1
|
Tickner BJ, Singh K, Zhivonitko VV, Telkki VV. Ultrafast Nuclear Magnetic Resonance as a Tool to Detect Rapid Chemical Change in Solution. ACS PHYSICAL CHEMISTRY AU 2024; 4:453-463. [PMID: 39346603 PMCID: PMC11428446 DOI: 10.1021/acsphyschemau.4c00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 10/01/2024]
Abstract
Ultrafast nuclear magnetic resonance (NMR) uses spatial encoding to record an entire two-dimensional data set in just a single scan. The approach can be applied to either Fourier-transform or Laplace-transform NMR. In both cases, acquisition times are significantly shorter than traditional 2D/Laplace NMR experiments, which allows them to be used to monitor rapid chemical transformations. This Perspective outlines the principles of ultrafast NMR and focuses on examples of its use to detect fast molecular conversions in situ with high temporal resolution. We discuss how this valuable tool can be applied in the future to study a much wider variety of novel reactivity.
Collapse
Affiliation(s)
- Ben. J. Tickner
- Department
of Chemistry, University of York, Heslington, York YO10
5NY, United Kingdom
| | - Kawarpal Singh
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EZ, United Kingdom
| | | | - Ville-Veikko Telkki
- NMR
Research Unit, Faculty of Science, University
of Oulu, Oulu 90570, Finland
| |
Collapse
|
2
|
Dumez JN. NMR methods for the analysis of mixtures. Chem Commun (Camb) 2022; 58:13855-13872. [PMID: 36458684 PMCID: PMC9753098 DOI: 10.1039/d2cc05053f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 07/31/2023]
Abstract
NMR spectroscopy is a powerful approach for the analysis of mixtures. Its usefulness arises in large part from the vast landscape of methods, and corresponding pulse sequences, that have been and are being designed to tackle the specific properties of mixtures of small molecules. This feature article describes a selection of methods that aim to address the complexity, the low concentrations, and the changing nature that mixtures can display. These notably include pure-shift and diffusion NMR methods, hyperpolarisation methods, and fast 2D NMR methods such as ultrafast 2D NMR and non-uniform sampling. Examples or applications are also described, in fields such as reaction monitoring and metabolomics, to illustrate the relevance and limitations of different methods.
Collapse
|
3
|
Qualitative and quantitative analysis of energy drinks using 1H NMR and HPLC methods. J Pharm Biomed Anal 2022; 213:114682. [DOI: 10.1016/j.jpba.2022.114682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022]
|
4
|
Joseph D, Sukumaran S, Chandra K, Pudakalakatti SM, Dubey A, Singh A, Atreya HS. Rapid nuclear magnetic resonance data acquisition with improved resolution and sensitivity for high-throughput metabolomic analysis. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:300-314. [PMID: 33030750 DOI: 10.1002/mrc.5106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/18/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Nuclear magnetic resonance (NMR)-based metabolomics has witnessed rapid advancements in recent years with the continuous development of new methods to enhance the sensitivity, resolution, and speed of data acquisition. Some of the approaches were earlier used for peptide and protein resonance assignments and have now been adapted to metabolomics. At the same time, new NMR methods involving novel data acquisition techniques, suited particularly for high-throughput analysis in metabolomics, have been developed. In this review, we focus on the different sampling strategies or data acquisition methods that have been developed in our laboratory and other groups to acquire NMR spectra rapidly with high sensitivity and resolution for metabolomics. In particular, we focus on the use of multiple receivers, phase modulation NMR spectroscopy, and fast-pulsing methods for identification and assignments of metabolites.
Collapse
Affiliation(s)
- David Joseph
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Sujeesh Sukumaran
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Kousik Chandra
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | | | - Abhinav Dubey
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Amrinder Singh
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Dumez JN. -Frequency-swept pulses for ultrafast spatially encoded NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 323:106817. [PMID: 33518177 DOI: 10.1016/j.jmr.2020.106817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Ultrafast NMR based on spatial encoding yields arbitrary multidimensional spectra in a single scan. The dramatic acceleration afforded by spatial parallelisation makes it possible to capture transient species and processes, and has notably been applied to the monitoring of reactions and the analysis of hyperpolarised species. At the heart of ultrafast NMR lies the spatially sequential manipulation of nuclear spins. This is virtually always achieved by combining a swept radio-frequency pulse with a magnetic field gradient pulse. The dynamics of nuclear spins during these pulse sequence elements is key to understand and design ultrafast NMR experiments, and can often be described by surprisingly simple models. This article describes the spatial encoding of relaxation, chemical shift and diffusion in a common framework and discusses directions for future developments.
Collapse
|
6
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
7
|
Gouilleux B, Meddour A, Lesot P. 2 H QUOSY 2D-NMR Experiments in Weakly Aligning Systems: From the Conventional to the Ultrafast Approach. Chemphyschem 2020; 21:1548-1563. [PMID: 32633460 DOI: 10.1002/cphc.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/03/2020] [Indexed: 11/08/2022]
Abstract
We describe three anisotropic ultrafast (UF) QUadrupolar Ordered SpectroscopY (QUOSY) 2D-NMR experiments (referred to as ADUF 2D NMR spectroscopy) designed for recording the 2 H homonuclear 2D spectra of weakly aligned (deuterated) solutes in sub-second experiment times. These new ADUF 2D experiments derive from the Q-COSY, Q-resolved and Q-DQ 2D pulse sequences (J. Am. Chem. Soc. 1999, 121, 5249) and allow the correlation between the two components of each quadrupolar doublet, and then their assignment on the basis of 2 H chemical shifts. The UF 2D pulse sequences are analyzed by using the Cartesian spin-operator formalism for spin I=1 nuclei with a small quadrupolar moment. The optimal experimental/practical conditions as well as the resolution, sensitivity and quantification issues of these ADUF 2D experiments are discussed on comparison to their conventional 2D counterparts and their analytical potentialities. Illustrative ADUF 2D experiments using deuterated achiral/prochiral/chiral solutes in poly-γ-benzyl-L-glutamate based chiral liquid crystals are presented, as well as the first examples of natural abundance deuterium (ANADUF) 2D spectrum using 14.1 T magnetic field and a basic gradient unit (53 G.cm-1 ) in oriented solvents.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Abdelkrim Meddour
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| | - Philippe Lesot
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, Bât. 410, 15, rue du Doyen Georges Poitou, UFR d'Orsay, 91405, Orsay cedex, France
| |
Collapse
|
8
|
Giraudeau P. NMR-based metabolomics and fluxomics: developments and future prospects. Analyst 2020; 145:2457-2472. [DOI: 10.1039/d0an00142b] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Recent NMR developments are acting as game changers for metabolomics and fluxomics – a critical and perspective review.
Collapse
|
9
|
Koos MRM, Luy B. Polarization recovery during ASAP and SOFAST/ALSOFAST-type experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 300:61-75. [PMID: 30711784 DOI: 10.1016/j.jmr.2018.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/03/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
Experiments with fast repetition schemes significantly enhance the capabilities of modern NMR spectroscopy. Two schemes for heteronuclear correlation experiments that have been presented are the ASAP and the ALSOFAST method. The first method is Acceleration by Sharing Adjacent Polarization (ASAP) for samples at natural abundance isotope level. It was originally derived in the ASAP-HMQC and recently received renewed attention in the ASAP-HSQC. Sharing the polarization of active protons with the surrounding reservoir can result in seemingly instant polarization recovery and therefore enormous gains in sensitivity, but can also lead to a slight reduction of polarization and spectral intensity, depending on sample and setup. A second type of setup has been introduced with the so-called Alternate SOFAST (ALSOFAST-) HMQC and ALSOFAST-HSQC for natural abundance 1H,13C-correlation experiments and in the SOFAST-HMQC for 1H,15N-correlations. In these cases, the reservoir spins are only maintained through the pulse sequence without Hartmann-Hahn-type mixing. A model for the estimation of the available polarization in the fast repetition schemes could be a valuable tool for experimentalists and pulse sequence developers. Starting from the well-known Ernst angle model, we derive in this article several mathematical models that describe the polarization over the course of ALSOFAST and ASAP type experiments. The models can be used to visualize the initial scans of an experiment and even more importantly, show the polarization and achievable signal intensity in the steady state of an experiment. In this way the two extreme applications of ASAP- and ALSOFAST-type acquisition schemes are covered: (i) acquisition using progressive excitation for experiments with few increments and shortest possible overall acquisition times and (ii) steady-state-type experiments with ultrahigh resolution and correspondingly large number of increments. The two resulting excitation strategies are applied to maximize SNR in different situations. To test the models, experimental data was obtained by special pulse sequences and examples are shown for different spin environments. The results show good agreement between theory and experiment.
Collapse
Affiliation(s)
- Martin R M Koos
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Burkhard Luy
- Institute of Organic Chemistry and Institute for Biological Interfaces 4, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Dumez JN. Spatial encoding and spatial selection methods in high-resolution NMR spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:101-134. [PMID: 30527133 DOI: 10.1016/j.pnmrs.2018.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/01/2018] [Accepted: 08/01/2018] [Indexed: 06/09/2023]
Abstract
A family of high-resolution NMR methods share the common concept of acquiring in parallel different sub-experiments in different spatial regions of the NMR tube. These spatial encoding and spatial selection methods were for the most part introduced independently from each other and serve different purposes, but they share common ingredients, often derived from magnetic resonance imaging, and they all benefit from a greatly improved time-efficiency. This review article provides a description of several spatial encoding and spatial selection methods, including single-scan multidimensional experiments (ultrafast 2D NMR, DOSY, Z spectroscopy, inversion recovery and Laplace NMR), pure shift and selective refocusing experiments (including Zangger-Sterk decoupling, G-SERF and PSYCHE), a Z filter, and fast-pulsing slice-selective experiments. Some key elements for spatial parallelisation are introduced and when possible a common framework is used for the analysis of each method. Sensitivity considerations are discussed, and a selection of applications is analysed to illustrate which questions can be answered thanks to spatial encoding and spatial selection methods, and discuss the perspectives for future developments and applications.
Collapse
Affiliation(s)
- Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
11
|
Jacquemmoz C, Dumez JN. Acceleration of 3D DOSY NMR by Spatial Encoding of the Chemical Shift. Chemphyschem 2018; 19:3204-3210. [PMID: 30308111 DOI: 10.1002/cphc.201800771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Indexed: 11/07/2022]
Abstract
Diffusion-ordered NMR spectroscopy (DOSY) is a powerful method for the analysis of solution mixtures. With 3D DOSY, the 2D NMR spectra of a mixture's components can be separated according to the translational diffusion coefficient of each component. The acquisition of 3D DOSY data is, however, very time-consuming because of the need to consecutively acquire scans for both the diffusion and the indirect spectral dimensions. We show that spatial encoding of the indirect spectral dimension, of the kind used in ultrafast 2D NMR, can accelerate 3D DOSY experiments by an order of magnitude or more. This is illustrated with homonuclear single-quantum (COSY) and double-quantum (DQS) correlation spectra. Implementations with concatenated and incorporated (iDOSY) diffusion blocks are compared and in both cases, 2D spectra are separated with less than 6 min of experiment time.
Collapse
Affiliation(s)
- Corentin Jacquemmoz
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris Saclay, Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| |
Collapse
|
12
|
Concilio MG, Jacquemmoz C, Boyarskaya D, Masson G, Dumez JN. Ultrafast Maximum-Quantum NMR Spectroscopy for the Analysis of Aromatic Mixtures. Chemphyschem 2018; 19:3310-3317. [PMID: 30239108 DOI: 10.1002/cphc.201800667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 12/24/2022]
Abstract
Maximum-quantum (MaxQ) NMR experiments have been introduced to overcome issues related to peak overlap and high spectral density in the NMR spectra of aromatic mixtures. In MaxQ NMR, spin systems are separated on the basis of the highest-quantum coherence that they can form. MaxQ experiments are however time consuming and methods have been introduced to accelerate them. In this article, we demonstrate the ultrafast, single-scan acquisition of MaxQ NMR spectra using spatial encoding of the multiple-quantum dimension. So far, the spatial encoding methodology has been applied only for the encoding of up to double-quantum coherences, and here we show that it can be extended to higher coherence orders, to yield a massive reduction of the acquisition time of multi-quantum spectra of aromatic mixtures, and also to monitor chemical reactions.
Collapse
Affiliation(s)
- Maria Grazia Concilio
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Corentin Jacquemmoz
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Dina Boyarskaya
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Jean-Nicolas Dumez
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Univ. Paris Sud, Université Paris-Saclay Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| |
Collapse
|