang D, Xu Y, Li Q, Turng LS. Artificial small-diameter blood vessels: materials, fabrication, surface modification, mechanical properties, and bioactive functionalities. J Mater Chem B 2020; 8:1801-1822. [PMID: 32048689 PMCID: PMC7155776 DOI: 10.1039/c9tb01849b] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cardiovascular diseases, especially ones involving narrowed or blocked blood vessels with diameters smaller than 6 millimeters, are the leading cause of death globally. Vascular grafts have been used in bypass surgery to replace damaged native blood vessels for treating severe cardio- and peripheral vascular diseases. However, autologous replacement grafts are not often available due to prior harvesting or the patient's health. Furthermore, autologous harvesting causes secondary injury to the patient at the harvest site. Therefore, artificial blood vessels have been widely investigated in the last several decades. In this review, the progress and potential outlook of small-diameter blood vessels (SDBVs) engineered in vitro are highlighted and summarized, including material selection and development, fabrication techniques, surface modification, mechanical properties, and bioactive functionalities. Several kinds of natural and synthetic polymers for artificial SDBVs are presented here. Commonly used fabrication techniques, such as extrusion and expansion, electrospinning, thermally induced phase separation (TIPS), braiding, 3D printing, hydrogel tubing, gas foaming, and a combination of these methods, are analyzed and compared. Different surface modification methods, such as physical immobilization, surface adsorption, plasma treatment, and chemical immobilization, are investigated and are compared here as well. Mechanical requirements of SDBVs are also reviewed for long-term service. In vitro biological functions of artificial blood vessels, including oxygen consumption, nitric oxide (NO) production, shear stress response, leukocyte adhesion, and anticoagulation, are also discussed. Finally, we draw conclusions regarding current challenges and attempts to identify future directions for the optimal combination of materials, fabrication methods, surface modifications, and biofunctionalities. We hope that this review can assist with the design, fabrication, and application of SDBVs engineered in vitro and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Dongfang Wang
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA and School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yiyang Xu
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Qian Li
- School of Mechanics and Engineering Science, Zhengzhou University, Zhengzhou 450001, P. R. China and National Center for International Research of Micro-Nano Molding Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin, Madison, WI, USA. and Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
19
|
Zhou L, Li X, Wang K, Shen F, Zhang L, Li P, Shang T, Wang J, Huang N. Cu ∥-loaded polydopamine coatings with in situ nitric oxide generation function for improved hemocompatibility. Regen Biomater 2020; 7:153-160. [PMID: 32296534 PMCID: PMC7147359 DOI: 10.1093/rb/rbz043] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 02/01/2023] Open
Abstract
NO is the earliest discovered gas signal molecule which is produced by normal healthy endothelial cells, and it has many functions, such as maintaining cardiovascular homeostasis, regulating vasodilation, inhibiting intimal hyperplasia and preventing atherosclerosis in the blood system. Insufficient NO release is often observed in the pathological environment, for instance atherosclerosis. It was discovered that NO could be released from the human endogenous NO donor by many compounds, and these methods can be used for the treatment of certain diseases in the blood system. In this work, a series of copper-loaded polydopamine (PDA) coatings were produced through self-polymerization time for 24, 48 and 72 h. The chemical composition and structure, coating thickness and hydrophilicity of the different copper-loaded PDA coatings surfaces were characterized by phenol hydroxyl quantitative, X-ray photoelectron spectroscopy, ellipsometry atomic force microscopy and water contact angles. The results indicate that the thickness and the surface phenolic hydroxyl density of the PDA coatings increased with the polymerization time.This copper-loaded coating has glutathione peroxidase-like activity, and it has the capability of catalyzing NO releasing from GSNO. The surface of the coating showed desirable hemocompatibility, the adhesion and activation of platelets were inhibited on the copper-loaded coatings. At the same time, the formation of the thrombosis was also suppressed. These copper-loaded PDA coatings could provide a promising platform for the development of blood contact materials.
Collapse
Affiliation(s)
- Lei Zhou
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Xin Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Kebing Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Fangyu Shen
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Lu Zhang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Peichuang Li
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Tengda Shang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jin Wang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Nan Huang
- Key Laboratories of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| |
Collapse
|
20
|
Wang Y, He C, Feng Y, Yang Y, Wei Z, Zhao W, Zhao C. A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. J Mater Chem B 2020; 8:568-577. [DOI: 10.1039/c9tb01755k] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Rapid endothelialization and prevention of restenosis are two vital challenges for the preparation of a small-diameter vascular graft (SDVG), while postoperative infection after implantation is often neglected.
Collapse
Affiliation(s)
- Yilin Wang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Yunbo Feng
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Ye Yang
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhiwei Wei
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Weifeng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Changsheng Zhao
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
21
|
Ippel BD, Arts B, Keizer HM, Dankers PYW. Combinatorial functionalization with bisurea-peptides and antifouling bisurea additives of a supramolecular elastomeric biomaterial. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2019; 57:1725-1735. [PMID: 32025088 PMCID: PMC6988465 DOI: 10.1002/polb.24907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/08/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022]
Abstract
The bioactive additive toolbox to functionalize supramolecular elastomeric materials expands rapidly. Here we have set an explorative step toward screening of complex combinatorial functionalization with antifouling and three peptide-containing additives in a bisurea-based supramolecular system. Thorough investigation of surface properties of thin films with contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy, was correlated to cell-adhesion of endothelial and smooth muscle cells to apprehend their respective predictive values for functional biomaterial development. Peptides were presented at the surface alone, and in combinatorial functionalization with the oligo(ethylene glycol)-based non-cell adhesive additive. The bisurea-RGD additive was cell-adhesive in all conditions, whereas the endothelial cell-specific bisurea-REDV showed limited bioactive properties in all chemical nano-environments. Also, aspecific functionality was observed for a bisurea-SDF1α peptide. These results emphasize that special care should be taken in changing the chemical nano-environment with peptide functionalization. © 2019 The Authors. Journal of Polymer Science Part B: Polymer Physics published by Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019, 57, 1725-1735.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue EngineeringEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
| | - Boris Arts
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical BiologyEindhoven University of TechnologyPO Box 513, 5600EindhovenManitobaThe Netherlands
| | - Henk M. Keizer
- SyMO‐Chem B.VDen Dolech 2, 5612EindhovenArizonaThe Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular SystemsEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory for Cell and Tissue EngineeringEindhoven University of TechnologyPO Box 513 5600EindhovenManitobaThe Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical BiologyEindhoven University of TechnologyPO Box 513, 5600EindhovenManitobaThe Netherlands
| |
Collapse
|
22
|
Cohn D, Sloutski A, Elyashiv A, Varma VB, Ramanujan R. In Situ Generated Medical Devices. Adv Healthc Mater 2019; 8:e1801066. [PMID: 30828989 DOI: 10.1002/adhm.201801066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/25/2018] [Indexed: 12/19/2022]
Abstract
Medical devices play a major role in all areas of modern medicine, largely contributing to the success of clinical procedures and to the health of patients worldwide. They span from simple commodity products such as gauzes and catheters, to highly advanced implants, e.g., heart valves and vascular grafts. In situ generated devices are an important family of devices that are formed at their site of clinical function that have distinct advantages. Among them, since they are formed within the body, they only require minimally invasive procedures, avoiding the pain and risks associated with open surgery. These devices also display enhanced conformability to local tissues and can reach sites that otherwise are inaccessible. This review aims at shedding light on the unique features of in situ generated devices and to underscore leading trends in the field, as they are reflected by key developments recently in the field over the last several years. Since the uniqueness of these devices stems from their in situ generation, the way they are formed is crucial. It is because of this fact that in this review, the medical devices are classified depending on whether their in situ generation entails chemical or physical phenomena.
Collapse
Affiliation(s)
- Daniel Cohn
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Aaron Sloutski
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Ariel Elyashiv
- Casali Center of Applied ChemistryInstitute of ChemistryHebrew University of Jerusalem Jerusalem 91904 Israel
| | - Vijaykumar B. Varma
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| | - Raju Ramanujan
- School of Materials Science and EngineeringNanyang Technological University 639798 Singapore Singapore
| |
Collapse
|
23
|
Shi J, Chen S, Wang L, Zhang X, Gao J, Jiang L, Tang D, Zhang L, Midgley A, Kong D, Wang S. Rapid endothelialization and controlled smooth muscle regeneration by electrospun heparin‐loaded polycaprolactone/gelatin hybrid vascular grafts. J Biomed Mater Res B Appl Biomater 2018; 107:2040-2049. [DOI: 10.1002/jbm.b.34295] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/12/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jie Shi
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Siyuan Chen
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Lina Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Xiangyun Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Jingchen Gao
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Li Jiang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Di Tang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Lin Zhang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Adam Midgley
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Shufang Wang
- Key Laboratory of Bioactive Materials for Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| |
Collapse
|
24
|
Qu B, Yuan L, Li J, Wang J, Lv H, Yang X. Selenium-containing polyurethane with elevated catalytic stability for sustained nitric oxide release. J Mater Chem B 2018; 7:150-156. [PMID: 32254959 DOI: 10.1039/c8tb02264j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Stable and controllable nitric oxide (NO) release at the physiological level from biomedical materials remains a challenge for NO-based therapy. NO-generating polymers have great potential to achieve this goal because they can catalytically decompose endogenous S-nitrosothiols (RSNOs) into NO. However, the current catalytic surfaces based on such polymers often suffer from loss of catalytic sites, which can influence the stability of NO release in their long-term application. In this work, we proposed a novel strategy to enhance the catalytic stability of NO-catalytic materials by incorporating catalytic sites into the polymer backbone. Selenium-containing polyurethane (PU-Se) was synthesized by using the catalyst 2,2'-diselenodiethanol (SeDO) as the chain extender. A series of PU/PU-Se blend films were prepared to investigate the effect of PU-Se content on the catalytic properties. The blend films exhibited excellent catalytic activity, and also showed outstanding catalytic stability in comparison with PU coated by diselenide/dopamine (PU-PDA-Se). Among these blend films, PU-Se-10 exhibited a stable NO release rate of 5.05 × 10-10 mol cm-2 min-1 after exposure to PBS buffer for 30 days. Moreover, the PU/PU-Se films exhibited decreased platelet activation/adhesion, low hemolysis ratio, excellent biocompatibility, and similar mechanical properties to PU. It is expected that the newly designed PU-Se has great potential in generating stable NO release at the physiological level for the long-term application of blood-contacting medical devices.
Collapse
Affiliation(s)
- Baoliu Qu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Str. 5625, Changchun 130022, P. R. China.
| | | | | | | | | | | |
Collapse
|
25
|
Stowell CET, Wang Y. Quickening: Translational design of resorbable synthetic vascular grafts. Biomaterials 2018; 173:71-86. [PMID: 29772461 PMCID: PMC6492619 DOI: 10.1016/j.biomaterials.2018.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/19/2018] [Accepted: 05/03/2018] [Indexed: 12/17/2022]
Abstract
Traditional tissue-engineered vascular grafts have yet to gain wide clinical use. The difficulty of scaling production of these cell- or biologic-based products has hindered commercialization. In situ tissue engineering bypasses such logistical challenges by using acellular resorbable scaffolds. Upon implant, the scaffolds become remodeled by host cells. This review describes the scientific and translational advantages of acellular, synthetic vascular grafts. It surveys in vivo results obtained with acellular synthetics over their fifty years of technological development. Finally, it discusses emerging principles, highlights strategic considerations for designers, and identifies questions needing additional research.
Collapse
Affiliation(s)
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, USA.
| |
Collapse
|
26
|
Zhou F, Wen M, Zhou P, Zhao Y, Jia X, Fan Y, Yuan X. Electrospun membranes of PELCL/PCL-REDV loading with miRNA-126 for enhancement of vascular endothelial cell adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 85:37-46. [DOI: 10.1016/j.msec.2017.12.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
|
27
|
Gao J, Jiang L, Liang Q, Shi J, Hou D, Tang D, Chen S, Kong D, Wang S. The grafts modified by heparinization and catalytic nitric oxide generation used for vascular implantation in rats. Regen Biomater 2018; 5:105-114. [PMID: 29644092 PMCID: PMC5888227 DOI: 10.1093/rb/rby003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/05/2018] [Accepted: 02/09/2018] [Indexed: 01/03/2023] Open
Abstract
Small-diameter (<6 mm) vascular grafts are increasingly needed in peripheral vascular surgery but have few successes because of acute thrombosis, incomplete endothelialization and intimal hyperplasia after implantation. This study used electrospun poly(ε-caprolactone) as the matrix material. Heparin and selenium-containing catalyst-organoselenium modified polyethyleneimine were introduced through layer-by-layer assembly in order to build a vascular graft with in situ nitric oxide (NO) generation. The aim of this study was to explore the application of the graft with improved histocompatibility and biological function for vascular implantation in rats. After implantation in rats, compared to poly(ε-caprolactone), the modified grafts could promote the adhesion and proliferation of endothelial cells, and inhibit the adhesion of smooth muscle cells. The modified grafts remarkably promoted endothelialization, inhibited intimal hyperplasia and increased the ratio of alternatively activated macrophages (M2) to classical activated macrophages (M1). This work constructed a vascular graft with heparinization and catalytic NO generation for improving the vascularization, and accelerating the tissue regeneration by regulating the inflammatory response. The present study indicates that it is a promising method for regulating response and tissue regeneration of small diameter vascular grafts by a novel approach of combining heparinization and catalytic NO generation.
Collapse
Affiliation(s)
- Jingchen Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Li Jiang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qinge Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ding Hou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Di Tang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Cha KH, Wang X, Meyerhoff ME. Nitric Oxide Release for Improving Performance of Implantable Chemical Sensors - A Review. APPLIED MATERIALS TODAY 2017; 9:589-597. [PMID: 29520370 PMCID: PMC5837052 DOI: 10.1016/j.apmt.2017.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the last three decades, there has been extensive interest in developing in vivo chemical sensors that can provide real-time measurements of blood gases (oxygen, carbon dioxide, and pH), glucose/lactate, and potentially other critical care analytes in the blood of hospitalized patients. However, clot formation with intravascular sensors and foreign body response toward sensors implanted subcutaneously can cause inaccurate analytical results. Further, the risk of bacterial infection from any sensor implanted in the human body is another major concern. To solve these issues, the release of an endogenous gas molecule, nitric oxide (NO), from the surface of such sensors has been investigated owing to NO's ability to inhibit platelet activation/adhesion, foreign body response and bacterial growth. This paper summarizes the importance of NO's therapeutic potential for this application and reviews the publications to date that report on the analytical performance of NO release sensors in laboratory testing and/or during in vivo testing.
Collapse
Affiliation(s)
- Kyoung Ha Cha
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Xuewei Wang
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| | - Mark E Meyerhoff
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
29
|
Regulation of macrophage polarization and promotion of endothelialization by NO generating and PEG-YIGSR modified vascular graft. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [PMID: 29519417 DOI: 10.1016/j.msec.2017.11.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
As an effective clinic treatment for cardiovascular disease, vascular transplantation gains much acceptance recently. However, due to the acute thrombosis and intimal hyperplasia, long-term failure of synthetic grafts after implanted in small diameter blood vessel decelerates its commercial use. The continued acute inflammation and delayed endothelialization have been considered as fundamental reasons. To enhance the adhesion and organization of endothelial cells (ECs) and improve the vascular remodeling process, we have constructed a vascular graft based on electrospun polycaprolactone (PCL) matrix, on which organoselenium-immobilized polyethyleneimine (SePEI) for in situ nitric oxide (NO) generation and hyaluronic acid (HA) grafted with poly (ethylene glycol) (PEG) modified Tyr-Ile-Gly-Ser-Arg (YIGSR) for antifouling and EC adhesion were deposited through electrostatic layer-by-layer assembly. The in vitro results showed that SePEI deposited on the grafts could catalyze stable generation of NO. After in situ implantation in rats for 4 and 8weeks, the graft promoted the transformation of macrophages into an anti-inflammatory phenotype (M2), which helped endothelium remodeling. YIGSR on the outmost layer facilitated more rapid and organized EC adhesion compared to PCL and non-modified grafts. PEG polymer chain on the outmost layer mitigated nonspecific adsorption of undesirable blood components. In our study, we first demonstrated the regulation of macrophage polarization by an NO-generating vascular graft. The results indicated that the approach of anti-inflammatory macrophage polarization and enhanced endothelialization through NO generation and PEG-modified YIGSR in our study may provide a new perspective for the clinic application of cell-free small-diameter vascular grafts.
Collapse
|
30
|
Wo Y, Brisbois EJ, Wu J, Li Z, Major TC, Mohammed A, Wang X, Colletta A, Bull JL, Matzger AJ, Xi C, Bartlett RH, Meyerhoff ME. Reduction of Thrombosis and Bacterial Infection via Controlled Nitric Oxide (NO) Release from S-Nitroso- N-acetylpenicillamine (SNAP) Impregnated CarboSil Intravascular Catheters. ACS Biomater Sci Eng 2017; 3:349-359. [PMID: 28317023 PMCID: PMC5351555 DOI: 10.1021/acsbiomaterials.6b00622] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/21/2017] [Indexed: 01/15/2023]
Abstract
Nitric oxide (NO) has many important physiological functions, including its ability to inhibit platelet activation and serve as potent antimicrobial agent. The multiple roles of NO in vivo have led to great interest in the development of biomaterials that can deliver NO for specific biomedical applications. Herein, we report a simple solvent impregnation technique to incorporate a nontoxic NO donor, S-nitroso-N-acetylpenicillamine (SNAP), into a more biocompatible biomedical grade polymer, CarboSil 20 80A. The resulting polymer-crystal composite material yields a very stable, long-term NO release biomaterial. The SNAP impregnation process is carefully characterized and optimized, and it is shown that SNAP crystal formation occurs in the bulk of the polymer after solvent evaporation. LC-MS results demonstrate that more than 70% of NO release from this new composite material originates from the SNAP embedded CarboSil phase, and not from the SNAP species leaching out into the soaking solution. Catheters prepared with CarboSil and then impregnated with 15 wt % SNAP provide a controlled NO release over a 14 d period at physiologically relevant fluxes and are shown to significantly reduce long-term (14 day) bacterial biofilm formation against Staphylococcus epidermidis and Pseudonomas aeruginosa in a CDC bioreactor model. After 7 h of catheter implantation in the jugular veins of rabbit, the SNAP CarboSil catheters exhibit a 96% reduction in thrombus area (0.03 ± 0.01 cm2/catheter) compared to the controls (0.84 ± 0.19 cm2/catheter) (n = 3). These results suggest that SNAP impregnated CarboSil can become an attractive new biomaterial for use in preparing intravascular catheters and other implanted medical devices.
Collapse
Affiliation(s)
- Yaqi Wo
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Elizabeth J. Brisbois
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianfeng Wu
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Li
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Terry C. Major
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Azmath Mohammed
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xianglong Wang
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alessandro Colletta
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joseph L. Bull
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Adam J. Matzger
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chuanwu Xi
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Robert H. Bartlett
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark E. Meyerhoff
- Department
of Chemistry, Department of Surgery, University of Michigan Medical
Center, Department of Environmental Health Sciences, and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
31
|
Bedair TM, ElNaggar MA, Joung YK, Han DK. Recent advances to accelerate re-endothelialization for vascular stents. J Tissue Eng 2017; 8:2041731417731546. [PMID: 28989698 PMCID: PMC5624345 DOI: 10.1177/2041731417731546] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 08/19/2017] [Indexed: 12/25/2022] Open
Abstract
Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.
Collapse
Affiliation(s)
- Tarek M Bedair
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Chemistry Department, Faculty of Science, Minia University, Minia, Egypt
| | - Mahmoud A ElNaggar
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Yoon Ki Joung
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
| | - Dong Keun Han
- Center for Biomaterials, Korea Institute of Science and Technology (KIST), Seoul, Korea
- Department of Biomedical Engineering, Korea University of Science and Technology, Daejeon, Korea
- Department of Biomedical Science, CHA University, Gyeonggi, Korea
| |
Collapse
|
32
|
Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME. Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 2016; 4:1161-83. [PMID: 27226170 PMCID: PMC4955746 DOI: 10.1039/c6bm00271d] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomedical devices are essential for patient diagnosis and treatment; however, when blood comes in contact with foreign surfaces or homeostasis is disrupted, complications including thrombus formation and bacterial infections can interrupt device functionality, causing false readings and/or shorten device lifetime. Here, we review some of the current approaches for developing antithrombotic and antibacterial materials for biomedical applications. Special emphasis is given to materials that release or generate low levels of nitric oxide (NO). Nitric oxide is an endogenous gas molecule that can inhibit platelet activation as well as bacterial proliferation and adhesion. Various NO delivery vehicles have been developed to improve NO's therapeutic potential. In this review, we provide a summary of the NO releasing and NO generating polymeric materials developed to date, with a focus on the chemistry of different NO donors, the polymer preparation processes, and in vitro and in vivo applications of the two most promising types of NO donors studied thus far, N-diazeniumdiolates (NONOates) and S-nitrosothiols (RSNOs).
Collapse
Affiliation(s)
- Yaqi Wo
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
33
|
Liu J, Zheng B, Wang P, Wang X, Zhang B, Shi Q, Xi T, Chen M, Guan S. Enhanced in Vitro and in Vivo Performance of Mg-Zn-Y-Nd Alloy Achieved with APTES Pretreatment for Drug-Eluting Vascular Stent Application. ACS APPLIED MATERIALS & INTERFACES 2016; 8:17842-17858. [PMID: 27331417 DOI: 10.1021/acsami.6b05038] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bioabsorbable magnesium alloys are becoming prominent as temporary functional implants, as they avoid the risks generated by permanent metallic implants such as persistent inflammation and late restenosis. Nevertheless, the overfast corrosion of Mg alloys under physiological conditions hinders their wider application as medical implant materials. Here we investigate a simple one-step process to introduce a cross-linked 3-amino-propyltrimethoxysilane (APTES) silane physical barrier layer on the surface of Mg-Zn-Y-Nd alloys prior to electrostatic spraying with rapamycin-eluting poly(lactic-co-glycolic acid) (PLGA) layer. Surface microstructure was characterized by scanning electron microscope and Fourier transform infrared spectroscopy. Nanoscratch test verified the superior adhesion strength of PLGA coating in the group pretreated with APTES. Electrochemical tests combined with long-term immersion results suggested that the preferable in vitro anticorrosion behavior could be achieved by dense APTES barrier. Cell morphology and proliferation data demonstrated that APTES pretreated group resulted in remarkably preferable compatibility for both human umbilical vein endothelial cells and vascular smooth muscle cells. On the basis of excellent in vitro mechenical property, the animal study on the APTES pretreated Mg-Zn-Y-Nd stent implanted into porcine coronary arteries confirmed benign tissue compatibility as well as re-endothelialization without thrombogenesis or in-stent restenosis at six-month followup.
Collapse
Affiliation(s)
- Jing Liu
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Bo Zheng
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
| | - Xingang Wang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Bin Zhang
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Qiuping Shi
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Tingfei Xi
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University , Beijing 100871, China
- Shenzhen Research Institute, Peking University , Shenzhen 518055, China
| | - Ming Chen
- Department of cardiology, Peking University First Hospital , Beijing 100034, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University , Zhengzhou 450002, China
| |
Collapse
|