1
|
Sedeman M, Christowitz C, de Jager L, Engelbrecht AM. Obese mammary tumour-bearing mice are highly sensitive to doxorubicin-induced hepatotoxicity. BMC Cancer 2022; 22:1240. [PMID: 36451148 PMCID: PMC9710042 DOI: 10.1186/s12885-022-10189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Breast cancer is a major health burden for women, worldwide. Lifestyle-related risk factors, such as obesity and being overweight, have reached epidemic proportions and contributes to the development of breast cancer. Doxorubicin (DXR) is a chemotherapeutic drug commonly used to treat breast cancer, and although effective, may cause toxicity to other organs. The mechanisms and effects of DXR on hepatic tissue, and the contributing role of obesity, in breast cancer patients are poorly understood. The aim of this study was therefore to investigate the effects of DXR on hepatic tissue in an obese tumour-bearing mouse model. METHODS A diet-induced obesity (DIO) mouse model was established, where seventy-four three-week-old female C57BL6 mice were divided into two main groups, namely the high fat diet (containing 60% kcal fat) and standard diet (containing 10% kcal fat) groups. After eight weeks on their respective diets, the DIO phenotype was established, and the mice were further divided into tumour and non-tumour groups. Mice were subcutaneously inoculated with E0771 triple negative breast cancer cells in the fourth mammary gland and received three doses of 4 mg/kg DXR (cumulative dosage of 12 mg/kg) or vehicle treatments via intraperitoneal injection. The expression levels of markers involved in apoptosis and alanine aminotransferase (ALT) were compared by means of western blotting. To assess the pathology and morphology of hepatic tissue, haematoxylin and eosin staining was performed. The presence of fibrosis and lipid accumulation in hepatic tissues were assessed with Masson's trichrome and Oil Red O staining, respectively. RESULTS Microscopic examination of liver tissues showed significant changes in the high fat diet tumour-bearing mice treated with DXR, consisting of macrovesicular steatosis, hepatocyte ballooning and lobular inflammation, compared to the standard diet tumour-bearing mice treated with DXR and the control group (standard diet mice). These changes are the hallmarks of non-alcoholic fatty liver disease, associated with obesity. CONCLUSION The histopathological findings indicated that DXR caused significant hepatic parenchymal injury in the obese tumour-bearing mice. Hepatotoxicity is aggravated in obesity as an underlying co-morbidity. It has been shown that obesity is associated with poor clinical outcomes in patients receiving neo-adjuvant chemotherapy treatment regimens.
Collapse
Affiliation(s)
- Megan Sedeman
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Claudia Christowitz
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| | - Louis de Jager
- grid.417371.70000 0004 0635 423XDivision of Anatomical Pathology, Stellenbosch University and National Health Laboratory Service (NHLS), Tygerberg Hospital, Cape Town, 8000 South Africa ,Anatomical Pathology, PathCare, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- grid.11956.3a0000 0001 2214 904XDepartment of Physiological Sciences, Stellenbosch University, Stellenbosch Campus, Stellenbosch, South Africa ,grid.11956.3a0000 0001 2214 904XDepartment of Global Health, Faculty of Medicine and Health Sciences, African Cancer Institute (ACI), Stellenbosch University, Cape Town, 8000 South Africa
| |
Collapse
|
2
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
3
|
Vergani L. Fatty Acids and Effects on In Vitro and In Vivo Models of Liver Steatosis. Curr Med Chem 2019; 26:3439-3456. [PMID: 28521680 DOI: 10.2174/0929867324666170518101334] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fatty liver, or steatosis, is a condition of excess accumulation of lipids, mainly under form of triglycerides (TG), in the liver, and it is the hallmark of non-alcoholic fatty liver disease (NAFLD). NAFLD is the most common liver disorder world-wide and it has frequently been associated with obesity, hyperlipidemia and insulin resistance. Free fatty acids (FA) are the major mediators of hepatic steatosis; patients with NAFLD have elevated levels of circulating FA that correlate with disease severity. METHODS Steatosis is a reversible condition that can be resolved with changed behaviors, or that can progress towards more severe liver damages such as steatohepatitis (NASH), fibrosis and cirrhosis. In NAFLD, FA of exogenous or endogenous origin accumulate in the hepatocytes and trigger liver damages. Excess TG are stored in cytosolic lipid droplets (LDs) that are dynamic organelles acting as hubs for lipid metabolism. RESULTS In the first part of this review, we briefly reassumed the main classes of FA and their chemical classification as a function of the presence and number of double bonds, their metabolic pathways and effects on human health. Then, we summarized the main genetic and diet-induced animal models of NAFLD, as well as the cellular models of NAFLD. CONCLUSIONS In recent years, both the diet-induced animal models of NAFLD as well as the cellular models of NAFLD have found ever more application to investigate the mechanisms involved in NAFLD, and we referred to their advantages and disadvantages.
Collapse
Affiliation(s)
- Laura Vergani
- DISTAV, Department of Earth, Environment and Life Sciences, University of Genova, Italy
| |
Collapse
|
4
|
Zhang Y, Deng H, Zhou H, Lu Y, Shan L, Lee SM, Cui G. A novel agent attenuates cardiotoxicity and improves antitumor activity of doxorubicin in breast cancer cells. J Cell Biochem 2018; 120:5913-5922. [DOI: 10.1002/jcb.27880] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/19/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Ying Zhang
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Hongkuan Deng
- Department of Pharmaceutical Engineering, School of Life Sciences, Shandong University of Technology Zibo China
| | - Hefeng Zhou
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Yucong Lu
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| | - Luchen Shan
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio‐cerebrovascular Diseases, Jinan University College of Pharmacy Guangzhou China
| | - Simon Ming‐Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao China
| | - Guozhen Cui
- Department of Bioengineering Zhuhai Campus of Zunyi Medical University Zhuhai China
| |
Collapse
|
5
|
Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, Zhang S. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb) 2018; 7:473-479. [PMID: 30090597 PMCID: PMC6062336 DOI: 10.1039/c8tx00005k] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/09/2018] [Indexed: 12/11/2022] Open
Abstract
As effective non-viral vectors of gene therapy, cationic lipids still have the problem of toxicity, which has become one of the main bottlenecks for their applications. The toxicity of cationic lipids is strongly connected to the headgroup structures. In this article, we studied the cytotoxicity of two cationic lipids with a quaternary ammonium headgroup (CDA14) and a tri-peptide headgroup (CDO14), respectively, and with the same linker bond and hydrophobic domain. The IC50 values of CDA14 and CDO14 against NCI-H460 cells were 109.4 μg mL-1 and 340.5 μg mL-1, respectively. To determine the effects of headgroup structures of cationic lipids on cytotoxicity, apoptosis related pathways were investigated. As the lipids with a quaternary ammonium headgroup could induce more apoptotic cells than the ones with a peptide headgroup, the enzymatic activity of caspase-9 and caspase-3 increased obviously, whereas the mitochondrial membrane potential (MMP) decreased. At the same time, the reactive oxygen species (ROS) levels also increased and the cell cycle was arrested at the S phase. The results showed that the toxicity of the cationic lipid had a close relationship with its headgroup structures, and the cytotoxic mechanism was mainly via the caspase activation dependent signaling pathway and mitochondrial dysfunction. Through this study, we hope to provide the scientific basis for exploiting safer and more efficient cationic lipids for gene delivery.
Collapse
Affiliation(s)
- Shaohui Cui
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yueying Wang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yan Gong
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Xiao Lin
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Defu Zhi
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Quan Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization , Ministry of Education , College of Life Science , Dalian Minzu University , Dalian 116600 , China .
| |
Collapse
|
6
|
Chen RC, Sun GB, Ye JX, Wang J, Zhang MD, Sun XB. Salvianolic acid B attenuates doxorubicin-induced ER stress by inhibiting TRPC3 and TRPC6 mediated Ca 2+ overload in rat cardiomyocytes. Toxicol Lett 2017; 276:21-30. [PMID: 28495616 DOI: 10.1016/j.toxlet.2017.04.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 10/19/2022]
Abstract
Doxorubicin (DOX)-induced cardiotoxicity is a clinically complex syndrome that leads to significant pain to cancer survivors. Endoplasmic reticulum (ER) stress has been suggested to be an important contributor to myocardium dysfunction during this phenomenon. Our previous study proved that Salvianolic acid B (Sal B) protected against doxorubicin induced cardiac dysfunction by inhibiting ER stress and cardiomyocyte apoptosis. However, the underlying molecular mechanism is not yet clearly. In this study, we investigated the protective effect and mechanisms of Sal B againest DOX-induced cardiac injury and ER stress in vivo and in vitro. After pretreatment with Sal B (0.25, 0.5, 1mg/kg i.v.) for 7 days, male SD rats were intraperitoneally injected with a single dose of DOX (3mg/kg) every 2 days for three injections. The cardioprotective effect of Sal B was observed 2 weeks after the first administration. Adult rat ventricular myocytes were isolated and treated with Sal B (20μg/ml) for 6h and then exposed in DOX (1μm) for 4h. The cardiomyocyte contractility and the level of intracellular Ca2+ were determined. Sal B ameliorated DOX-induced apoptosis damage in heart tissues. In vitro studies showed that DOX induced adult rat ventricular myocytes contractile dysfunction and intracellular Ca2+ handling derangement, disrupted mitochondrial membrane potential, raised the level of ER stress related proteins. However, Sal B pretreatment suppressed all of these adverse effects of DOX. The effects of Sal B were closely related to the inhibition of transient receptor potential canonical (TRPC) channels, as characterized by inhibiting the expression of TRPC 3 and TRPC6. These results indicate that Sal B protects against DOX-induced cardiac apoptosis and ER stress via TRPC3 and TRPC6 inhibition.
Collapse
Affiliation(s)
- Rong-Chang Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Gui-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| | - Jing-Xue Ye
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Jian Wang
- Harbin University of Commerce, Xuehai Street, Songbei District, Harbin, Heilongjiang 150028, China
| | - Miao-di Zhang
- Harbin University of Commerce, Xuehai Street, Songbei District, Harbin, Heilongjiang 150028, China
| | - Xiao-Bo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China.
| |
Collapse
|
7
|
Harrison TM, Kitchell BE. Principles and Applications of Medical Oncology in Exotic Animals. Vet Clin North Am Exot Anim Pract 2017; 20:209-234. [PMID: 27890289 DOI: 10.1016/j.cvex.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Diagnoses of neoplasia in exotic animals have historically been made at death or just before euthanasia. Routine physical examinations are enabling early diagnosis while accessibility and affordability of advanced diagnostics are improving. With increasing expectations for care, treatment options are more frequently explored. Numerous oncologic medications have been adopted from human and small animal medicine and successfully used in exotic animals. Although there is a need for extended research, this article evaluates which medications have been used thus far for treatment protocols in zoologic and exotic animal species.
Collapse
Affiliation(s)
- Tara Myers Harrison
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, 1060 William Moore Drive, Raleigh, NC 27607, USA.
| | - Barbara E Kitchell
- Department of Oncology, VCA Veterinary Care Referral Center, 9901 Montgomery Boulevard, Albuquerque, NM 87111, USA
| |
Collapse
|
8
|
Chen R, Sun G, Yang L, Wang J, Sun X. Salvianolic acid B protects against doxorubicin induced cardiac dysfunction via inhibition of ER stress mediated cardiomyocyte apoptosis. Toxicol Res (Camb) 2016; 5:1335-1345. [PMID: 30090438 PMCID: PMC6062089 DOI: 10.1039/c6tx00111d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/02/2016] [Indexed: 11/21/2022] Open
Abstract
Salvia miltiorrhiza Bunge is a well-known medicinal plant in China. Salvianolic acid B (Sal B) is the most abundant bioactive compound extracted from the root of S. miltiorrhiza. The present study investigates the effect of Sal B on cardiac function and cardiomyocyte apoptosis in doxorubicin (DOX)-treated mice. After pretreatment with Sal B (2 mg kg-1 iv) for 7 d, male BALB/c mice were injected with a single dose of DOX (20 mg kg-1 ip). The cardioprotective effect of Sal B was observed on the 7th day after DOX treatment. DOX caused retarded body growth, apoptotic damage, and Bcl-2 expression disturbance. In contrast, Sal B pretreatment (2 mg kg-1 iv before DOX administration) attenuated the DOX induced apoptotic damage in heart tissues. Further study indicated that Sal B protected against DOX induced cardiotoxicity, at least, partially, by inhibiting endoplasmic reticulum stress, and by being involved in the PI3K/Akt pathway. These findings clarified the potential of Sal B as a promising reagent for treating DOX induced cardiotoxicity.
Collapse
Affiliation(s)
- Rongchang Chen
- Institute of Medicinal Plant Development , Chinese Academy of Medical Science , Peking Union Medical College , No 151 , North Road Malianwa , Haidian District , Beijing 100094 , China . ; ; Tel: +86-010-57833013
| | - Guibo Sun
- Institute of Medicinal Plant Development , Chinese Academy of Medical Science , Peking Union Medical College , No 151 , North Road Malianwa , Haidian District , Beijing 100094 , China . ; ; Tel: +86-010-57833013
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products , China
| | - Longpo Yang
- Harbin University of Commerce , Xuehai Street , Songbei District , Harbin , Heilongjiang 150028 , China
| | - Jian Wang
- Harbin University of Commerce , Xuehai Street , Songbei District , Harbin , Heilongjiang 150028 , China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development , Chinese Academy of Medical Science , Peking Union Medical College , No 151 , North Road Malianwa , Haidian District , Beijing 100094 , China . ; ; Tel: +86-010-57833013
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products , China
| |
Collapse
|
9
|
Plant N. Can a systems approach produce a better understanding of mood disorders? Biochim Biophys Acta Gen Subj 2016; 1861:3335-3344. [PMID: 27565355 DOI: 10.1016/j.bbagen.2016.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND One in twenty-five people suffer from a mood disorder. Current treatments are sub-optimal with poor patient response and uncertain modes-of-action. There is thus a need to better understand underlying mechanisms that determine mood, and how these go wrong in affective disorders. Systems biology approaches have yielded important biological discoveries for other complex diseases such as cancer, and their potential in affective disorders will be reviewed. SCOPE OF REVIEW This review will provide a general background to affective disorders, plus an outline of experimental and computational systems biology. The current application of these approaches in understanding affective disorders will be considered, and future recommendations made. MAJOR CONCLUSIONS Experimental systems biology has been applied to the study of affective disorders, especially at the genome and transcriptomic levels. However, data generation has been slowed by a lack of human tissue or suitable animal models. At present, computational systems biology has only be applied to understanding affective disorders on a few occasions. These studies provide sufficient novel biological insight to motivate further use of computational biology in this field. GENERAL SIGNIFICANCE In common with many complex diseases much time and money has been spent on the generation of large-scale experimental datasets. The next step is to use the emerging computational approaches, predominantly developed in the field of oncology, to leverage the most biological insight from these datasets. This will lead to the critical breakthroughs required for more effective diagnosis, stratification and treatment of affective disorders.
Collapse
Affiliation(s)
- Nick Plant
- School of Bioscience and Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|