1
|
Liu J, Zheng J, Lu Y, Feng Z, Zhang S, Sun T. Prepared Sandwich structure WS 2/ag@MIP composite for ultrasensitive SERS detection of trace 17β-estradiol in food. Food Chem 2024; 460:140731. [PMID: 39106757 DOI: 10.1016/j.foodchem.2024.140731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
17β-E2 is used in animal growth regulation and agricultural fertilizer, and even ng L-1 mass concentration levels can show biological effects. In this work, Ag NPs was used as surface-enhanced Raman spectroscopy (SERS) source and WS2 was synthesized by a simple method to provide a uniform distribution platform for Ag NPs. The MIP was the shell, which can selectively enrich the target molecule, pull the distance between the target molecule and SERS source, and protect Ag NPs. A cyclable SERS substrate with high sensitivity for detecting 17β-E2 in food was constructed. The optimized WS2/Ag@MIP as SERS substrate has the advantages of high Enhanced Factor (EF = 2.78 × 109), low detection limit (LOD = 0. 0958 pM), strong anti-interference ability, and good recycling performance. Moreover, the detection of 17β-E2 in real samples still has good accuracy. This work provides a new possibility for the trace detection of 17β-E2 in food.
Collapse
Affiliation(s)
- Jiaxin Liu
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jia Zheng
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Yunshu Lu
- College of Sciences, Northeastern University, Shenyang 110819, PR China
| | - Zhongmin Feng
- College of Sciences, Northeastern University, Shenyang 110819, PR China.
| | - Siqi Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, PR China
| | - Ting Sun
- College of Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
2
|
Zhang T, Dong X, Gao X, Yang Y, Song W, Song J, Bi H, Guo Y, Song J. Applications of Metals and Metal Compounds in Improving the Sensitivity of Microfluidic Biosensors - A Review. Chemistry 2024; 30:e202400578. [PMID: 38801721 DOI: 10.1002/chem.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The enhancement of detection sensitivity in microfluidic sensors has been a continuously explored field. Initially, many strategies for sensitivity improvement involved introducing enzyme cascade reactions, but enzyme-based reactions posed challenges in terms of cost, stability, and storage. Therefore, there is an urgent need to explore enzyme-free cascade amplification methods, which are crucial for expanding the application range and improving detection stability. Metal or metal compound nanomaterials have gained great attention in the exploitation of microfluidic sensors due to their ease of preparation, storage, and lower cost. The unique physical properties of metallic nanomaterials, including surface plasmon resonance, surface-enhanced Raman scattering, metal-enhanced fluorescence, and surface-enhanced infrared absorption, contribute significantly to enhancing detection capabilities. The metal-based catalytic nanomaterials, exemplified by Fe3O4 nanoparticles and metal-organic frameworks, are considered viable alternatives to biological enzymes due to their excellent performance. Herein, we provide a detailed overview of the applications of metals and metal compounds in improving the sensitivity of microfluidic biosensors. This review not only highlights the current developments but also critically analyzes the challenges encountered in this field. Furthermore, it outlines potential directions for future research, contributing to the ongoing development of microfluidic biosensors with improved detection sensitivity.
Collapse
Affiliation(s)
- Taiyi Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xuezhen Dong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jike Song
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250353, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yurong Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, P. R. China
| |
Collapse
|
3
|
Zangana S, Veres M, Bonyár A. Surface-Enhanced Raman Spectroscopy (SERS)-Based Sensors for Deoxyribonucleic Acid (DNA) Detection. Molecules 2024; 29:3338. [PMID: 39064915 PMCID: PMC11279622 DOI: 10.3390/molecules29143338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) has emerged as a powerful technique for the detection and analysis of biomolecules due to its high sensitivity and selectivity. In recent years, SERS-based sensors have received significant attention for the detection of deoxyribonucleic acid (DNA) molecules, offering promising applications in fields such as medical diagnostics, forensic analysis, and environmental monitoring. This paper provides a concise overview of the principles, advancements, and potential of SERS-based sensors for DNA detection. First, the fundamental principles of SERS are introduced, highlighting its ability to enhance the Raman scattering signal by several orders of magnitude through the interaction between target molecules with metallic nanostructures. Then, the fabrication technologies of SERS substrates tailored for DNA detection are reviewed. The performances of SERS substrates previously reported for DNA detection are compared and analyzed in terms of the limit of detection (LOD) and enhancement factor (EF) in detail, with respect to the technical parameters of Raman spectroscopy (e.g., laser wavelength and power). Additionally, strategies for functionalizing the sensor surfaces with DNA-specific capture probes or aptamers are outlined. The collected data can be of help in selecting and optimizing the most suitable fabrication technology considering nucleotide sensing applications with Raman spectroscopy.
Collapse
Affiliation(s)
- Shireen Zangana
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Miklós Veres
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| | - Attila Bonyár
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, 1111 Budapest, Hungary;
- HUN-REN Wigner Research Centre for Physics, 1525 Budapest, Hungary;
| |
Collapse
|
4
|
Wu J, Dong J, Bao Y, Shang L, Wu Q, Yang Z, Wang H, Yin J. Synovial fluid research based on SERS and SERRS for enhanced detection of biomarkers in staged osteoarthritis. JOURNAL OF BIOPHOTONICS 2024; 17:e202400024. [PMID: 38566479 DOI: 10.1002/jbio.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Surface-enhanced (resonance) Raman scattering (SER(R)S) can extremely enhance Raman intensity of samples, which is helpful for detecting synovial fluid (SF) that does not show Raman activity under normal conditions. In this study, SER(R)S spectra of SF from three different osteoarthritis (OA) stages were collected and analyzed for OA progress, finding that the content of collagen increased throughout the disease, while non-collagen proteins and polysaccharides decreased sharply at advanced OA stage accompanied by the increase of phospholipid. The spectral features and differences were enhanced by salting-out and centrifugation. Much more information on biomolecules at different OA stages was disclosed by using SERRS for the first time, these main trace components (β-carotene, collagen, hyaluronic acid, nucleotide, and phospholipid) can be used as potential biomarkers. It indicates that SERRS has a more comprehensive ability to assist SERS in seeking micro(trace) biomolecules as biomarkers and facilitating accurate and efficient diagnosis and mechanism research of OA.
Collapse
Affiliation(s)
- Jinjin Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jiachun Dong
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yilin Bao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Linwei Shang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qingxia Wu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Zichun Yang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Huijie Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jianhua Yin
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| |
Collapse
|
5
|
Wang X, Kong F, Liu Y, Lv S, Zhang K, Sun S, Liu J, Wang M, Cai X, Jin H, Yan S, Luo J. 17β-estradiol biosensors based on different bioreceptors and their applications. Front Bioeng Biotechnol 2024; 12:1347625. [PMID: 38357703 PMCID: PMC10864596 DOI: 10.3389/fbioe.2024.1347625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design. Furthermore, Biosensors can quickly and accurately obtain detection results with only a small sampling amount, which greatly meets the detection of the environment, food safety, medicine safety, and human body. This review focuses on previous studies of biosensors for detecting E2 and divides them into non-biometric sensors, enzyme biosensors, antibody biosensors, and aptamer biosensors according to different bioreceptors. The advantages, disadvantages, and design points of various bioreceptors for E2 detection are analyzed and summarized. Additionally, applications of different bioreceptors of E2 detection are presented and highlight the field of environmental monitoring, food and medicine safety, and disease detection in recent years. Finally, the development of E2 detection by biosensor is prospected.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Fanli Kong
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Kui Zhang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Shutong Sun
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Jin
- Obstetrics and Gynecology Department, Peking University First Hospital, Beijing, China
| | - Shi Yan
- Department of Thoracic Surgery II, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wang H, Su A, Bao C, Liang C, Xu W, Chang J, Xu S. A CRISPR/Cas12a-SERS platform for amplification-free detection of African swine fever virus genes. Talanta 2024; 267:125225. [PMID: 37741267 DOI: 10.1016/j.talanta.2023.125225] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
A surface-enhanced Raman scattering (SERS) strategy combined with a CRISPR/Cas12a system is designed for the amplification-free gene detection of African swine fever virus (ASFV). A SERS sensing probe was fabricated by conjugating plasmonic SERS tags on the magnetic bead (MB) surface with an single-stranded DNA (ssDNA) as a linker. The target ASFV gene-activated Cas12a protein starts the trans-cleavage function on the linker ssDNA, which causes the release of SERS tags, leading to a decrease of the SERS signal detected above the collective MBs. Two signal enhancement strategies were adopted to improve the liquid-phase detection sensitivity arriving at the fM level. One is the unlimited trans-cleavage function of the Cas12a protein, and the other is the magnetic-induced collection of probes that can significantly gather the analytes from the solution to the laser spot and provide SERS hotspots during SERS measurement. Detection range is from 100 nM to 10 fM without the gene amplification steps. This sensing method achieved the SERS detection of ASFV gene in the serum system and the extracted nucleic acids in viral samples with high sensitivity and selectivity at a relative standard deviation of <8%. This sensing platform is mainly in use for site inspection and quick testing of gene samples.
Collapse
Affiliation(s)
- Huimin Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China; State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ailing Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chengxin Bao
- Institute of Frontier Medical Science, Jilin University, Changchun, 130021, PR China
| | - Chongyang Liang
- Institute of Frontier Medical Science, Jilin University, Changchun, 130021, PR China
| | - Weiqing Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Jingjing Chang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, PR China.
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China; Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
7
|
Ji C, Wei J, Zhang L, Hou X, Tan J, Yuan Q, Tan W. Aptamer-Protein Interactions: From Regulation to Biomolecular Detection. Chem Rev 2023; 123:12471-12506. [PMID: 37931070 DOI: 10.1021/acs.chemrev.3c00377] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Serving as the basis of cell life, interactions between nucleic acids and proteins play essential roles in fundamental cellular processes. Aptamers are unique single-stranded oligonucleotides generated by in vitro evolution methods, possessing the ability to interact with proteins specifically. Altering the structure of aptamers will largely modulate their interactions with proteins and further affect related cellular behaviors. Recently, with the in-depth research of aptamer-protein interactions, the analytical assays based on their interactions have been widely developed and become a powerful tool for biomolecular detection. There are some insightful reviews on aptamers applied in protein detection, while few systematic discussions are from the perspective of regulating aptamer-protein interactions. Herein, we comprehensively introduce the methods for regulating aptamer-protein interactions and elaborate on the detection techniques for analyzing aptamer-protein interactions. Additionally, this review provides a broad summary of analytical assays based on the regulation of aptamer-protein interactions for detecting biomolecules. Finally, we present our perspectives regarding the opportunities and challenges of analytical assays for biological analysis, aiming to provide guidance for disease mechanism research and drug discovery.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Junyuan Wei
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xinru Hou
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
8
|
Anwar A, Mur M, Humar M. Microcavity- and Microlaser-Based Optical Barcoding: A Review of Encoding Techniques and Applications. ACS PHOTONICS 2023; 10:1202-1224. [PMID: 37215324 PMCID: PMC10197175 DOI: 10.1021/acsphotonics.2c01611] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Indexed: 05/24/2023]
Abstract
Optical microbarcodes have recently received a great deal of interest because of their suitability for a wide range of applications, such as multiplexed assays, cell tagging and tracking, anticounterfeiting, and product labeling. Spectral barcodes are especially promising because they are robust and have a simple readout. In addition, microcavity- and microlaser-based barcodes have very narrow spectra and therefore have the potential to generate millions of unique barcodes. This review begins with a discussion of the different types of barcodes and then focuses specifically on microcavity-based barcodes. While almost any kind of optical microcavity can be used for barcoding, currently whispering-gallery microcavities (in the form of spheres and disks), nanowire lasers, Fabry-Pérot lasers, random lasers, and distributed feedback lasers are the most frequently employed for this purpose. In microcavity-based barcodes, the information is encoded in various ways in the properties of the emitted light, most frequently in the spectrum. The barcode is dependent on the properties of the microcavity, such as the size, shape, and the gain materials. Various applications of these barcodes, including cell tracking, anticounterfeiting, and product labeling are described. Finally, the future prospects for microcavity- and microlaser-based barcodes are discussed.
Collapse
Affiliation(s)
- Abdur
Rehman Anwar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Maruša Mur
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Matjaž Humar
- Department
of Condensed Matter Physics, J. Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
- CENN
Nanocenter, Jamova 39, SI-1000 Ljubljana, Slovenia
- Faculty
of Mathematics and Physics, University of
Ljubljana, Jadranska
19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Kim JM, Kim J, Choi K, Nam JM. Plasmonic Dual-Gap Nanodumbbells for Label-Free On-Particle Raman DNA Assays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208250. [PMID: 36680474 DOI: 10.1002/adma.202208250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
10
|
Ge S, Chen G, Deng J, Gu Y, Mao Y, Zhou X, Li G. Multiplex signal amplification strategy-based early-stage diagnosis of Parkinson's disease on a SERS-enabled LoC system. Anal Chim Acta 2023; 1247:340890. [PMID: 36781256 DOI: 10.1016/j.aca.2023.340890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/30/2023]
Abstract
In this paper, a multiplex signal amplification strategy was developed for the determination of miR-214 and miR-221 on a surface-enhanced Raman scattering (SERS)-enabled lab-on-a-chip (LoC) system to realize the early-stage diagnosis of Parkinson's disease (PD). The gold nanobipyramids (GNBPs) with great monodispersity were functionalized with Raman reporter molecules and hairpin DNA 1, serving as the SERS nanotags. The presence of targets can initial the strand displacement amplification (SDA) reaction and the numerous short-stranded trigger DNA (tDNA) can be released under the action of polymerase and nicking enzyme. Then, the tDNA can trigger the catalytic hairpin assembly (CHA) event between the SERS nanotags and the capture nanoprobes (Magnetic beads (MBs) modified with hairpin DNA 2), resulting in the aggregation of GNBPs on the MBs surface. The multiplex signal amplification contributed by the SDA-CHA strategy and the magnet-induced aggregation effect can ultimately lead to the significant improvement of the detection sensitivity and the limit of detection (LOD) was low to aM level with reproducibility and specificity meanwhile. Furthermore, a MPTP-induced PD mice model was established to verify the practicability and the expression level of miR-214 and miR-221 at different stages analyzed with the LoC system was confirmed by qRT-PCR.
Collapse
Affiliation(s)
- Shengjie Ge
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China
| | - Gaoyang Chen
- Department of Oncology, The Second People's Hospital of Taizhou City, Taizhou, 225300, PR China
| | - Jialin Deng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Yu Mao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Guang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, PR China.
| |
Collapse
|
11
|
Wei X, Shang Y, Zhu Y, Gu Z, Zhang D. Encoding microcarriers for biomedicine. SMART MEDICINE 2023; 2:e20220009. [PMID: 39188559 PMCID: PMC11235794 DOI: 10.1002/smmd.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/22/2022] [Indexed: 08/28/2024]
Abstract
High throughput biological analysis has become an important topic in modern biomedical research and clinical diagnosis. The flow encoding scheme based on the encoding microcarriers provides a feasible strategy for the multiplexed biological analysis. Different encoding characteristics invest the microcarriers with different encoding mechanisms. Biosensor analysis, drug screening, cell culture, and the construction and evaluation of bionic organ chips can be realized by decoding the microcarriers and quantifying the detection signal intensity. In this review, the encoding strategy of microcarriers was divided into the optical and non-optical encoding approaches according to their encoding elements, and the research progress of the microcarrier encoding strategy was elaborated. Finally, we summarized the biomedical applications and predicted their future prospects.
Collapse
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yixuan Shang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Yefei Zhu
- Laboratory Medicine CenterThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Zhuxiao Gu
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Dagan Zhang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
12
|
Detection and Characterization of Nodularin by Using Label-Free Surface-Enhanced Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms232415741. [PMID: 36555384 PMCID: PMC9779585 DOI: 10.3390/ijms232415741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/03/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Nodularin (NOD) is a potent toxin produced by Nodularia spumigena cyanobacteria. Usually, NOD co-exists with other microcystins in environmental waters, a class of cyanotoxins secreted by certain cyanobacteria species, which makes identification difficult in the case of mixed toxins. Herein we report a complete theoretical DFT-vibrational Raman characterization of NOD along with the experimental drop-coating deposition Raman (DCDR) technique. In addition, we used the vibrational characterization to probe SERS analysis of NOD using colloidal silver nanoparticles (AgNPs), commercial nanopatterned substrates with periodic inverted pyramids (KlariteTM substrate), hydrophobic Tienta® SpecTrimTM slides, and in-house fabricated periodic nanotrenches by nanoimprint lithography (NIL). The 532 nm excitation source provided more well-defined bands even at LOD levels, as well as the best performance in terms of SERS intensity. This was reflected by the results obtained with the KlariteTM substrate and the silver-based colloidal system, which were the most promising detection approaches, providing the lowest limits of detection. A detection limit of 8.4 × 10-8 M was achieved for NOD in solution by using AgNPs. Theoretical computation of the complex vibrational modes of NOD was used for the first time to unambiguously assign all the specific vibrational Raman bands.
Collapse
|
13
|
Li Z, Zhang J, Huang Y, Zhai J, Liao G, Wang Z, Ning C. Development of electroactive materials-based immunosensor towards early-stage cancer detection. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Mostafavi E, Medina-Cruz D, Truong LB, Kaushik A, Iravani S. Selenium-based nanomaterials for biosensing applications. MATERIALS ADVANCES 2022; 3:7742-7756. [PMID: 36353516 PMCID: PMC9619417 DOI: 10.1039/d2ma00756h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/11/2022] [Indexed: 05/03/2023]
Abstract
The unique chemical and physical features of nanomaterials make them ideal for developing new and better sensing devices, particularly biosensors. Various types of nanoparticles, including metal, oxide, and semiconductor nanostructures, have been utilized to manufacture biosensors, and each kind of nanoparticle plays a unique role in the sensing system. Nanoparticles provide critical roles such as immobilizing biomolecules, catalyzing electrochemical processes, enhancing electron transport between electrode surfaces and proteins, identifying biomolecules, and even functioning as the reactant for the catalytic reaction. Among all the potential nanosystems to be used in biosensors, selenium nanoparticle (SeNP) features have sparked a growing interest in their use in bridging biological recognition events and signal transduction, as well as in developing biosensing devices with novel applications for identification, quantification, and study of different analytes of biological relevance. The optical, physical, and chemical characteristics of differently shaped SeNPs opened up a world of possibilities for developing biosensors of biomedical interest. The outstanding biocompatibility, conductivity, catalytic characteristics, high surface-to-volume ratio, and high density of SeNPs have enabled their widespread use in developing electrochemical biosensors with superior analytical performance compared to other designs of biosensors. This review summarizes recent and ongoing advances, current challenges, and future research perspectives on real-world applications of Se-based nanobiosensors to detect biologically relevant analytes such as hydrogen peroxide, heavy metals, or glucose. Due to the superior properties and multifunctionality of Se-NPs biosensors, these structures can open up considerable new horizons in the future of healthcare and medicine.
Collapse
Affiliation(s)
- Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine Stanford CA 94305 USA
- Department of Medicine, Stanford University School of Medicine Stanford CA 94305 USA
| | - David Medina-Cruz
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Linh B Truong
- Chemical Engineering Department, Northeastern University Boston MA 02115 USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University Lakeland FL-33805 USA
- School of Engineering, University of Petroleum and Energy Studies (UPES) Dehradun Uttarakhand India
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
15
|
Ji G, Tian J, Xing F, Feng Y. Optical Biosensor Based on Graphene and Its Derivatives for Detecting Biomolecules. Int J Mol Sci 2022; 23:10838. [PMID: 36142748 PMCID: PMC9500660 DOI: 10.3390/ijms231810838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 12/24/2022] Open
Abstract
Graphene and its derivatives show great potential for biosensing due to their extraordinary optical, electrical and physical properties. In particular, graphene and its derivatives have excellent optical properties such as broadband and tunable absorption, fluorescence bursts, and strong polarization-related effects. Optical biosensors based on graphene and its derivatives make nondestructive detection of biomolecules possible. The focus of this paper is to review the preparation of graphene and its derivatives, as well as recent advances in optical biosensors based on graphene and its derivatives. The working principle of face plasmon resonance (SPR), surface-enhanced Raman spectroscopy (SERS), fluorescence resonance energy transfer (FRET) and colorimetric sensors are summarized, and the advantages and disadvantages of graphene and its derivatives applicable to various types of sensors are analyzed, and the methods of surface functionalization of graphene and its derivatives are introduced; these optical biosensors can be used for the detection of a range of biomolecules such as single cells, cellular secretions, proteins, nucleic acids, and antigen-antibodies; these new high-performance optical sensors are capable of detecting changes in surface structure and biomolecular interactions with the advantages of ultra-fast detection, high sensitivity, label-free, specific recognition, and the ability to respond in real-time. Problems in the current stage of application are discussed, as well as future prospects for graphene and its biosensors. Achieving the applicability, reusability and low cost of novel optical biosensors for a variety of complex environments and achieving scale-up production, which still faces serious challenges.
Collapse
Affiliation(s)
- Guangmin Ji
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Jingkun Tian
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Fei Xing
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| | - Yu Feng
- School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo 255000, China
| |
Collapse
|
16
|
Pan H, Dong Y, Gong L, Zhai J, Song C, Ge Z, Su Y, Zhu D, Chao J, Su S, Wang L, Wan Y, Fan C. Sensing gastric cancer exosomes with MoS 2-based SERS aptasensor. Biosens Bioelectron 2022; 215:114553. [PMID: 35868121 DOI: 10.1016/j.bios.2022.114553] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
Exosomes have been widely used in early cancer diagnosis as promising cancer biomarkers due to their abundant tumor-specific molecular information. In this study, we developed a sensitive and straightforward surface-enhanced Raman scattering (SERS) aptasensor to detect exosomes based on gold nanostars-decorated molybdenum disulfide (MoS2) nanocomposites (MoS2-AuNSs). ROX-labeled aptamers (ROX-Apt) were assembled on MoS2-AuNSs surface as recognition probes that specifically bind with transmembrane protein CD63 (a representative surface marker on exosomes). Thus obvious ROX Raman signals were obtained through the synergistic Raman enhancement effect of AuNSs and MoS2 nanosheet. In presence of exosomes, ROX-Apt is preferentially tethered onto exosomes and released from the surface of nanocomposites, resulting in a decrease of the SERS signal. Expectedly, the as-fabricated SERS aptasensor was capable of detecting exosomes in a wide range from 55 to 5.5 × 105 particles μL-1 with a detection limit of 17 particles μL-1. Moreover, the aptasensor exhibited accepted stability and potential clinical applicability.
Collapse
Affiliation(s)
- Hemeng Pan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yan Dong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lingbo Gong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jiayun Zhai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chunyuan Song
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhilei Ge
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Su
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dun Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Sun Y, Fang L, Yi Y, Feng A, Zhang K, Xu JJ. Multistage nucleic acid amplification induced nano-aggregation for 3D hotspots-improved SERS detection of circulating miRNAs. J Nanobiotechnology 2022; 20:285. [PMID: 35710556 PMCID: PMC9205088 DOI: 10.1186/s12951-022-01500-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNAs in the blood can regulate disease development and thus indicate disease states via their various expression levels. For these reasons, circulating miRNAs constitute useful biomarkers, and an approach to the accurate detection of circulating miRNAs is attractive in the diagnosis and treatment of diseases. However, methods for clinical detecting of circulating miRNA that take both sensitivity and practicality into account are still needed. Therefore, we aimed herein to solve some inherent problems in the actual detection using a robust surface-enhanced Raman scattering (SERS) platform with integrated nucleic acid amplification and nanoparticle aggregation to construct 3D hotspots for improving performance of analyzing circulating miRNAs. After target recognition and initial signal amplification by DNAzyme, we observed that release triggered an open hairpin DNA on gold nanoparticles (AuNPs), which then promote AuNP aggregation, causing the accumulation of a large number of hotspots in three-dimention. The SERS biosensor achieved a better performance than the sandwich-type separation detection, with a low detection limit (0.37 fM) and a broad linear range (1 fM–10 nM) in liquids. This SERS platform can be used as a powerful tool for the detection of circulating miRNAs, and it can be used to improve the sensitivity and accuracy of various clinical-disease diagnoses.
Collapse
Affiliation(s)
- Yudie Sun
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - La Fang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Yang Yi
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Aobo Feng
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma Xiang Road, Ma 'anshan, 243032, An-hui, People's Republic of China.
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nan-Jing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
18
|
Khizar S, Elaissari A, Al-Dossary AA, Zine N, Jaffrezic-Renault N, Errachid A. Advancement in Nanoparticle-Based Biosensors for Point-of-Care In Vitro Diagnostics. Curr Top Med Chem 2022; 22:807-833. [DOI: 10.2174/1568026622666220401160121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/20/2022] [Accepted: 02/10/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, there has been great progress in the field of extremely sensitive and precise detection of bioanalytes. The importance of the utilization of nanoparticles in biosensors has been recognized due to their unique properties. Specifically, nanoparticles of gold, silver, and magnetic plus graphene, quantum dots, and nanotubes of carbon are being keenly considered for utilizations within biosensors to detect nucleic acids, glucose, or pathogens (bacteria as well as a virus). Taking advantage of nanoparticles, faster and sensitive biosensors can be developed. Here we review the nanoparticles' contribution to the biosensors field and their potential applications.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | - Amal Ali Al-Dossary
- Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia
| | - Nadia Zine
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| | | | - Abdelhamid Errachid
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, F-69622 Lyon, France
| |
Collapse
|
19
|
Graphene-Based Plasmonic Metamaterial Perfect Absorber for Biosensing Applications. ELECTRONICS 2022. [DOI: 10.3390/electronics11060930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Graphene as a mono-atomic sheet has recently grabbed attention as a material with enormous properties. It has also been examined for enhancing absorbance in the current plasmonic structure. This has led to an increment in the sensitivity of the plasmonic sensors. In this paper, we present theoretical investigation of the novel graphene-based plasmonic metamaterial perfect absorber for biosensing applications. The simulation study performs the analysis of the novel plasmonic metamaterial absorber structure by adding coatings of graphene sheets. Each sheet of graphene enhances absorbance of the structure. In this study, we demonstrate three layers of graphene sheets lead to perfect absorbance (100%) for multiple bands in the visible and near-infrared regions. Furthermore, we also computed the sensitivity of the graphene-based proposed structure by varying the refractive index (RI) of the sensing region from 1.33–1.36 with RI change of 0.01. Proposed fabrication steps for realization of the device are also discussed.
Collapse
|
20
|
Gu C, Shan F, Zheng L, Zhou Y, Hu J, Chen G. Towards a protein-selective Raman enhancement by a glycopolymer-based composite surface. J Mater Chem B 2022; 10:1434-1441. [PMID: 35168248 DOI: 10.1039/d1tb02746h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface-enhanced Raman scattering (SERS), which is based on the surface plasmon resonance (LSPR) of noble metal nanostructures, is widely used in the biological field due to its advantages of non-damaging samples and detection up to the molecular level. For biological SERS detection, preparation of substrates with biocompatibility and specific adsorption, leading to selective enhancement of the target biomolecules, are important design strategies. Utilizing the specific interaction between a carbohydrate and protein, a glycopolymer-based composite surface is fabricated to realize specific SERS detection of proteins. Herein, we use N-3,4-dihydroxybenzeneethyl methacrylamide (DMA), 2-deoxy-2-(methacrylamido)glucopyranose (MAG) and methacrylic acid (MAA) as monomers in a sunlight-induced RAFT polymerization to synthesize a dopamine-containing glycopolymer. The glycopolymers are used to prepare a SERS substrate. The composite surface shows specific protein adsorption capacity, and the selective Raman enhancement of specific proteins was successfully achieved between the two different proteins Con A and BSA. This provides a feasible approach to design a SERS surface for protein detection and the study of the interaction between sugar and proteins.
Collapse
Affiliation(s)
- Chuan Gu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Fangjian Shan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Lifang Zheng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Yue Zhou
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Jun Hu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| | - Gaojian Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Jiangsu Key Laboratory of Thin Films, Soochow University, Suzhou 215006, P. R. China.
| |
Collapse
|
21
|
Lu X, Wang H, He Y. Controllable Synthesis of
Silicon‐Based
Nanohybrids for Reliable
Surface‐Enhanced
Raman Scattering Sensing. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xing Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
22
|
Yoon J, Shin M, Lee JY, Lee SN, Choi JH, Choi JW. RNA interference (RNAi)-based plasmonic nanomaterials for cancer diagnosis and therapy. J Control Release 2022; 342:228-240. [PMID: 35016917 DOI: 10.1016/j.jconrel.2022.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/15/2023]
Abstract
RNA interference (RNAi) is being extensively investigated as a potential therapeutic strategy for cancer treatment. However, RNAi-based therapeutics have not yet been used to treat cancer because of their instability and the difficulty of microRNA (miRNA) delivery. Plasmonic nanoparticle-based RNAi nanotherapeutics have been developed for accurate and sensitive diagnosis and a strong therapeutic effect on cancers by leveraging their ease-of-use and specific properties such as photothermal conversion. In this review, recent strategies and advances in plasmonic nanoparticle-based miRNA delivery are briefly presented to facilitate the detection and treatment of several cancers. The challenges and potential opportunities afforded by the RNAi-based theragnosis field are discussed. We expect that the RNAi-integrated plasmonic nanotherapeutics discussed in this review can provide insights for the early diagnosis and effective treatment of cancer.
Collapse
Affiliation(s)
- Jinho Yoon
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea; Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey,123 Bevier Road, Piscataway, NJ 08854, USA
| | - Minkyu Shin
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ji-Young Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Republic of Korea
| | - Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea.
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea.
| |
Collapse
|
23
|
Wu Q, Zheng L, Huang H, Lin H, Lin X, Xu L, Chen R, Lin D, Chen G. Rapid and Label-Free Prenatal Detection of Down's Syndrome Using Body Fluid Surface Enhanced Raman Spectroscopy. J Biomed Nanotechnol 2022; 18:243-250. [PMID: 35180918 DOI: 10.1166/jbn.2022.3222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Down's syndrome (DS) is the leading genetic cause of intellectual disability. In this work, the surface enhanced Raman spectroscopy (SERS) was used for the detection of amniotic fluid and plasma from pregnant women with DS fetus for the first time. High-quality and characteristic spectral features of amniotic fluid and plasma samples from DS groups can be obtained in comparison to normal group. Moreover, principal component analysis with linear discriminant analysis was applied to generate the efficient diagnostic model, achieving accuracies of 94.3% and 88.5% for the DS detection with amniotic fluid and plasma samples, respectively. This preliminary study would provide a novel, convenient and accurate prenatal test based on blood SERS technology for clinical DS screening.
Collapse
Affiliation(s)
- Qiong Wu
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Lin Zheng
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, Fujian, China
| | - Hailong Huang
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, Fujian, China
| | - Huijing Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Xueliang Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fuzhou 350001, Fujian, China
| | - Rong Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Duo Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| | - Guannan Chen
- Key Laboratory of OptoElectronic Science and Technology for Medicine, Ministry of Education, Fujian Provincial Key Laboratory for Photonics Technology, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
24
|
Na HK, Ki J, Le MU, Kim KS, Lee CH, Lee TG, Wi JS. Analyte-Induced Desert Rose-like Ag Nanostructures for Surface-Enhanced Raman Scattering-Based Biomolecule Detection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58393-58400. [PMID: 34846139 DOI: 10.1021/acsami.1c18815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecule detection based on surface-enhanced Raman scattering (SERS) for application to biosensors and bio-imaging requires the fabrication of SERS nanoprobes that can generate strong Raman signals as well as surface modifications for analyte-specific recognition and binding. Such requirements lead to disadvantages in terms of reproducibility and practicality, and thus, it has been difficult to apply biomolecule detection utilizing the advantages of the SERS phenomenon to actual clinically relevant analysis. To achieve reproducible and practical SERS signal generation in a biomolecule-specific manner without requiring the synthesis of nanostructures and their related surface modification to introduce molecules for specific recognition, we developed a new type of SERS probe formed by enzyme reactions in the presence of Raman reporters. By forming unique plasmonic structures, our method achieves the detection of biomolecules on chips with uniform and stable signals over long periods. To test the proposed approach, we applied it to a SERS-based immunohistochemistry assay and found successful multiplexed protein detection in brain tissue from transgenic mice.
Collapse
Affiliation(s)
- Hee-Kyung Na
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Jisun Ki
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
| | - Minh-Uyen Le
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Kyoung-Shim Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Chul-Ho Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Tae Geol Lee
- Center for Nano-Bio Measurement, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea
- Department of Nano Science, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Jung-Sub Wi
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Korea
| |
Collapse
|
25
|
Liu J, Chen J, Wu D, Huang M, Chen J, Pan R, Wu Y, Li G. CRISPR-/Cas12a-Mediated Liposome-Amplified Strategy for the Surface-Enhanced Raman Scattering and Naked-Eye Detection of Nucleic Acid and Application to Food Authenticity Screening. Anal Chem 2021; 93:10167-10174. [PMID: 34278781 DOI: 10.1021/acs.analchem.1c01163] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surface-enhanced Raman scattering (SERS) has been recognized as a powerful tool for biosensors due to the ultrahigh sensitivity and unique fingerprint information. However, there are some limitations in trace target nucleic acid detection for the restricted signal-transducing and amplification strategies. Inspired by CRISPR/Cas12a with specific target DNA-activated collateral single-strand DNA (ssDNA) cleavage activity and liposome with signal molecule-loading properties, we first proposed a sensitive SERS-based on-site nucleic acid detection strategy mediated by CRISPR/Cas12a with trans-cleavage activity on ssDNA linkers utilized to capture liposomes. Liposomes loading two kinds of signal molecules, 4-nitrothiophenol (4-NTP) and cysteine, could achieve the dual-mode detection of target DNA with SERS and naked eye, respectively. The promptly amplified signals were initiated by the triggered breakdown of signal molecule-loaded liposomes. Emancipated 4-NTP, a biological-silent Raman reporter, would achieve highly selective and sensitive SERS measurement. Released cysteine induced the aggregation of plasmonic gold nanoparticles, leading to an obvious red to blue colorimetric shift to realize portable naked-eye detection. With this strategy, target nucleic acid concentration was dexterously converted into SERS and visualization signals and could be detected as low as 100 aM and 10 pM, respectively. The approach was also successfully applied to determine meat adulteration, achieving the detection of a low adulteration ratio in the complicated food matrix. We anticipate that this strategy will not only be regarded as a universal platform for the on-site detection of food authenticity but also broaden SERS application for the accurate determination of diverse biomarkers.
Collapse
Affiliation(s)
- Jianghua Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiahui Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, United Kingdom
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Jian Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruiyuan Pan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
26
|
Ivanov YD, Malsagova KA, Popov VP, Kupriyanov IN, Pleshakova TO, Galiullin RA, Ziborov VS, Dolgoborodov AY, Petrov OF, Miakonkikh AV, Rudenko KV, Glukhov AV, Smirnov AY, Usachev DY, Gadzhieva OA, Bashiryan BA, Shimansky VN, Enikeev DV, Potoldykova NV, Archakov AI. Micro-Raman Characterization of Structural Features of High-k Stack Layer of SOI Nanowire Chip, Designed to Detect Circular RNA Associated with the Development of Glioma. Molecules 2021; 26:molecules26123715. [PMID: 34207029 PMCID: PMC8234461 DOI: 10.3390/molecules26123715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023] Open
Abstract
The application of micro-Raman spectroscopy was used for characterization of structural features of the high-k stack (h-k) layer of "silicon-on-insulator" (SOI) nanowire (NW) chip (h-k-SOI-NW chip), including Al2O3 and HfO2 in various combinations after heat treatment from 425 to 1000 °C. After that, the NW structures h-k-SOI-NW chip was created using gas plasma etching optical lithography. The stability of the signals from the monocrine phase of HfO2 was shown. Significant differences were found in the elastic stresses of the silicon layers for very thick (>200 nm) Al2O3 layers. In the UV spectra of SOI layers of a silicon substrate with HfO2, shoulders in the Raman spectrum were observed at 480-490 cm-1 of single-phonon scattering. The h-k-SOI-NW chip created in this way has been used for the detection of DNA-oligonucleotide sequences (oDNA), that became a synthetic analog of circular RNA-circ-SHKBP1 associated with the development of glioma at a concentration of 1.1 × 10-16 M. The possibility of using such h-k-SOI NW chips for the detection of circ-SHKBP1 in blood plasma of patients diagnosed with neoplasm of uncertain nature of the brain and central nervous system was shown.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
| | - Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
- Correspondence: ; Tel.: +7-(499)-246-37-61
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Igor N. Kupriyanov
- Laboratory of Experimental Mineralogy and Crystallogenesis, Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia; (A.Y.D.); (O.F.P.)
| | - Alexander Yu. Dolgoborodov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia; (A.Y.D.); (O.F.P.)
| | - Oleg F. Petrov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia; (A.Y.D.); (O.F.P.)
| | - Andrey V. Miakonkikh
- K. A. Valiev Institute of Physics and Technology of the Russian Academy of Sciences, 117218 Moscow, Russia; (A.V.M.); (K.V.R.)
| | - Konstantin V. Rudenko
- K. A. Valiev Institute of Physics and Technology of the Russian Academy of Sciences, 117218 Moscow, Russia; (A.V.M.); (K.V.R.)
| | - Alexander V. Glukhov
- JSC Novosibirsk Plant of Semiconductor Devices with OKB, 630082 Novosibirsk, Russia;
| | | | - Dmitry Yu. Usachev
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (D.Y.U.); (O.A.G.); (B.A.B.); (V.N.S.)
| | - Olga A. Gadzhieva
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (D.Y.U.); (O.A.G.); (B.A.B.); (V.N.S.)
| | - Boris A. Bashiryan
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (D.Y.U.); (O.A.G.); (B.A.B.); (V.N.S.)
| | - Vadim N. Shimansky
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (D.Y.U.); (O.A.G.); (B.A.B.); (V.N.S.)
| | - Dmitry V. Enikeev
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Natalia V. Potoldykova
- Institute for Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (D.V.E.); (N.V.P.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (Y.D.I.); (T.O.P.); (R.A.G.); (V.S.Z.); (A.I.A.)
| |
Collapse
|
27
|
Sitjar J, Liao JD, Lee H, Tsai HP, Wang JR, Liu PY. Challenges of SERS technology as a non-nucleic acid or -antigen detection method for SARS-CoV-2 virus and its variants. Biosens Bioelectron 2021; 181:113153. [PMID: 33761416 PMCID: PMC7939978 DOI: 10.1016/j.bios.2021.113153] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
The COVID-19 pandemic has caused a significant burden since December 2019 that has negatively impacted the global economy owing to the fact that the SARS-CoV-2 virus is fast-transmitting and highly contagious. Efforts have been taken to minimize the impact through strict screening measures in country borders in order to isolate potential virus carriers. Effective fast-screening methods are thus needed to identify infected individuals. The standard diagnostic methods for screening SARS-CoV-2 virus have always been to perform nucleic acid-based and serological tests. However, with each having drawbacks on producing false results at very early or later stage after symptoms onset, supplementary techniques are needed to back up these tests. Surface-enhanced Raman spectroscopy (SERS) as a detection technique has continuously advanced throughout the years in terms of sensitivity and capability to detect ultralow concentration of analytes ranging from single molecule to pathogens, to present as a highly potential alternative to known sensing methods. SERS technology as a candidate for an alternative and supplementary diagnostic method for the viral envelope of SARS-CoV-2 virus is presented, comparing its pros and cons to the standard methods and what other aspects it could offer that the other methods are not capable of. Factors that contribute to the detection effectivity of SERS is also discussed to show the advantages and limitations of this technique. Despite its promising capabilities, challenges like sources of SARS-CoV-2 virus and its variations, reliable SERS spectra, mass production of SERS-active substrates, and compliance to regulations for wide-scale testing scenario are highlighted.
Collapse
Affiliation(s)
- Jaya Sitjar
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Jiunn-Der Liao
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan; Medical Device Innovation Center, National Cheng Kung University, 1 University Road, Tainan, 701, Taiwan.
| | - Han Lee
- Engineered Materials for Biomedical Applications Laboratory, Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Huey-Pin Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.
| | - Jen-Ren Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.
| | - Ping-Yen Liu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan; Division of Cardiology, Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 701, Tainan, Taiwan.
| |
Collapse
|
28
|
Sun Y, Shi L, Mi L, Guo R, Li T. Recent progress of SERS optical nanosensors for miRNA analysis. J Mater Chem B 2021; 8:5178-5183. [PMID: 32432312 DOI: 10.1039/d0tb00280a] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review focuses on emerging applications of surface-enhanced Raman spectroscopy (SERS) optical nanosensors for miRNA analysis, in which the key enhancement factors of the SERS signal, i.e. SERS-active substrates, SERS nanoprobes and nano-assembly strategy, are emphasized. This article includes many nanomaterials for miRNA analysis by the SERS technique. We summarize these reported nanomaterials mainly according to their function in the miRNA assay biosensor. We also briefly summarize the research progress of these nanomaterials in SERS detection of intracellular miRNA. Finally, we discussed the prospect and limitations of SERS nanosensors for analyzing miRNA.
Collapse
Affiliation(s)
- Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China. and School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Lin Shi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Lan Mi
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Ruiyan Guo
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
29
|
Weng S, Hu X, Wang J, Tang L, Li P, Zheng S, Zheng L, Huang L, Xin Z. Advanced Application of Raman Spectroscopy and Surface-Enhanced Raman Spectroscopy in Plant Disease Diagnostics: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2950-2964. [PMID: 33677962 DOI: 10.1021/acs.jafc.0c07205] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant diseases result in 20-40% of agricultural loss every year worldwide. Timely detection of plant diseases can effectively prevent the development and spread of diseases and ensure the agricultural yield. High-throughput and rapid methods are in great demand. This review investigates the advanced application of Raman spectroscopy (RS) and surface-enhanced Raman spectroscopy (SERS) in the detection of plant diseases. The determination of bacterial diseases and stress-induced diseases, fungal diseases, viral diseases, pests in beans, and mycotoxins related to plant diseases using RS and SERS are discussed in detail. Then, biomarkers for RS and SERS detection are analyzed with regard to plant disease diagnosis. Finally, the advantages and challenges are further illustrated. Additionally, potential alternatives are proposed for the challenges. The review is expected to provide a reference and guidance for the use of RS and SERS in plant disease diagnostics.
Collapse
Affiliation(s)
- Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Xujin Hu
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Jinghong Wang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Le Tang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Pan Li
- Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Shouguo Zheng
- Hefei Institute of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, People's Republic of China
| | - Ling Zheng
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Linsheng Huang
- National Engineering Research Center for Agro-Ecological Big Data Analysis & Application, Anhui University, 111 Jiulong Road, Hefei 230601, People's Republic of China
| | - Zhenghua Xin
- College of Information Engineering, Suzhou University, 1769 Xuefu Avenue, Suzhou, People's Republic of China
| |
Collapse
|
30
|
Malsagova KA, Popov VP, Kupriyanov IN, Pleshakova TO, Galiullin RA, Kozlov AF, Shumov ID, Larionov DI, Tikhonenko FV, Kapustina SI, Ziborov VS, Petrov OF, Gadzhieva OA, Bashiryan BA, Shimansky VN, Archakov AI, Ivanov YD. Raman Spectroscopy-Based Quality Control of "Silicon-On-Insulator" Nanowire Chips for the Detection of Brain Cancer-Associated MicroRNA in Plasma. SENSORS (BASEL, SWITZERLAND) 2021; 21:1333. [PMID: 33668578 PMCID: PMC7918486 DOI: 10.3390/s21041333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator» (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10-17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vladimir P. Popov
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Igor N. Kupriyanov
- Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Tatyana O. Pleshakova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Rafael A. Galiullin
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Andrey F. Kozlov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Ivan D. Shumov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Dmitry I. Larionov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Fedor V. Tikhonenko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (V.P.P.); (F.V.T.)
| | - Svetlana I. Kapustina
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia;
| | - Oleg F. Petrov
- Joint Institute for High Temperatures of Russian Academy of Sciences, 125412 Moscow, Russia;
| | - Olga A. Gadzhieva
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Boris A. Bashiryan
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Vadim N. Shimansky
- Federal State Autonomous Institution “N. N. Burdenko National Medical Research Center of Neurosurgery” of the Ministry of Health of the Russian Federation, 125047 Moscow, Russia; (O.A.G.); (B.A.B.); (V.N.S.)
| | - Alexander I. Archakov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| | - Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (T.O.P.); (R.A.G.); (A.F.K.); (I.D.S.); (D.I.L.); (S.I.K.); (V.S.Z.); (A.I.A.); (Y.D.I.)
| |
Collapse
|
31
|
Xu T, Geng Z. Strategies to improve performances of LSPR biosensing: Structure, materials, and interface modification. Biosens Bioelectron 2021; 174:112850. [DOI: 10.1016/j.bios.2020.112850] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/12/2022]
|
32
|
Balaban S, Beduk T, Durmus C, Aydindogan E, Salama KN, Timur S. Laser‐scribed Graphene Electrodes as an Electrochemical Immunosensing Platform for Cancer Biomarker ‘eIF3d’. ELECTROANAL 2021. [DOI: 10.1002/elan.202060482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Simge Balaban
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Tutku Beduk
- Sensors Lab Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia
| | - Ceren Durmus
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Eda Aydindogan
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
| | - Khaled Nabil Salama
- Sensors Lab Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) 23955-6900 Thuwal Saudi Arabia
| | - Suna Timur
- Department of Biochemistry Faculty of Science Ege University 35100, Bornova Izmir Turkey
- Central Research Testing and Analysis Laboratory Research and Application Center Ege University 35100, Bornova Izmir Turkey
| |
Collapse
|
33
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
34
|
Anti-fouling SERS-based immunosensor for point-of-care detection of the B7–H6 tumor biomarker in cervical cancer patient serum. Anal Chim Acta 2020; 1138:110-122. [DOI: 10.1016/j.aca.2020.09.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
|
35
|
He JH, Cheng YY, Zhang QQ, Liu H, Huang CZ. Carbon dots-based fluorescence resonance energy transfer for the prostate specific antigen (PSA) with high sensitivity. Talanta 2020; 219:121276. [DOI: 10.1016/j.talanta.2020.121276] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/09/2023]
|
36
|
Tezcan T, Hsu CH. High-sensitivity SERS based sensing on the labeling side of glass slides using low branched gold nanoparticles prepared with surfactant-free synthesis. RSC Adv 2020; 10:34290-34298. [PMID: 35519059 PMCID: PMC9056777 DOI: 10.1039/d0ra02490b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/04/2020] [Indexed: 01/08/2023] Open
Abstract
Surface-enhanced Raman scattering (SERS) has become a more attractive tool for biological and chemical sensing due to having a great detection potential to extremely low concentrations of analyte. Here, we report high-sensitivity SERS detection of low branched gold nanoparticles which are produced by a surfactant-free synthesis method. The effects of the size and branches of nanoparticles on the SERS signal intensity were also investigated. Among the prepared nanoparticles, a new type of nanoparticle with small protrusions produced by using a very low concentration of silver ions (2 μM in final solution) achieved the best enhancement factor of ∼4 × 105 for DTNB used as a probe molecule. SERS measurements were performed on the labeling side of microscope glass slides for the first time. The substrate exhibited a good reproducible SERS signal with a relative standard deviation (RSD) of 1.7%. SERS signal intensity obtained using the labelling side was three times larger compared to that obtained using bare glass. To validate the sensing platform, dopamine, an important modulatory neurotransmitter in the brain, was tested. The reported platform was able to achieve label-free detection of dopamine at picomolar and nanomolar concentration level in aqueous and fetal bovine serum (FBS) solution at pH 8.5 respectively. Due to its surfactant-free preparation and enhanced SERS-based sensing features, our reported platform represents a strong alternative to be used in SERS-based sensing applications. High-sensitivity dopamine detection on aggregated low branched nanoparticles on labelling side of glass slide as a SERS based sensor.![]()
Collapse
Affiliation(s)
- Tuğba Tezcan
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan Taiwan
| | - Chia-Hsien Hsu
- Institutes of Biomedical Engineering and Nanomedicine, National Health Research Institutes Zhunan Taiwan .,Institute of Nano Engineering and MicroSystems, National Tsing Hua University Hsinchu Taiwan .,Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University Taichung Taiwan
| |
Collapse
|
37
|
Surface Imprinted Layer of Cypermethrin upon Au Nanoparticle as a Specific and Selective Coating for the Detection of Template Pesticide Molecules. COATINGS 2020. [DOI: 10.3390/coatings10080751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The detection of specific pesticides on food products is essential as these substances pose health risks due to their toxicity. The use of surface-enhanced Raman spectroscopy (SERS) takes advantage of the straightforward technique to obtain fingerprint spectra of target analytes. In this study, SERS-active substrates are made using Au nanoparticles (NPs) coated with a layer of polymer and followed by imprinting with a pesticide–Cypermethrin, as a molecularly imprinted polymer (MIP). Cypermethrin was eventually removed and formed as template cavities, then denoted as Au NP/MIP, to capture the analogous molecules. The captured molecules situated in-between the areas of high electromagnetic field formed by plasmonic Au NPs result in an effect of SERS. The formation of Au NP/MIP was, respectively, studied through morphological analysis using transmission electron microscopy (TEM) and compositional analysis using X-ray photoelectron spectroscopy (XPS). Two relatively similar pesticides, Cypermethrin and Permethrin, were used as analytes. The results showed that Au NP/MIP was competent to detect both similar molecules despite the imprint being made only by Cypermethrin. Nevertheless, Au NP/MIP has a limited number of imprinted cavities that result in sensing only low concentrations of a pesticide solution. Au NP/MIP is thus a specific design for detecting analogous molecules similar to its template structure.
Collapse
|
38
|
Pang P, Lai Y, Zhang Y, Wang H, Conlan XA, Barrow CJ, Yang W. Recent Advancement of Biosensor Technology for the Detection of Microcystin-LR. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190365] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pengfei Pang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Yanqiong Lai
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
| | - Yanli Zhang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Hongbin Wang
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, P. R. China
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Xavier A. Conlan
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Colin J. Barrow
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| | - Wenrong Yang
- Deakin University, School of Life and Environmental Sciences, Geelong, VIC 3217, Australia
| |
Collapse
|
39
|
Single-molecule analysis of nucleic acid biomarkers - A review. Anal Chim Acta 2020; 1115:61-85. [PMID: 32370870 DOI: 10.1016/j.aca.2020.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are important biomarkers for disease detection, monitoring, and treatment. Advances in technologies for nucleic acid analysis have enabled discovery and clinical implementation of nucleic acid biomarkers. However, challenges remain with technologies for nucleic acid analysis, thereby limiting the use of nucleic acid biomarkers in certain contexts. Here, we review single-molecule technologies for nucleic acid analysis that can be used to overcome these challenges. We first discuss the various types of nucleic acid biomarkers important for clinical applications and conventional technologies for nucleic acid analysis. We then discuss technologies for single-molecule in vitro and in situ analysis of nucleic acid biomarkers. Finally, we discuss other ultra-sensitive techniques for nucleic acid biomarker detection.
Collapse
|
40
|
Remote biosensor for the determination of trypsin by using nanoporous anodic alumina as a three-dimensional nanostructured material. Sci Rep 2020; 10:2356. [PMID: 32047212 PMCID: PMC7012875 DOI: 10.1038/s41598-020-59287-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
The determination of trypsin in the human real sample is a routine medical investigation to assess the pancreatic disease. Herein, we fabricated an interferometric reflectance spectroscopy based biosensor for the determination trypsin. For this purpose, urease and fluorescein 5(6)-isothiocyanate (FLITC) were immobilized on the nanoporous anodic alumina (NAA). The operation principle of the proposed biosensor is based on the change in the pH of the solution during the reaction of urease and urea and therefore change in the light-absorbing ability of FLITC in the presence of trypsin. The reaction of the urease enzyme with urea increased the pH of the solution because of producing ammonia. This increase in the pH of solution increased the light-absorbing ability of the immobilized FLITC on NAA and therefore the intensity of the reflected light from the NAA to the charge-coupled device detector decreased. In the presence of trypsin, the catalytic activity of immobilized urease on NAA decreased. This decrease in the activity of urease enzyme consequent on the decrease in the amount of the generated ammonia. Therefore, the immobilized FLITC on the NAA did not absorb more light and consciously, the intensity of the light reflected light into the detector increased. The proposed biosensor exhibited a good response to the concentration of trypsin in the range of 0.25–20 μg.mL−1 with the limit of detection of 0.06 μg.mL−1.
Collapse
|
41
|
Liu J, Jalali M, Mahshid S, Wachsmann-Hogiu S. Are plasmonic optical biosensors ready for use in point-of-need applications? Analyst 2019; 145:364-384. [PMID: 31832630 DOI: 10.1039/c9an02149c] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Plasmonics has drawn significant attention in the area of biosensors for decades due to the unique optical properties of plasmonic resonant nanostructures. While the sensitivity and specificity of molecular detection relies significantly on the resonance conditions, significant attention has been dedicated to the design, fabrication, and optimization of plasmonic substrates. The adequate choice of materials, structures, and functionality goes hand in hand with a fundamental understanding of plasmonics to enable the development of practical biosensors that can be deployed in real life situations. Here we provide a brief review of plasmonic biosensors detailing most recent developments and applications. Besides metals, novel plasmonic materials such as graphene are highlighted. Sensors based on Surface Plasmon Resonance (SPR), Localized Surface Plasmon Resonance (LSPR), and Surface Enhanced Raman Spectroscopy (SERS) are presented and classified based on their materials and structure. In addition, most recent applications to environment monitoring, health diagnosis, and food safety are presented. Potential problems related to the implementation in such applications are discussed and an outlook is presented.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Mahsa Jalali
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
42
|
|
43
|
Guselnikova O, Trelin A, Skvortsova A, Ulbrich P, Postnikov P, Pershina A, Sykora D, Svorcik V, Lyutakov O. Label-free surface-enhanced Raman spectroscopy with artificial neural network technique for recognition photoinduced DNA damage. Biosens Bioelectron 2019; 145:111718. [PMID: 31561094 DOI: 10.1016/j.bios.2019.111718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 01/09/2023]
Abstract
Taking advantage of surface-enhanced Raman scattering (SERS) methodology with its unique ability to collect abundant intrinsic fingerprint information and noninvasive data acquisition we set up a SERS-based approach for recognition of physically induced DNA damage with further incorporation of artificial neural network (ANN). As a proof-of-concept application, we used the DNA molecules, where the one oligonucleotide (OND) was grafted to the plasmonic surface while complimentary OND was exposed to UV illumination with various exposure doses and further hybridized with the grafted counterpart. All SERS spectra of entrapped DNA were collected by several operators using the portable spectrometer, without any optimization of measurements procedure (e.g., optimization of acquisition time, laser intensity, finding of optimal place on substrate, manual baseline correction, etc.) which usually takes a significant amount of operator's time. The SERS spectra were employed as input data for ANN training, and the performance of the system was verified by predicting the class labels for SERS validation data, using a spectra dataset, which has not been involved in the training process. During that phase, accuracy higher than 98% was achieved with a level of confidence exceeding 95%. It should be noted that utilization of the proposed functional-SERS/ANN approach allows identifying even the minor DNA damage, almost invisible by control measurements, performed with common analytical procedures. Moreover, we introduce the advanced ANN design, which allows not only classifying the samples but also providing the ANN analysis feedback, which associates the spectral changes and chemical transformations of DNA structure.
Collapse
Affiliation(s)
- O Guselnikova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - A Trelin
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - A Skvortsova
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - P Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - P Postnikov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation
| | - A Pershina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation; Siberian State Medical University, 2, Moskovsky Trakt, 634050, Tomsk, Russia
| | - D Sykora
- Department of Analytical Chemistry, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - V Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - O Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology, 16628, Prague, Czech Republic; Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634049, Tomsk, Russian Federation.
| |
Collapse
|
44
|
Bruzas I, Lum W, Gorunmez Z, Sagle L. Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2019; 143:3990-4008. [PMID: 30059080 DOI: 10.1039/c8an00606g] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become an essential ultrasensitive analytical tool for biomolecular analysis of small molecules, macromolecular proteins, and even cells. SERS enables label-free, direct detection of molecules through their intrinsic Raman fingerprint. In particular, protein and lipid bilayers are dynamic three-dimensional structures that necessitate label-free methods of characterization. Beyond direct detection and quantitation, the structural information contained in SERS spectra also enables deeper biophysical characterization of biomolecules near metallic surfaces. Therefore, SERS offers enormous potential for such systems, although making measurements in a nonperturbative manner that captures the full range of interactions and activity remains a challenge. Many of these challenges have been overcome through advances in SERS substrate development, which have expanded the applications and targets of SERS for direct biomolecular quantitation and biophysical characterization. In this review, we will first discuss different categories of SERS substrates including solution-phase, solid-supported, tip-enhanced Raman spectroscopy (TERS), and single-molecule substrates for biomolecular analysis. We then discuss detection of protein and biological lipid membranes. Lastly, biophysical insights into proteins, lipids and live cells gained through SERS measurements of these systems are reviewed.
Collapse
Affiliation(s)
- Ian Bruzas
- Department of Chemistry, University of Cincinnati, 301 Clifton Court, Cincinnati, OH 45221, USA.
| | | | | | | |
Collapse
|
45
|
Ning CF, Tian YF, Zhou W, Yin BC, Ye BC. Ultrasensitive SERS detection of specific oligonucleotides based on Au@AgAg bimetallic nanorods. Analyst 2019; 144:2929-2935. [PMID: 30919851 DOI: 10.1039/c9an00306a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We synthesized a novel and sensitive Au/Ag bimetallic SERS-active nanotag, Au-Ag-Ag core-shell-shell nanorod (Au@AgAgNR). The Au@AgAgNR nanotag exhibited a strong SERS signal and was easily assembled from bilayer silver shells on an Au nanorod (AuNR) core with embedded Raman reporter molecules in the core-shell-shell gaps. The SERS activity of the nanotags was investigated with 2-mercaptopyridine (2-Mpy) as a Raman reporter, which could form pyridine/Ag+ coordination complexes to mediate the formation of silver shells. Specific enhancement of Raman signals was observed in the following order: AuNR < Au@AgNR < Au@AgAgNR. Then, Au@AgAgNR nanotags were coupled with magnetic beads (MBs) via specific DNA hybridization as a SERS sensor with a detection limit of 1 fM for a segment of the gene HPV-16. Factors affecting sensitivity and selectivity were investigated, including Raman dye concentration, silver nitrate dosage and the response to similar oligonucleotides. The proposed SERS sensor is expected to be a facile and sensitive method for specific gene detection.
Collapse
Affiliation(s)
- Cui-Fang Ning
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ya-Fei Tian
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Wen Zhou
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bin-Cheng Yin
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. and Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China and School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang, 832000, China
| |
Collapse
|
46
|
Identification and Analysis of Exosomes by Surface-Enhanced Raman Spectroscopy. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9061135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The concept of liquid biopsy has emerged as a novel approach for cancer screening, which is based on the analysis of circulating cancer biomarkers in body fluids. Among the various circulating cancer biomarkers, including Food and Drug Administration (FDA)-approved circulating tumor cells (CTC) and circulating tumor DNA (ctDNA), exosomes have attracted tremendous attention due to their ability to diagnose cancer in its early stages with high efficiency. Recently, surface-enhanced Raman spectroscopy (SERS) has been applied for the detection of cancer exosomes due to its high sensitivity, specificity, and multiplexing capability. In this article, we review recent progress in the development of SERS-based technologies for in vitro identification of circulating cancer exosomes. The accent is made on the detection strategies and interpretation of the SERS data. The problems of detecting cancer-derived exosomes from patient samples and future perspectives of SERS-based diagnostics are also discussed.
Collapse
|
47
|
Determination of 17β-estradiol by surface-enhanced Raman spectroscopy merged with hybridization chain reaction amplification on Au@Ag core-shell nanoparticles. Mikrochim Acta 2019; 186:52. [DOI: 10.1007/s00604-018-3114-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
|
48
|
Qin Y, Liao S, Huang Y, Zhao J, Zhao S. Ultrasensitive fluorescent detection of nucleic acids based on label-free enzymatic-assisted cascade signal amplification. Anal Chim Acta 2018; 1039:91-97. [DOI: 10.1016/j.aca.2018.07.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/01/2018] [Accepted: 07/17/2018] [Indexed: 01/21/2023]
|
49
|
de Oliveira Noman L, Sant'Ana AC. The control of the adsorption of bovine serum albumin on mercaptan-modified gold thin films investigated by SERS spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:119-124. [PMID: 29920414 DOI: 10.1016/j.saa.2018.06.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Nanostructured gold thin films were built from deposition of colloidal gold nanoparticles on silanized glass slides, and used to study the adsorption of bovine serum albumin (BSA) after chemical treatment of gold surface with the mercaptans 2-mercaptoethanol, 3-mercaptoproprionic acid, 1,3-propanedithiol and 1-propanethiol. Surface-enhanced Raman scattering (SERS) spectroscopy was used for investigating the chemical interactions of BSA with the modified gold surfaces. In the presence of the surface modifier 2-mercaptoethanol, a promoter of hydrogen bonds, the stable interactions among BSA and gold surfaces led to high reproducibility of the SERS spectral pattern in the most monitored points of the mapped surface. The vibrational assignment endorsed the assumption that lysine residue, majority present in the molecular structure, were the principal anchor site of BSA involved in the interactions with 2-mercaptoethanol-modified gold surface.
Collapse
Affiliation(s)
- Lucas de Oliveira Noman
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil
| | - Antonio Carlos Sant'Ana
- Laboratório de Nanoestruturas Plasmônicas, Universidade Federal de Juiz de Fora, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
50
|
Khoshbin Z, Verdian A, Housaindokht MR, Izadyar M, Rouhbakhsh Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens Bioelectron 2018; 122:263-283. [PMID: 30268964 DOI: 10.1016/j.bios.2018.09.060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 12/31/2022]
Abstract
Antibiotics are a type of antimicrobial drug with the ubiquitous presence in foodstuff that effectively applied to treat the diseases and promote the animal growth worldwide. Chloramphenicol as one of the antibiotics with the broad action spectrum against Gram-positive and Gram-negative bacteria is widely applied for the effective treatment of infectious diseases in humans and animals. Unfortunately, the serious side effects of chloramphenicol, such as aplastic anemia, kidney damage, nausea, and diarrhea restrict its application in foodstuff and biomedical fields. Development of the sufficiently sensitive methods to detect chloramphenicol residues in food and clinical diagnosis seems to be an essential demand. Biosensors have been introduced as the promising tools to overcome the requirement. As one of the newest types of the biosensors, aptamer-based biosensors (aptasensors) are the efficient sensing platforms for the chloramphenicol monitoring. In the present review, we summarize the recent achievements of the accessible aptasensors for qualitative detection and quantitative determination of chloramphenicol as a candidate of the antibiotics. The present chloramphenicol aptasensors can be classified in two main optical and electrochemical categories. Also, the other formats of the aptasensing assays like the high performance liquid chromatography (HPLC) and microchip electrophoresis (MCE) have been reviewed. The enormous interest in utilizing the diverse nanomaterials is also highlighted in the fabrication of the chloramphenicol aptasensors. Finally, some results are presented based on the advantages and disadvantages of the studied aptasensors to achieve a promising perspective for designing the novel antibiotics test kits.
Collapse
Affiliation(s)
- Zahra Khoshbin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Asma Verdian
- Department of food safety and quality control, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| | | | - Mohammad Izadyar
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Zeinab Rouhbakhsh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|