1
|
Vafakish B, Wilson LD. A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye. Int J Mol Sci 2024; 25:9327. [PMID: 39273279 PMCID: PMC11395516 DOI: 10.3390/ijms25179327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1-100 μM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications.
Collapse
Affiliation(s)
- Bahareh Vafakish
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Yuan C, Ge H, Cao B, Wang S. SERS detection of uranyl based on MOF-coated gold nanooctahedron hybrid. ANAL SCI 2024:10.1007/s44211-024-00646-z. [PMID: 39180664 DOI: 10.1007/s44211-024-00646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 08/26/2024]
Abstract
The ability to sensitively and quantitatively detect uranyl in complex samples plays a vital role in environmental monitoring. In this work, an MOF-coated gold (Au) nanohybrid was synthesized for uranyl detection by surface-enhanced Raman scattering (SERS) technology. The MOF shell not only prevents the Au nanoparticles from rapid aggregation, but also effectively enhances the Raman signal of uranyl. A detection limit of as low as 0.5 μM could be achieved in solution, which could be comparable to the previously reported ones from SERS-based approaches. Moreover, the prepared SERS-active substrate was also applied to uranyl detection in real samples.
Collapse
Affiliation(s)
- Chao Yuan
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hongwei Ge
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Benmei Cao
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Suhua Wang
- Guangdong Provincial Key Laboratory for Green Agricultural Production and Intelligent Equipment, College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| |
Collapse
|
3
|
Wang N, Du J, Li X, Ji X, Wu Y, Sun Z. Magnetic MOF Substrates for the Rapid and Sensitive Surface-Enhanced Raman Scattering Detection of Uranyl. Anal Chem 2023; 95:12956-12963. [PMID: 37583286 DOI: 10.1021/acs.analchem.3c02696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
With the widespread use of uranium in the nuclear industry, achieving rapid and sensitive detection of uranium contaminants is critical for reducing environmental pollution. Surface-enhanced Raman scattering (SERS), with its high sensitivity and unique fingerprint properties, has been used for the analysis of uranyl. However, the weak affinity of Au for uranyl remains a challenge in the development of spherical Au-based SERS substrates. The metal-organic framework (MOF) material ZIF-8 exhibits excellent adsorption capacity for uranyl and could overcome this limitation. In this study, ZIF-8 porous structures were modified on a magnetic SERS substrate, Fe3O4@SiO2@Au (FA), for the rapid and sensitive detection and analysis of the uranyl species. Uranyl was adsorbed by ZIF-8, allowing ready access to the hot spots in the interstices of Au nanoparticles (AuNPs). Symmetrically stretched vibrating bonds of O═U═O were detected at 829 cm-1 as the characteristic peak of uranyl by surface plasmon resonance between the AuNPs. The ZIF-8 coating had minimal influence on target detection as the detection limit for 4-MPY was only half an order of magnitude lower than before modification. The enhancement factor for uranyl reached 106. The substrate showed excellent sensing performance in a neutral or alkaline environment. It was used to detect uranyl in tap water and river water; rapid separation of the species from the water samples was achieved using an external magnet to extract radioactive waste. The proposed substrate offers a route for monitoring and detecting uranyl contamination and an approach for achieving rapid on-site detection, providing a promising application for environmental contaminant detection.
Collapse
Affiliation(s)
- Ning Wang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xue Li
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Xunlong Ji
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Yulin Wu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
4
|
Shaikh N, Qian J, Kim S, Phan H, Lezama-Pacheco JS, Ali AMS, Cwiertny DM, Forbes TZ, Haes AJ, Cerrato JM. U(VI) binding onto electrospun polymers functionalized with phosphonate surfactants. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:108448. [PMID: 36060014 PMCID: PMC9435318 DOI: 10.1016/j.jece.2022.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We previously observed that phosphonate functionalized electrospun nanofibers can uptake U(VI), making them promising materials for sensing and water treatment applications. Here, we investigate the optimal fabrication of these materials and their mechanism of U(VI) binding under the influence of environmentally relevant ions (e.g., Ca2+ and CO 3 2 - ). We found that U(VI) uptake was greatest on polyacrylonitrile (PAN) functionalized with longer-chain phosphonate surfactants (e.g., hexa- and octadecyl phosphonate; HDPA and ODPA, respectively), which were better retained in the nanofiber after surface segregation. Subsequent uptake experiments to better understand specific solid-liquid interfacial interactions were carried out using 5 mg of HDPA-functionalized PAN mats with 10 μM U at pH 6.8 in four systems with different combinations of solutions containing 5 mM calcium (Ca2+) and 5 mM bicarbonate ( HCO 3 - ). U uptake was similar in control solutions containing no Ca2+ and HCO 3 - (resulting in 19 ± 3% U uptake), and in those containing only 5 mM Ca2+ (resulting in 20 ± 3% U uptake). A decrease in U uptake (10 ± 4% U uptake) was observed in experiments with HCO 3 - , indicating that UO2-CO3 complexes may increase uranium solubility. Results from shell-by-shell EXAFS fitting, aqueous extractions, and surface-enhanced Raman scattering (SERS) indicate that U is bound to phosphonate as a monodentate inner sphere surface complex to one of the hydroxyls in the phosphonate functional groups. New knowledge derived from this study on material fabrication and solid-liquid interfacial interactions will help to advance technologies for use in the in-situ detection and treatment of U in water.
Collapse
Affiliation(s)
- Nabil Shaikh
- Department of Civil, Construction, & Environmental Engineering, University of New Mexico, MSC01 1070, Albuquerque, NM 87131, USA
| | - Jiajie Qian
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City IA52242, USA
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City IA52242, USA
| | - Hoa Phan
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Juan S. Lezama-Pacheco
- Department of Environmental Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Abdul-Mehdi S. Ali
- Department of Earth and Planetary Sciences, University of New Mexico, MSC03 2040, Albuquerque, NM 87131, USA
| | - David M. Cwiertny
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City IA52242, USA
| | - Tori Z. Forbes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA
| | - José M. Cerrato
- Department of Civil, Construction, & Environmental Engineering, University of New Mexico, MSC01 1070, Albuquerque, NM 87131, USA
| |
Collapse
|
5
|
Zhao X, Sun D, Yu M, Xu Y, Xie H. Label-free and ultrasensitive SERS detection of pesticide residues using 3D hot-junction of a Raman enhancing montmorillonite/silver nanoparticles nanocomposite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1134-1139. [PMID: 35224591 DOI: 10.1039/d2ay00090c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Montmorillonite (MMT) coated with roughened noble metal nanoparticles are novel hybrid nanocomposite with a wide range of applications including agriculture, materials science and biomedical engineering. Herein, we developed a hybrid nanocomposite (MMT/AgNPs) based on MMT coated with silver nanoparticles (AgNPs), which can be used as a cost-effective and efficient surface-enhanced Raman spectroscopy (SERS) substrate for the detection of pesticides in fruits and vegetables. MMT itself is negatively charged and can be assembled with positively charged AgNPs through electrostatic interactions. Moreover, MMT has a layered 2D structure that possesses a large surface area, which can load a large number of AgNPs to form more SERS hotspots for the ultrasensitive measurement. SERS performance of the MMT/AgNPs nanocomposite was tested by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and the substrate can obtain the strongest SERS enhancement effect with the volume ratio of MMT/AgNPs of 1 : 10. These substrates were applied in the measurement of thiram in apples and spinach samples by SERS. Detection limits of pesticide molecules of 5.0 × 10-8 M and 1.0 × 10-7 M in apples and spinach, respectively, were obtained. Most importantly, MMT nanosheets are a robust platform that allowed AgNPs to be evenly and thoroughly distributed and stabilized over the substrate, improving the repeatability and stability of SERS detection. These results reveal that the MMT/AgNPs nanocomposites are suitable substrates for the real-world SERS analysis of pesticide and other contaminants in complex food matrices.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Man Yu
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| | - Yan Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hui Xie
- School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China.
| |
Collapse
|
6
|
Abstract
Surface-enhanced Raman scattering (SERS), a powerful technique for trace molecular detection, depends on chemical and electromagnetic enhancements. While recent advances in instrumentation and substrate design have expanded the utility, reproducibility, and quantitative capabilities of SERS, some challenges persist. In this review, advances in quantitative SERS detection are discussed as they relate to intermolecular interactions, surface selection rules, and target molecule solubility and accessibility. After a brief introduction to Raman scattering and SERS, impacts of surface selection rules and enhancement mechanisms are discussed as they relate to the observation of activation and deactivation of normal Raman modes in SERS. Next, experimental conditions that can be used to tune molecular affinity to and density near SERS substrates are summarized and considered while tuning these parameters are conveyed. Finally, successful examples of quantitative SERS detection are discussed, and future opportunities are outlined. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Ryan D Norton
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | - Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| | | | - Amanda J Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA;
| |
Collapse
|
7
|
Factors Affecting Preparation of Molecularly Imprinted Polymer and Methods on Finding Template-Monomer Interaction as the Key of Selective Properties of the Materials. Molecules 2021; 26:molecules26185612. [PMID: 34577083 PMCID: PMC8470890 DOI: 10.3390/molecules26185612] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/23/2022] Open
Abstract
Molecular imprinting is a technique for creating artificial recognition sites on polymer matrices that complement the template in terms of size, shape, and spatial arrangement of functional groups. The main advantage of Molecularly Imprinted Polymers (MIP) as the polymer for use with a molecular imprinting technique is that they have high selectivity and affinity for the target molecules used in the molding process. The components of a Molecularly Imprinted Polymer are template, functional monomer, cross-linker, solvent, and initiator. Many things determine the success of a Molecularly Imprinted Polymer, but the Molecularly Imprinted Polymer component and the interaction between template-monomers are the most critical factors. This review will discuss how to find the interaction between template and monomer in Molecularly Imprinted Polymer before polymerization and after polymerization and choose the suitable component for MIP development. Computer simulation, UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Proton-Nuclear Magnetic Resonance (1H-NMR) are generally used to determine the type and strength of intermolecular interaction on pre-polymerization stage. In turn, Suspended State Saturation Transfer Difference High Resolution/Magic Angle Spinning (STD HR/MAS) NMR, Raman Spectroscopy, and Surface-Enhanced Raman Scattering (SERS) and Fluorescence Spectroscopy are used to detect chemical interaction after polymerization. Hydrogen bonding is the type of interaction that is becoming a focus to find on all methods as this interaction strongly contributes to the affinity of molecularly imprinted polymers (MIPs).
Collapse
|
8
|
Phan HT, Vinson C, Haes AJ. Gold Nanostar Spatial Distribution Impacts the Surface-Enhanced Raman Scattering Detection of Uranyl on Amidoximated Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4891-4899. [PMID: 33861606 PMCID: PMC8213173 DOI: 10.1021/acs.langmuir.1c00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The plasmonic properties of carboxylated gold nanostars distributed on amidoximated polyacrylonitrile (AO PAN) electrospun polymer films scale with surface-enhanced Raman scattering (SERS) intensities for coordinated uranium(VI) oxide (uranyl) species. This two-step plasmonic sensor first isolates uranyl from solution using functionalized polymers; then carboxylated gold nanostars are subsequently deposited for SERS. Spatially resolved localized surface plasmon resonance (LSPR) and SERS facilitate correlated nanostar optical density and uranyl quantification. To reduce sampling bias, gold nanostars are deposited in an inverted drop-coating geometry and measurements are conducted inside resulting nanoparticle coffee rings that form on the polymer substrates. This approach naturally preserves the plasmonic properties of gold nanostars while reducing the deposition of nanoparticle aggregates in active sensing regions, thereby maximizing both the accuracy and the precision of SERS measurements. Several advances are made. First, second-derivative analysis of LSPR spectra facilitates the quantification of local nanostar density across large regions of the sensor substrate by reducing background variations caused by the polymeric and gold materials. Second, local nanostar densities ranging from 140 to 200 pM·cm are shown to result in uranyl signals that are independent of nanostar concentration. Third, the Gibbs free energy of uranyl adsorption to carboxylated nanostars is estimated at 8.4 ± 0.2 kcal/mol. Finally, a linear dynamic range from ∼0.3 to 3.4 μg U/mg polymer is demonstrated. Signals vary by 10% or less. As such, the uniformity of the plasmonic activity of distributed gold nanostars and the employment of spatially resolved spectroscopic measurements on the composite nanomaterial sensor interface facilitate the quantitative detection of uranyl while also reducing the dependence on user expertise and the selected sampling region. These important advances are critical for the development of a user-friendly SERS-based sensor for uranyl.
Collapse
Affiliation(s)
- Hoa T. Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 United States
| | - Claire Vinson
- Department of Chemistry, Smith College, Northampton, Massachusetts 01063 and Department of Chemistry, University of Iowa, Iowa City, Iowa 52242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
9
|
Harder RA, Wijenayaka LA, Phan HT, Haes AJ. Tuning gold nanostar morphology for the SERS detection of uranyl. JOURNAL OF RAMAN SPECTROSCOPY : JRS 2021; 52:497-505. [PMID: 34177076 PMCID: PMC8225228 DOI: 10.1002/jrs.5994] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/02/2020] [Indexed: 05/04/2023]
Abstract
The impact of tunable morphologies and plasmonic properties of gold nanostars are evaluated for the surface enhanced Raman scattering (SERS) detection of uranyl. To do so, gold nanostars are synthesized with varying concentrations of the Good's buffer reagent, 2-[4-(2-hydroxyethyl)-1-piperazinyl]propanesulfonic acid (EPPS). EPPS plays three roles including as a reducing agent for nanostar nucleation and growth, as a nanostar-stabilizing agent for solution phase stability, and as a coordinating ligand for the capture of uranyl. The resulting nanostructures exhibit localized surface plasmon resonance (LSPR) spectra that contain two visible and one near-infrared plasmonic modes. All three optical features arise from synergistic coupling between the nanostar core and branches. The tunability of these optical resonances are correlated with nanostar morphology through careful transmission electron microscopy (TEM) analysis. As the EPPS concentration used during synthesis increases, both the length and aspect ratio of the branches increase. This causes the two lower energy extinction features to grow in magnitude and become ideal for the SERS detection of uranyl. Finally, uranyl binds to the gold nanostar surface directly and via sulfonate coordination. Changes in the uranyl signal are directly correlated to the plasmonic properties associated with the nanostar branches. Overall, this work highlights the synergistic importance of nanostar morphology and plasmonic properties for the SERS detection of small molecules.
Collapse
Affiliation(s)
- Rachel A. Harder
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Lahiru A. Wijenayaka
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
- Current Address: Department of Chemistry, The Open University of Sri Lanka, Nawala, 11222, Sri Lanka
| | - Hoa T. Phan
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| | - Amanda J. Haes
- University of Iowa, Department of Chemistry, Iowa City, Iowa USA
| |
Collapse
|
10
|
Huang CT, Jan FJ, Chang CC. A 3D Plasmonic Crossed-Wire Nanostructure for Surface-Enhanced Raman Scattering and Plasmon-Enhanced Fluorescence Detection. Molecules 2021; 26:molecules26020281. [PMID: 33429970 DOI: 10.3390/molecules26020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 01/04/2023] Open
Abstract
In this manuscript, silver nanowire 3D random crossed-wire woodpile (3D-RCW) nanostructures were designed and prepared. The 3D-RCW provides rich "antenna" and "hot spot" effects that are responsive for surface-enhanced Raman scattering (SERS) effects and plasmon-enhanced fluorescence (PEF). The optimal construction mode for the 3D-RCW, based on the ratio of silver nanowire and control compound R6G, was explored and established for use in PEF and SERS analyses. We found that the RCW nanochip capable of emission and Raman-enhanced detections uses micro levels of analysis volumes. Consequently, and SERS and PEF of pesticides (thiram, carbaryl, paraquat, fipronil) were successfully measured and characterized, and their detection limits were within 5 μM~0.05 µM in 20 µL. We found that the designed 3D plasmon-enhanced platform cannot only collect the SERS of pesticides, but also enhance the fluorescence of a weak emitter (pesticides) by more than 1000-fold via excitation of the surface plasmon resonance, which can be used to extend the range of a fluorescence biosensor. More importantly, solid-state measurement using a 3D-RCW nanoplatform shows promising potential based on its dual applications in creating large SERS and PEF enhancements.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Protrustech Co., Ltd., 3F.-1, No.293, Sec. 3, Dongmen Rd. East District, Tainan City 701, Taiwan
| | - Fuh-Jyh Jan
- Department of Plant Pathology, National Chung-Hsing University, Taichung 402, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
| | - Cheng-Chung Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Intelligent Minimally-Invasive Device Center, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
11
|
Phan HT, Geng S, Haes AJ. Microporous silica membranes promote plasmonic nanoparticle stability for SERS detection of uranyl. NANOSCALE 2020; 12:23700-23708. [PMID: 33226397 PMCID: PMC7725980 DOI: 10.1039/d0nr06296k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Silica membrane stabilized gold coated silver (Ag@Au) (i.e., internally etched silica coated Ag@Au (IE Ag@Au@SiO2)) nanoparticles promote surface-enhanced Raman scattering (SERS) activity and detection of uranium(vi) oxide (uranyl) under harsh solution phase conditions including at pH 3-7, with ionic strengths up to 150 mM, and temperatures up to 37 °C for at least 10 hours. These materials overcome traditional solution-phase plasmonic nanomaterial limitations including signal variability and/or degradation arising from nanoparticle aggregation, dissolution, and/or surface chemistry changes. Quantitative uranyl detection occurs via coordination to 3-mercaptopropionate (MPA), a result confirmed through changes in correlated SERS intensities for uranyl and COOH/COO- vibrational modes. Quantification is demonstrated down to 110 nM, a concentration below toxic levels. As pH varies from 3 to 7, the plasmonic properties of the nanoparticles are unchanged, and the uranyl signal depends on both the protonation state of MPA as well as uranyl solubility. High ionic strengths (up to 150 mM) and incubation at 37 °C for at least 10 hours do not impact the SERS activity of uranyl even though slight silica dissolution is observed during thermal treatment. All in all, microporous silica membranes effectively protect the nanoparticles against variations in solution conditions thus illustrating robust tunability for uranyl detection using SERS.
Collapse
Affiliation(s)
- Hoa T Phan
- Department of Chemistry, University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
12
|
Ortiz-Castillo JE, Gallo-Villanueva RC, Madou MJ, Perez-Gonzalez VH. Anisotropic gold nanoparticles: A survey of recent synthetic methodologies. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213489] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Xi W, Haes AJ. Elucidation of pH impacts on monosubstituted benzene derivatives using normal Raman and surface-enhanced Raman scattering. J Chem Phys 2020; 153:184707. [PMID: 33187422 DOI: 10.1063/5.0029445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Raman spectral vibrational frequencies are used to probe the local chemical environment surrounding molecules in solution and adsorbed to gold nanostars. Herein, the impacts of functional group protonation on monosubstituted benzene derivatives with amine, carboxylic acid, or hydroxide are evaluated. Changes in binding affinity and orientation are apparent by evaluating systematic variations in vibrational frequencies. Notably, the electron donating abilities of these functional groups influence the vibrational frequency of the ring breathing mode, thus leading to improved spectral interpretation. Furthermore, gold nanostars are used to investigate the impact of molecular protonation on the adsorption of benzoic acid/benzoate to gold. The changes in molecular protonation are measured using zeta potential and the surface-sensitive technique, surface-enhanced Raman scattering. These methods reveal that pH variations induce carboxylate protonation and electron redistribution that weaken molecular affinity, thereby causing the molecule to adopt a perpendicular to parallel orientation with respect to the nanostar surface. Functional group identity influences the ring breathing mode frequency as a function of changes in electron donation from the functional group to the ring in solution as well as molecular affinity to and orientation on gold. This exploitation of vibrational frequencies facilitates the elucidation of molecule behavior in complex systems.
Collapse
Affiliation(s)
- Wenjing Xi
- Chemistry Department, University of Iowa, Iowa City, Iowa 52242, USA
| | - Amanda J Haes
- Chemistry Department, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
14
|
Straub MD, Arnold J, Fessenden J, Kiplinger JL. Recent Advances in Nuclear Forensic Chemistry. Anal Chem 2020; 93:3-22. [DOI: 10.1021/acs.analchem.0c03571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mark D. Straub
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Los Alamos National Laboratory, Chemistry Division, Mailstop J-514, Los Alamos, New Mexico 87545, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julianna Fessenden
- Los Alamos National Laboratory, XTD Division, Los Alamos, New Mexico 87545, United States
| | - Jaqueline L. Kiplinger
- Los Alamos National Laboratory, Chemistry Division, Mailstop J-514, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Thirumalairajan S, Girija K. Efficient and tunable shape selective synthesis of Ag/CeO 2 nanostructures modified highly stable SERS substrate for ultrasensitive detection of pesticides on the surface of an apple. NANOSCALE ADVANCES 2020; 2:3570-3581. [PMID: 36134266 PMCID: PMC9419775 DOI: 10.1039/d0na00390e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/27/2020] [Indexed: 06/14/2023]
Abstract
Detection of pesticide residues from fruits and vegetables is of significant importance to ensuring human health and environmental safety. An efficient and tunable shape-selective synthesis of Ag/CeO2 nanostructures as an active flexible SERS substrate for the detection of thiram on an apple surface via a paste, peel off, and paste again process was performed. The well-controlled formation of silver assembled CeO2 microspheres constituting nanospheres and nanospindles with an average size of approximately 56 and 32 nm with anisotropic structures has been confirmed through morphological and crystallographic analysis. Interestingly, CeO2 (111) was strongly anchored in the Ag (111) matrix, which provides a more adequate pathway for rapid ion-electron transportation, as observed from the structural and chemical composition analysis. The detection of thiram on the surface of an apple using our proposed nanospindle SERS active substrate achieves a wide detection range from 10-2 to 10-9 M with a correlation coefficient of 0.9929 and a low detection limit of 27 nM at S/N = 3. In addition, the charge transfer mechanism between the Ag/CeO2 nanostructures and thiram molecules has also been proposed. We believe that the present work could provide novel ways to develop SERS active substrates for highly efficient onsite detection of pesticides on fruits in the near future.
Collapse
Affiliation(s)
- S Thirumalairajan
- Department of Nano Science and Technology, Tamilnadu Agricultural University Coimbatore-41003 India +91 422 661 1949 +91 422 661 1569
| | - K Girija
- Department of Physics, Dr N.G.P. Arts and Science College Coimbatore-641 048 India
| |
Collapse
|
16
|
Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla RA, Auguié B, Baumberg JJ, Bazan GC, Bell SEJ, Boisen A, Brolo AG, Choo J, Cialla-May D, Deckert V, Fabris L, Faulds K, García de Abajo FJ, Goodacre R, Graham D, Haes AJ, Haynes CL, Huck C, Itoh T, Käll M, Kneipp J, Kotov NA, Kuang H, Le Ru EC, Lee HK, Li JF, Ling XY, Maier SA, Mayerhöfer T, Moskovits M, Murakoshi K, Nam JM, Nie S, Ozaki Y, Pastoriza-Santos I, Perez-Juste J, Popp J, Pucci A, Reich S, Ren B, Schatz GC, Shegai T, Schlücker S, Tay LL, Thomas KG, Tian ZQ, Van Duyne RP, Vo-Dinh T, Wang Y, Willets KA, Xu C, Xu H, Xu Y, Yamamoto YS, Zhao B, Liz-Marzán LM. Present and Future of Surface-Enhanced Raman Scattering. ACS NANO 2020; 14:28-117. [PMID: 31478375 PMCID: PMC6990571 DOI: 10.1021/acsnano.9b04224] [Citation(s) in RCA: 1441] [Impact Index Per Article: 360.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 04/14/2023]
Abstract
The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.
Collapse
Affiliation(s)
- Judith Langer
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
| | | | - Javier Aizpurua
- Materials
Physics Center (CSIC-UPV/EHU), and Donostia
International Physics Center, Paseo Manuel de Lardizabal 5, Donostia-San
Sebastián 20018, Spain
| | - Ramon A. Alvarez-Puebla
- Departamento
de Química Física e Inorgánica and EMaS, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Baptiste Auguié
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Guillermo C. Bazan
- Department
of Materials and Chemistry and Biochemistry, University of California, Santa
Barbara, California 93106-9510, United States
| | - Steven E. J. Bell
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Anja Boisen
- Department
of Micro- and Nanotechnology, The Danish National Research Foundation
and Villum Foundation’s Center for Intelligent Drug Delivery
and Sensing Using Microcontainers and Nanomechanics, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Alexandre G. Brolo
- Department
of Chemistry, University of Victoria, P.O. Box 3065, Victoria, BC V8W 3 V6, Canada
- Center
for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jaebum Choo
- Department
of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Dana Cialla-May
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Volker Deckert
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Laura Fabris
- Department
of Materials Science and Engineering, Rutgers
University, 607 Taylor Road, Piscataway New Jersey 08854, United States
| | - Karen Faulds
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - F. Javier García de Abajo
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona 08010, Spain
- The Barcelona
Institute of Science and Technology, Institut
de Ciencies Fotoniques, Castelldefels (Barcelona) 08860, Spain
| | - Royston Goodacre
- Department
of Biochemistry, Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, United Kingdom
| | - Duncan Graham
- Department
of Pure and Applied Chemistry, University
of Strathclyde, Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, United Kingdom
| | - Amanda J. Haes
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Christy L. Haynes
- Department
of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian Huck
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Tamitake Itoh
- Nano-Bioanalysis
Research Group, Health Research Institute, National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Mikael Käll
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Janina Kneipp
- Department
of Chemistry, Humboldt-Universität
zu Berlin, Brook-Taylor-Str. 2, Berlin-Adlershof 12489, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hua Kuang
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Eric C. Le Ru
- School
of Chemical and Physical Sciences, Victoria
University of Wellington, PO Box 600, Wellington 6140, New Zealand
- The
MacDiarmid
Institute for Advanced Materials and Nanotechnology, PO Box 600, Wellington 6140, New Zealand
- The Dodd-Walls
Centre for Quantum and Photonic Technologies, PO Box 56, Dunedin 9054, New Zealand
| | - Hiang Kwee Lee
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Jian-Feng Li
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Yi Ling
- Division
of Chemistry and Biological Chemistry, School of Physical and Mathematical
Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Stefan A. Maier
- Chair in
Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Thomas Mayerhöfer
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Martin Moskovits
- Department
of Chemistry & Biochemistry, University
of California Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Kei Murakoshi
- Department
of Chemistry, Faculty of Science, Hokkaido
University, North 10 West 8, Kita-ku, Sapporo,
Hokkaido 060-0810, Japan
| | - Jwa-Min Nam
- Department
of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Yukihiro Ozaki
- Department
of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | | | - Jorge Perez-Juste
- Departamento
de Química Física and CINBIO, University of Vigo, Vigo 36310, Spain
| | - Juergen Popp
- Leibniz
Institute of Photonic Technology Jena - Member of the research alliance “Leibniz Health Technologies”, Albert-Einstein-Str. 9, Jena 07745, Germany
- Institute
of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller University Jena, Helmholtzweg 4, Jena 07745, Germany
| | - Annemarie Pucci
- Kirchhoff
Institute for Physics, University of Heidelberg, Im Neuenheimer Feld 227, Heidelberg 69120, Germany
| | - Stephanie Reich
- Department
of Physics, Freie Universität Berlin, Berlin 14195, Germany
| | - Bin Ren
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - George C. Schatz
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Timur Shegai
- Department
of Physics, Chalmers University of Technology, Goteborg S412 96, Sweden
| | - Sebastian Schlücker
- Physical
Chemistry I, Department of Chemistry and Center for Nanointegration
Duisburg-Essen, University of Duisburg-Essen, Essen 45141, Germany
| | - Li-Lin Tay
- National
Research Council Canada, Metrology Research
Centre, Ottawa K1A0R6, Canada
| | - K. George Thomas
- School
of Chemistry, Indian Institute of Science
Education and Research Thiruvananthapuram, Vithura Thiruvananthapuram 695551, India
| | - Zhong-Qun Tian
- State Key
Laboratory of Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, MOE Key Laboratory
of Spectrochemical Analysis & Instrumentation, Department of Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Richard P. Van Duyne
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Tuan Vo-Dinh
- Fitzpatrick
Institute for Photonics, Department of Biomedical Engineering, and
Department of Chemistry, Duke University, 101 Science Drive, Box 90281, Durham, North Carolina 27708, United States
| | - Yue Wang
- Department
of Chemistry, College of Sciences, Northeastern
University, Shenyang 110819, China
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chuanlai Xu
- Key Lab
of Synthetic and Biological Colloids, Ministry of Education, International
Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, China
- State Key
Laboratory of Food Science and Technology, Jiangnan University, JiangSu 214122, China
| | - Hongxing Xu
- School
of Physics and Technology and Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yikai Xu
- School
of Chemistry and Chemical Engineering, Queen’s
University of Belfast, Belfast BT9 5AG, United Kingdom
| | - Yuko S. Yamamoto
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Bing Zhao
- State Key
Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
| | - Luis M. Liz-Marzán
- CIC
biomaGUNE and CIBER-BBN, Paseo de Miramón 182, Donostia-San Sebastián 20014, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
17
|
Mahmoud AYF, Rusin CJ, McDermott MT. Gold nanostars as a colloidal substrate for in-solution SERS measurements using a handheld Raman spectrometer. Analyst 2020; 145:1396-1407. [DOI: 10.1039/c9an02439e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal gold nanostars for rapid and in-solution SERS measurements of methimazole in urine using a handheld Raman spectrometer.
Collapse
Affiliation(s)
| | - Casey J. Rusin
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| | | |
Collapse
|
18
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
19
|
Ou J, Zhou Z, Chen Z, Tan H. Optical Diagnostic Based on Functionalized Gold Nanoparticles. Int J Mol Sci 2019; 20:E4346. [PMID: 31491861 PMCID: PMC6770972 DOI: 10.3390/ijms20184346] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022] Open
Abstract
Au nanoparticles (NPs) possess unique physicochemical and optical properties, showing great potential in biomedical applications. Diagnostic spectroscopy utilizing varied Au NPs has become a precision tool of in vitro and in vivo diagnostic for cancer and other specific diseases. In this review, we tried to comprehensively introduce the remarkable optical properties of Au NPs, including localized surfaces plasmon resonance (LSPR), surface-enhanced Raman scattering (SERS), and metal-enhanced fluorescence (MEF). Then, we highlighted the excellent works using Au NPs for optical diagnostic applications. Ultimately, the challenges and future perspective of using Au NPs for optical diagnostic were discussed.
Collapse
Affiliation(s)
- Jiemei Ou
- School of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zidan Zhou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhong Chen
- Instrumentation and Service Center for Physical Sciences, School of Science, Westlake University, 18 Shilongshan Road, Xihu District, Hangzhou 310064, China.
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| | - Huijun Tan
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
20
|
|
21
|
Phan HT, Haes AJ. What Does Nanoparticle Stability Mean? THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:16495-16507. [PMID: 31844485 PMCID: PMC6913534 DOI: 10.1021/acs.jpcc.9b00913] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The term "nanoparticle stability" is widely used to describe the preservation of a particular nanostructure property ranging from aggregation, composition, crystallinity, shape, size, and surface chemistry. As a result, this catch-all term has various meanings, which depend on the specific nanoparticle property of interest and/or application. In this feature article, we provide an answer to the question, "What does nanoparticle stability mean?". Broadly speaking, the definition of nanoparticle stability depends on the targeted size dependent property that is exploited and can only exist for a finite period of time given all nanostructures are inherently thermodynamically and energetically unfavorable relative to bulk states. To answer this question specifically, however, the relationship between nanoparticle stability and the physical/chemical properties of metal/metal oxide nanoparticles are discussed. Specific definitions are explored in terms of aggregation state, core composition, shape, size, and surface chemistry. Next, mechanisms of promoting nanoparticle stability are defined and related to these same nanoparticle properties. Metrics involving both kinetics and thermodynamics are considered. Methods that provide quantitative metrics for measuring and modeling nanoparticle stability in terms of core composition, shape, size, and surface chemistry are outlined. The stability of solution-phase nanoparticles are also impacted by aggregation state. Thus, collision and DLVO theories are discussed. Finally, challenges and opportunities in understanding what nanoparticle stability means are addressed to facilitate further studies with this important class of materials.
Collapse
|
22
|
Jiang M, Xiao X, He B, Liu Y, Hu N, Su C, Li Z, Liao L. A europium (III) complex-based surface fluorescence sensor for the determination of uranium (VI). J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06566-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Zou Y, Chen H, Li Y, Yuan X, Zhao X, Chen W, Cao F, Cai N, Huang X, Yang F, Liu W. Synthesis of mesoporous-silica coated multi-branched gold nanoparticles for surface enhanced Raman scattering evaluation of 4-bromomethcathinone. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2018.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Xi W, Haes AJ. Elucidation of HEPES Affinity to and Structure on Gold Nanostars. J Am Chem Soc 2019; 141:4034-4042. [DOI: 10.1021/jacs.8b13211] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
25
|
Zhang Y, Zhou H, Shen Q, Shao Z, Xu L, Luo Z. Silver Nanostructures on Graphene Oxide as the Substrate for Surface-Enhanced Raman Scattering (SERS). ANAL LETT 2019. [DOI: 10.1080/00032719.2018.1548554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Ying Zhang
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and optical Engineering & College of Microelectronic Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, China
| | - Hao Zhou
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and optical Engineering & College of Microelectronic Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, China
| | - Qi Shen
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and optical Engineering & College of Microelectronic Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, China
| | - Zhouwei Shao
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and optical Engineering & College of Microelectronic Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, China
| | - Lin Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, China
| | - Zhimin Luo
- Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province, College of Electronic and optical Engineering & College of Microelectronic Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM) Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, China
| |
Collapse
|
26
|
Zhao H, Hasi W, Li N, Sha X, Lin S, Han S. In situ analysis of pesticide residues on the surface of agricultural products via surface-enhanced Raman spectroscopy using a flexible Au@Ag–PDMS substrate. NEW J CHEM 2019. [DOI: 10.1039/c9nj01901d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In situ analysis of pesticide residues on the surface of agricultural products via surface-enhanced Raman spectroscopy using a flexible Au@Ag–PDMS substrate.
Collapse
Affiliation(s)
- Hang Zhao
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
| | - Wuliji Hasi
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
| | - Nan Li
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
| | - Xuanyu Sha
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
| | - Shuang Lin
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
| | - Siqingaowa Han
- National Key Laboratory of Science and Technology on Tunable Laser
- Harbin Institute of Technology
- Harbin
- China
- Affiliated Hospital of Inner Mongolia University for the Nationalities
| |
Collapse
|
27
|
Nehra K, Pandian SK, Bharati MSS, Soma VR. Enhanced catalytic and SERS performance of shape/size controlled anisotropic gold nanostructures. NEW J CHEM 2019. [DOI: 10.1039/c8nj06206d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Au nanostars of different sizes and shapes prepared using a simple method and their applications.
Collapse
Affiliation(s)
- Kamalesh Nehra
- Department of Physics and Astrophysics, University of Delhi
- Delhi 110007
- India
| | | | - Moram Sree Satya Bharati
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad
- Hyderabad 500046
- India
| | - Venugopal Rao Soma
- Advanced Centre for Research in High Energy Materials (ACRHEM), University of Hyderabad
- Hyderabad 500046
- India
| |
Collapse
|
28
|
Kim GW, Ha JW. Polarization- and wavelength-dependent defocused scattering imaging of single gold nanostars with multiple long branches. Photochem Photobiol Sci 2019; 18:1430-1435. [DOI: 10.1039/c9pp00083f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the polarization- and wavelength-dependent defocused scattering properties at the localized surface plasmon resonance (LSPR) wavelengths of singe AuNSs having multiple long branches protruding from their surfaces.
Collapse
Affiliation(s)
- Geun Wan Kim
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| | - Ji Won Ha
- Advanced Nano-Bio-Imaging and Spectroscopy Laboratory
- Department of Chemistry
- University of Ulsan
- Ulsan 44610
- Republic of Korea
| |
Collapse
|
29
|
Hua M, Yang S, Ma J, He W, Kuang L, Hua D. Highly selective and sensitive determination of uranyl ion by the probe of CdTe quantum dot with a specific size. Talanta 2018; 190:278-283. [DOI: 10.1016/j.talanta.2018.08.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 01/03/2023]
|
30
|
Lu G, Haes AJ, Forbes TZ. Detection and identification of solids, surfaces, and solutions of uranium using vibrational spectroscopy. Coord Chem Rev 2018; 374:314-344. [PMID: 30713345 PMCID: PMC6358285 DOI: 10.1016/j.ccr.2018.07.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The purpose of this review is to provide an overview of uranium speciation using vibrational spectroscopy methods including Raman and IR. Uranium is a naturally occurring, radioactive element that is utilized in the nuclear energy and national security sectors. Fundamental uranium chemistry is also an active area of investigation due to ongoing questions regarding the participation of 5f orbitals in bonding, variation in oxidation states and coordination environments, and unique chemical and physical properties. Importantly, uranium speciation affects fate and transportation in the environment, influences bioavailability and toxicity to human health, controls separation processes for nuclear waste, and impacts isotopic partitioning and geochronological dating. This review article provides a thorough discussion of the vibrational modes for U(IV), U(V), and U(VI) and applications of infrared absorption and Raman scattering spectroscopies in the identification and detection of both naturally occurring and synthetic uranium species in solid and solution states. The vibrational frequencies of the uranyl moiety, including both symmetric and asymmetric stretches are sensitive to the coordinating ligands and used to identify individual species in water, organic solvents, and ionic liquids or on the surface of materials. Additionally, vibrational spectroscopy allows for the in situ detection and real-time monitoring of chemical reactions involving uranium. Finally, techniques to enhance uranium species signals with vibrational modes are discussed to expand the application of vibrational spectroscopy to biological, environmental, inorganic, and materials scientists and engineers.
Collapse
Affiliation(s)
- Grace Lu
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| | - Tori Z. Forbes
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
31
|
Xi W, Phan HT, Haes AJ. How to accurately predict solution-phase gold nanostar stability. Anal Bioanal Chem 2018; 410:6113-6123. [PMID: 29748758 PMCID: PMC6119116 DOI: 10.1007/s00216-018-1115-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/24/2018] [Accepted: 04/26/2018] [Indexed: 12/22/2022]
Abstract
Unwanted nanoparticle aggregation and/or agglomeration may occur when anisotropic nanoparticles are dispersed in various solvents and matrices. While extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory has been successfully applied to predict nanoparticle stability in solution, this model fails to accurately predict the physical stability of anisotropic nanostructures; thus limiting its applicability in practice. Herein, DLVO theory was used to accurately predict gold nanostar stability in solution by investigating how the choice of the nanostar dimension considered in calculations influences the calculated attractive and repulsive interactions between nanostructures. The use of the average radius of curvature of the nanostar tips instead of the average radius as the nanostar dimension of interest increases the accuracy with which experimentally observed nanoparticle behavior can be modeled theoretically. This prediction was validated by measuring time-dependent localized surface plasmon resonance (LSPR) spectra of gold nanostars suspended in solutions with different ionic strengths. Minimum energy barriers calculated from collision theory as a function of nanoparticle concentration were utilized to make kinetic predictions. All in all, these studies suggest that choosing the appropriate gold nanostar dimension is crucial to fully understanding and accurately predicting the stability of anisotropic nanostructures such as gold nanostars; i.e., whether the nanostructures remain stable and can be used reproducibly, or whether they aggregate and exhibit inconsistent results. Thus, the present work provides a deeper understanding of internanoparticle interactions in solution and is expected to lead to more consistent and efficient analytical and bioanalytical applications of these important materials in the future. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, 204 IATL, Iowa, 52242, USA
| | - Hoa T Phan
- Department of Chemistry, University of Iowa, 204 IATL, Iowa, 52242, USA
| | - Amanda J Haes
- Department of Chemistry, University of Iowa, 204 IATL, Iowa, 52242, USA.
| |
Collapse
|
32
|
Kim GW, Ha JW. Direct Visualization of Wavelength-Dependent Single Dipoles Generated on Single Gold Nanourchins with Sharp Branches. NANOSCALE RESEARCH LETTERS 2018; 13:256. [PMID: 30159615 PMCID: PMC6115324 DOI: 10.1186/s11671-018-2675-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
We present the optical properties of singe gold nanourchins (AuNUs) with sharp branches on their surfaces under dark-field (DF) microscopy and spectroscopy. The DF intensities of the single AuNUs were changed periodically as a function of the rotation angle at three localized surface plasmon resonance (LSPR) wavelengths. Furthermore, we demonstrate the generation of single dipoles with different LSPR wavelengths in multiple directions on the same AuNU surface. The multiple LSPR dipoles generated on the AuNU surface were further visualized under defocused DF microscopy and verified by characteristic doughnut-shaped defocused scattering field distributions. ᅟ.
Collapse
Affiliation(s)
- Geun Wan Kim
- Advanced Nano-Bio-Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan, 44610 South Korea
| | - Ji Won Ha
- Advanced Nano-Bio-Imaging and Spectroscopy (ANBIS) Laboratory, Department of Chemistry, University of Ulsan, 93 Daehak-Ro, Nam-Gu, Ulsan, 44610 South Korea
| |
Collapse
|
33
|
Trujillo M, Camden JP. Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion. ACS OMEGA 2018; 3:6660-6664. [PMID: 31458840 PMCID: PMC6644803 DOI: 10.1021/acsomega.8b01147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 06/08/2018] [Indexed: 05/25/2023]
Abstract
Surface-enhanced hyper-Raman scattering (SEHRS), the nonlinear analog of surface-enhanced Raman scattering (SERS), provides unique spectral signatures arising from the molecular hyperpolarizability. In this work, we explore the differences between SERS and SEHRS spectra obtained from surface-bound uranyl ion. Exploiting the distinctive SEHRS bands for trace detection of the uranyl ion, we obtain excellent sensitivity (limit of detection = 90 ppb) despite the extreme weakness of the hyper-Raman effect. We observe that binding the uranyl ion to the carboxylate group of 4-mercaptobenzoic acid (4-MBA) leads to significant changes in the SEHRS spectrum, whereas the surface-enhanced Raman scattering (SERS) spectrum of the same complex is little changed. The SERS and SEHRS spectra are also examined as a function of both substituent position, using 2-MBA, 3-MBA, and 4-MBA, and the carbon chain length, using 4-mercaptophenylacetic acid and 4-mercaptophenylpropionic acid. These results illustrate that the unique features of SEHRS can yield more information than SERS in certain cases and represent the first application of SEHRS for trace analysis of nonresonant molecules.
Collapse
|
34
|
Gu X, Trujillo MJ, Olson JE, Camden JP. SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:147-169. [PMID: 29547340 DOI: 10.1146/annurev-anchem-061417-125724] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Owing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
Collapse
Affiliation(s)
- Xin Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Michael J Trujillo
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jacob E Olson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA;
| |
Collapse
|
35
|
Zhang M, Zheng Z, Liu H, Wang D, Chen T, Liu J, Wu Y. Rationally Designed Graphene/Bilayer Silver/Cu Hybrid Structure with Improved Sensitivity and Stability for Highly Efficient SERS Sensing. ACS OMEGA 2018; 3:5761-5770. [PMID: 31458776 PMCID: PMC6641927 DOI: 10.1021/acsomega.8b00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 05/17/2018] [Indexed: 05/24/2023]
Abstract
A simple and cost-effective strategy was rationally designed to fabricate a special sandwich structure consisting of graphene, bilayer silver, and a copper plate, which was used as a surface-enhanced Raman scattering (SERS) substrate for highly efficient SERS sensing and detection of trace molecules. Silver dendrite (AgD) nanostructures were subsequently grown on a silver nanosphere (AgNS)/Cu surface to form a bilayer silver/Cu structure, which showed a 1.5-fold Raman enhancement compared to that of the AgNS/Cu substrate. After depositing graphene on the bilayer silver/Cu substrate to obtain a sandwich structure, a higher SERS enhancement and better durability were enabled. The SERS performances, measured by a portable Raman instrument, showed that the optimized sandwich structure substrate exhibited high SERS sensitivity to crystal violet (CV) and rhodamine 6G (R6G) with low limit of detection of 10-9 and 10-8 M, respectively. Such a sandwich-structured substrate exhibited good reproducibility across the entire detection areas with an average relative standard deviation less than 5.9%, which permits its reliable quantitative detection of CV and R6G molecules. In addition, graphene both effectively improved the SERS performances and protected Ag nanocrystals from oxidation, which endowed the sandwich structure a long-term stability with deviation of characteristic peaks' intensity lower than 3.6% after 25 days. This study indicates that the graphene/bilayer silver/Cu sandwich structure as a SERS substrate has a great potential in detecting environmental pollutants.
Collapse
Affiliation(s)
- Maofeng Zhang
- School
of Materials Science and Engineering and Anhui Engineering Laboratory of
Non-ferrous Metals and Processing, Hefei
University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zhiyuan Zheng
- Department
of Mechanical Engineering, Xuancheng Campus, Hefei University of Technology, 301 Xunhua Road, Xuancheng 242000, China
| | - Honghui Liu
- Department
of Mechanical Engineering, Xuancheng Campus, Hefei University of Technology, 301 Xunhua Road, Xuancheng 242000, China
| | - Dapeng Wang
- Institute
of Intelligent Machines, Chinese Academy
of Sciences, 350 Shushanhu
Road, Hefei 230031, China
| | - Tun Chen
- School
of Materials Science and Engineering and Anhui Engineering Laboratory of
Non-ferrous Metals and Processing, Hefei
University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Jiaqin Liu
- School
of Materials Science and Engineering and Anhui Engineering Laboratory of
Non-ferrous Metals and Processing, Hefei
University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yucheng Wu
- School
of Materials Science and Engineering and Anhui Engineering Laboratory of
Non-ferrous Metals and Processing, Hefei
University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
36
|
Lu G, Johns AJ, Neupane B, Phan HT, Cwiertny DM, Forbes TZ, Haes AJ. Matrix-Independent Surface-Enhanced Raman Scattering Detection of Uranyl Using Electrospun Amidoximated Polyacrylonitrile Mats and Gold Nanostars. Anal Chem 2018; 90:6766-6772. [PMID: 29741873 DOI: 10.1021/acs.analchem.8b00655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Reproducible detection of uranyl, an important biological and environmental contaminant, from complex matrixes by surface-enhanced Raman scattering (SERS) is successfully achieved using amidoximated-polyacrylonitrile (AO-PAN) mats and carboxylated gold (Au) nanostars. SERS detection of small molecules from a sample mixture is traditionally limited by nonspecific adsorption of nontarget species to the metal nanostructures and subsequent variations in both the vibrational frequencies and intensities. Herein, this challenge is overcome using AO-PAN mats to extract uranyl from matrixes ranging in complexity including HEPES buffer, Ca(NO3)2 and NaHCO3 solutions, and synthetic urine. Subsequently, Au nanostars functionalized with carboxyl-terminated alkanethiols are used to enhance the uranyl signal. The detected SERS signals scale with uranyl uptake as confirmed using liquid scintillation counting. SERS vibrational frequencies of uranyl on both hydrated and lyophilized polymer mats are largely independent of sample matrix, indicating less complexity in the uranyl species bound to the surface of the mats vs in solution. These results suggest that matrix effects, which commonly limit the use of SERS for complex sample analysis, are minimized for uranyl detection. The presented synergistic approach for isolating uranyl from complex sample matrixes and enhancing the signal using SERS is promising for real-world sample detection and eliminates the need of radioactive tracers and extensive sample pretreatment steps.
Collapse
|
37
|
|
38
|
Tamulevičius S, Meškinis Š, Tamulevičius T, Rubahn HG. Diamond like carbon nanocomposites with embedded metallic nanoparticles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:024501. [PMID: 29076461 DOI: 10.1088/1361-6633/aa966f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we present an overview on structure formation, optical and electrical properties of diamond like carbon (DLC) based metal nanocomposites deposited by reactive magnetron sputtering and treated by plasma and laser ablation methods. The influence of deposition mode and other technological conditions on the properties of the nanosized filler, matrix components and composition were studied systematically in relation to the final properties of the nanocomposites. Applications of the nanocomposites in the development of novel biosensors combining resonance response of wave guiding structures in DLC based nanocomposites as well as plasmonic effects are also presented.
Collapse
Affiliation(s)
- Sigitas Tamulevičius
- Institute of Materials Science, Kaunas University of Technology, K.Baršausko Str. 59, Kaunas LT-501423, Lithuania. Department of Physics, Kaunas University of Technology, Studentų Str. 50, Kaunas LT-51368, Lithuania. Mads Clausen Institute, NanoSYD, Alsion 2, DK-6400 Sønderborg, Denmark
| | | | | | | |
Collapse
|
39
|
Tanwar S, Haldar KK, Sen T. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering. J Am Chem Soc 2017; 139:17639-17648. [DOI: 10.1021/jacs.7b10410] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Swati Tanwar
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab-160062, India
| | - Krishna Kanta Haldar
- Department
of Chemical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab-151001, India
| | - Tapasi Sen
- Institute of Nano Science and Technology, Phase-10, Sector-64, Mohali, Punjab-160062, India
| |
Collapse
|
40
|
Xi W, Shrestha BK, Haes AJ. Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal Chem 2017; 90:128-143. [DOI: 10.1021/acs.analchem.7b04225] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wenjing Xi
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Binaya K. Shrestha
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| | - Amanda J. Haes
- Department of Chemistry, University of Iowa, Iowa City, Iowa, 55242 United States
| |
Collapse
|
41
|
Guo J, Chen Y, Jiang Y, Ju H. Polyadenine-Modulated DNA Conformation Monitored by Surface-Enhanced Raman Scattering (SERS) on Multibranched Gold Nanoparticles and Its Sensing Application. Chemistry 2017; 23:9332-9337. [PMID: 28504862 DOI: 10.1002/chem.201700883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Indexed: 11/11/2022]
Abstract
This work proposes a facile way to modulate the conformation of DNA from the "Lie-Down" to the "Stand-Up" conformation on the surface of multibranched gold nanoparticles (AuNPs). This is realized by regulating the length of polyadenine (polyA) linked to the DNA sequence and/or the hybridization of this sequence with the target DNA, and can be monitored by the Raman signal owing to the excellent performance of multibranched AuNPs (AuNSs) as a surface-enhanced Raman scattering (SERS) substrate and the distance change between the Raman reporter and the substrate. The probable mechanism, which depends on the repulsion of polyA from the sequence and the tip assembly, has also been probed through theoretical simulation using the finite difference time domain method. By virtue of this strategy, a conformation-transformation-based DNA@AuNS sensor is constructed for the identification of a specific oligonucleotide, which has been used for the detection of DNA sequences associated with Severe Acute Respiratory Syndrome (SARS). This strategy leads to a novel sensing platform with good extendibility for DNA analysis, and provides a powerful protocol for facilitating the cognition of DNA conformation on metal surfaces.
Collapse
Affiliation(s)
- Jingxing Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yongjia Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
42
|
Review of SERS Substrates for Chemical Sensing. NANOMATERIALS 2017; 7:nano7060142. [PMID: 28594385 PMCID: PMC5485789 DOI: 10.3390/nano7060142] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/21/2022]
Abstract
The SERS effect was initially discovered in the 1970s. Early research focused on understanding the phenomenon and increasing enhancement to achieve single molecule detection. From the mid-1980s to early 1990s, research started to move away from obtaining a fundamental understanding of the phenomenon to the exploration of analytical applications. At the same time, significant developments occurred in the field of photonics that led to the advent of inexpensive, robust, compact, field-deployable Raman systems. The 1990s also saw rapid development in nanoscience. This convergence of technologies (photonics and nanoscience) has led to accelerated development of SERS substrates to detect a wide range of chemical and biological analytes. It would be a monumental task to discuss all the different kinds of SERS substrates that have been explored. Likewise, it would be impossible to discuss the use of SERS for both chemical and biological detection. Instead, a review of the most common metallic (Ag, Cu, and Au) SERS substrates for chemical detection only is discussed, as well as SERS substrates that are commercially available. Other issues with SERS for chemical detection have been selectivity, reversibility, and reusability of the substrates. How these issues have been addressed is also discussed in this review.
Collapse
|
43
|
Jiang J, Ma L, Chen J, Zhang P, Wu H, Zhang Z, Wang S, Yun W, Li Y, Jia J, Liao J. SERS detection and characterization of uranyl ion sorption on silver nanorods wrapped with Al2O3 layers. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2286-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Vanhecke D, Rodríguez-Lorenzo L, Kinnear C, Durantie E, Rothen-Rutishauser B, Petri-Fink A. Assumption-free morphological quantification of single anisotropic nanoparticles and aggregates. NANOSCALE 2017; 9:4918-4927. [PMID: 28358404 DOI: 10.1039/c6nr07884b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Characterizing the morphometric parameters of noble metal nanoparticles for sensing and catalysis is a persistent challenge due to their small size and complex shape. Herein, we present an approach to determine the volume, surface area, and curvature of non-symmetric anisotropic nanoparticles using electron tomography and design-based stereology without the use of segmentation tools or modeling of the particles. Finally, we apply these tools to aggregates to estimate their fractal dimension.
Collapse
Affiliation(s)
- Dimitri Vanhecke
- University of Fribourg, Adolphe Merkle Institute, Ch. des Verdiers 4, Fribourg, Switzerland.
| | | | | | | | | | | |
Collapse
|
45
|
Kalachyova Y, Mares D, Jerabek V, Ulbrich P, Lapcak L, Svorcik V, Lyutakov O. Ultrasensitive and reproducible SERS platform of coupled Ag grating with multibranched Au nanoparticles. Phys Chem Chem Phys 2017; 19:14761-14769. [DOI: 10.1039/c7cp01828b] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The ultra high sensitive and reproducible surface enhanced Raman substrate has been made through the immobilization of sharp-edges specific gold nanoparticles on the silver grating surface.
Collapse
Affiliation(s)
- Yevgeniya Kalachyova
- Department of Solid State Engineering
- University of Chemistry and Technology
- 166 28 Prague
- Czech Republic
- Department of Technology of Organic Substances and Polymer Materials
| | - David Mares
- Department of Microelectronics
- Faculty of Electrical Engineering
- Czech Technical University
- Prague
- Czech Republic
| | - Vitezslav Jerabek
- Department of Microelectronics
- Faculty of Electrical Engineering
- Czech Technical University
- Prague
- Czech Republic
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Ladislav Lapcak
- Central Laboratories
- University of Chemistry and Technology
- Prague
- Czech Republic
| | - Vaclav Svorcik
- Department of Solid State Engineering
- University of Chemistry and Technology
- 166 28 Prague
- Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid State Engineering
- University of Chemistry and Technology
- 166 28 Prague
- Czech Republic
- Department of Technology of Organic Substances and Polymer Materials
| |
Collapse
|