1
|
Liang Y, Figueroa-Miranda G, Tanner JA, Huang F, Offenhäusser A, Mayer D. Highly sensitive detection of malaria biomarker through matching channel and gate capacitance of integrated organic electrochemical transistors. Biosens Bioelectron 2023; 242:115712. [PMID: 37816283 DOI: 10.1016/j.bios.2023.115712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023]
Abstract
Organic electrochemical transistors (OECTs) possess versatile advantages for biochemical and electrophysiological applications due to electrochemical gating and ion-to-electron conversion capability. Although OECTs have been successfully applied for biochemical sensing, the effect of relative capacitance for specific sensing events is still unclear. In the present work, we design integrated interdigitated OECTs (iOECTs) with on-plane gold gate and different channel geometries for point-of-care diagnosis of malaria using aptamer as receptor. The transconductance of the iOECTs gated with micro-size gold electrodes decreased with increasing the channel thicknesses, especially for devices with large channel areas, which is inconsistent with devices gated by typical Ag/AgCl electrodes, attributing to the limited gating efficiency of the micro-size gate electrode. The capacitance of gate electrode was heavily suppressed by receptors but increased with the incubation of targets. In addition, the integrated iOECTs with thin channels exhibited superior sensitivity for malaria detection with the detection limit as low as 3.2 aM, much lower than their thick channel counterpart and other state-of-the-art biosensors. These deviations could be caused by the high relative capacitances, with respect to the gate and channel capacitance (Cg/Cch), resulting in a high gate potential drop over the organic channel and thus entirely gating on the thin channel device. These findings provide guidance to optimize the geometry of OECT devices with on-chip integrated gates and the fabrication of miniaturized OECTs for biosensing applications.
Collapse
Affiliation(s)
- Yuanying Liang
- Guangdong Artificial Intelligence and Digital Economy Laboratory (Guangzhou), Guangzhou, 510335, Guangdong, China; Institute of Biological Information Processing, Bioelecronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Gabriela Figueroa-Miranda
- Institute of Biological Information Processing, Bioelecronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Julian Alexander Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, Guangdong, China
| | - Andreas Offenhäusser
- Institute of Biological Information Processing, Bioelecronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dirk Mayer
- Institute of Biological Information Processing, Bioelecronics IBI-3, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
2
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
3
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
4
|
Navien TN, Yeoh TS, Anna A, Tang TH, Citartan M. Aptamers isolated against mosquito-borne pathogens. World J Microbiol Biotechnol 2021; 37:131. [PMID: 34240263 DOI: 10.1007/s11274-021-03097-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Mosquito-borne diseases are a major threat to public health. The shortcomings of diagnostic tools, especially those that are antibody-based, have been blamed in part for the rising annual morbidity and mortality caused by these diseases. Antibodies harbor a number of disadvantages that can be clearly addressed by aptamers as the more promising molecular recognition elements. Aptamers are defined as single-stranded DNA or RNA oligonucleotides generated by SELEX that exhibit high binding affinity and specificity against a wide variety of target molecules based on their unique structural conformations. A number of aptamers were developed against mosquito-borne pathogens such as Dengue virus, Zika virus, Chikungunya virus, Plasmodium parasite, Francisella tularensis, Japanese encephalitis virus, Venezuelan equine encephalitis virus, Rift Valley fever virus and Yellow fever virus. Intrigued by these achievements, we carry out a comprehensive overview of the aptamers developed against these mosquito-borne infectious agents. Characteristics of the aptamers and their roles in diagnostic, therapeutic as well as other applications are emphasized.
Collapse
Affiliation(s)
- Tholasi Nadhan Navien
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Tzi Shien Yeoh
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
| | - Andrew Anna
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300, Kota Samarahan, Sarawak, Malaysia
| | - Thean-Hock Tang
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| | - Marimuthu Citartan
- Advanced Medical & Dental Institute (AMDI), Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
5
|
Romeo MV, López-Martínez E, Berganza-Granda J, Goñi-de-Cerio F, Cortajarena AL. Biomarker sensing platforms based on fluorescent metal nanoclusters. NANOSCALE ADVANCES 2021; 3:1331-1341. [PMID: 36132872 PMCID: PMC9419537 DOI: 10.1039/d0na00796j] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/10/2021] [Indexed: 05/07/2023]
Abstract
Metal nanoclusters (NCs) and their unique properties are increasing in importance and their applications are covering a wide range of areas. Their remarkable fluorescence properties and easy synthesis procedure and the possibility of functionalizing them for the detection of specific targets, such as biomarkers, make them a very interesting biosensing tool. Nowadays the detection of biomarkers related to different diseases is critical. In this context, NCs scaffolded within an appropriate molecule can be used to detect and quantify biomarkers through specific interactions and fluorescence properties of the NCs. These methods include analytical detection and biolocalization using imaging techniques. This review covers a selection of recent strategies to detect biomarkers related to diverse diseases (from infectious, inflammatory, or tumour origin) using fluorescent nanoclusters.
Collapse
Affiliation(s)
- María V Romeo
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Elena López-Martínez
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
| | - Jesús Berganza-Granda
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA) Technological Park of Bizkaia, Building 202 E-48170 Zamudio Spain
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramon 182 20014 Donostia San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Spain
| |
Collapse
|
6
|
Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test. Mikrochim Acta 2021; 188:88. [PMID: 33594523 PMCID: PMC7886758 DOI: 10.1007/s00604-021-04746-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
A plasmon-enhanced fluorescence-based antibody-aptamer biosensor - consisting of gold nanoparticles randomly immobilized onto a glass substrate via electrostatic self-assembly - is described for specific detection of proteins in whole blood. Analyte recognition is realized through a sandwich scheme with a capture bioreceptor layer of antibodies - covalently immobilized onto the gold nanoparticle surface in upright orientation and close-packed configuration by photochemical immobilization technique (PIT) - and a top bioreceptor layer of fluorescently labelled aptamers. Such a sandwich configuration warrants not only extremely high specificity, but also an ideal fluorophore-nanostructure distance (approximately 10-15 nm) for achieving strong fluorescence amplification. For a specific application, we tested the biosensor performance in a case study for the detection of malaria-related marker Plasmodium falciparum lactate dehydrogenase (PfLDH). The proposed biosensor can specifically detect PfLDH in spiked whole blood down to 10 pM (0.3 ng/mL) without any sample pretreatment. The combination of simple and scalable fabrication, potentially high-throughput analysis, and excellent sensing performance provides a new approach to biosensing with significant advantages compared to conventional fluorescence immunoassays.
Collapse
|
7
|
Kim J, Gang J. Double‐Stranded
DNA
‐Templated Copper Nanoclusters for Detection of
DNA
Polymerase Activity. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jungeun Kim
- Department of Nano Chemistry Gachon University Sungnam South Korea
| | - Jongback Gang
- Department of Nano Chemistry Gachon University Sungnam South Korea
| |
Collapse
|
8
|
Zhang CX, Tanner JA, Li HW, Wu Y. A novel fluorescence probe of Plasmodium vivax lactate dehydrogenase based on adenosine monophosphate protected bimetallic nanoclusters. Talanta 2020; 213:120850. [PMID: 32200917 DOI: 10.1016/j.talanta.2020.120850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/27/2022]
Abstract
Specific detection of Plasmodium vivax lactate dehydrogenase (PvLDH), an important biomarker of malaria, remains a significant challenge. Herein, adenosine monophosphate protected gold-silver bimetallic nanoclusters, Au-AgNCs@AMP were used as a specific and sensitive fluorescence probe to detect PvLDH. After optimizing, a linear response was shown over a wide concentration range (10-100 nM) and an extremely low limit of detection (LOD) at 0.10 nM (3.7 ng mL-1) was achieved finally. Albeit the method was able to detect PvLDH sensitively, it could not discriminate different types of LDHs. Consequently, Al3+ was employed as an "assistant agent", which induced an assay capacity to discriminate PvLDH from other LDHs. The bimetallic nanoclusters inhibited the activity of PvLDH, suggesting it bound near the active site of PvLDH with high affinity. Zeta potential and UV-vis absorption experiments showed that electrostatic interaction was the main driving force for the interaction between the nanoclusters and PvLDH. Through chemical modification it indicated free thiol groups in PvLDH played an implant role in the interaction. Overall, the fluorescence enhancement and blue-shift were attributed to assembly-induced emission enhancement (AIEE) and hydrophobic transfer. The present study provides a simple, robust, and easy-to-perform approach to detect PvLDH with high sensitivity and selectivity, with significant potential for malaria diagnosis in the developing world.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China.
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
9
|
DNA-Silver Nanocluster Binary Probes for Ratiometric Fluorescent Detection of HPV-related DNA. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9085-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
10
|
DNA aptamers for the recognition of HMGB1 from Plasmodium falciparum. PLoS One 2019; 14:e0211756. [PMID: 30964875 PMCID: PMC6456224 DOI: 10.1371/journal.pone.0211756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/24/2019] [Indexed: 12/21/2022] Open
Abstract
Rapid Diagnostic Tests (RDTs) for malaria are restricted to a few biomarkers and antibody-mediated detection. However, the expression of commonly used biomarkers varies geographically and the sensibility of immunodetection can be affected by batch-to-batch differences or limited thermal stability. In this study we aimed to overcome these limitations by identifying a potential biomarker and by developing molecular sensors based on aptamer technology. Using gene expression databases, ribosome profiling analysis, and structural modeling, we find that the High Mobility Group Box 1 protein (HMGB1) of Plasmodium falciparum is highly expressed, structurally stable, and present along all blood-stages of P. falciparum infection. To develop biosensors, we used in vitro evolution techniques to produce DNA aptamers for the recombinantly expressed HMG-box, the conserved domain of HMGB1. An evolutionary approach for evaluating the dynamics of aptamer populations suggested three predominant aptamer motifs. Representatives of the aptamer families were tested for binding parameters to the HMG-box domain using microscale thermophoresis and rapid kinetics. Dissociation constants of the aptamers varied over two orders of magnitude between nano- and micromolar ranges while the aptamer-HMG-box interaction occurred in a few seconds. The specificity of aptamer binding to the HMG-box of P. falciparum compared to its human homolog depended on pH conditions. Altogether, our study proposes HMGB1 as a candidate biomarker and a set of sensing aptamers that can be further developed into rapid diagnostic tests for P. falciparum detection.
Collapse
|
11
|
Zhang Y, Lai BS, Juhas M. Recent Advances in Aptamer Discovery and Applications. Molecules 2019; 24:molecules24050941. [PMID: 30866536 PMCID: PMC6429292 DOI: 10.3390/molecules24050941] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Aptamers are short, single-stranded DNA, RNA, or synthetic XNA molecules that can be developed with high affinity and specificity to interact with any desired targets. They have been widely used in facilitating discoveries in basic research, ensuring food safety and monitoring the environment. Furthermore, aptamers play promising roles as clinical diagnostics and therapeutic agents. This review provides update on the recent advances in this rapidly progressing field of research with particular emphasis on generation of aptamers and their applications in biosensing, biotechnology and medicine. The limitations and future directions of aptamers in target specific delivery and real-time detection are also discussed.
Collapse
Affiliation(s)
- Yang Zhang
- College of Science, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Bo Shiun Lai
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Mario Juhas
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, CH-8006 Zurich, Switzerland.
| |
Collapse
|
12
|
Jia XY, Xue YR, Zhang CX, Luo Q, Wu Y. Highly sensitive detection of the human papillomavirus E6 protein by DNA-protected silver nanoclusters and the intrinsic mechanism. NEW J CHEM 2019. [DOI: 10.1039/c9nj03241j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present study not only supplies a good approach for the early diagnosis of HPV-related cancer but also enriches the biological application of AgNCs–dsDNA.
Collapse
Affiliation(s)
- Xiang-Yu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
13
|
Advances on Aptamers against Protozoan Parasites. Genes (Basel) 2018; 9:genes9120584. [PMID: 30487456 PMCID: PMC6316487 DOI: 10.3390/genes9120584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/16/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023] Open
Abstract
Aptamers are single-stranded DNA or RNA sequences with a unique three-dimensional structure that allows them to recognize a particular target with high affinity. Although their specific recognition activity could make them similar to monoclonal antibodies, their ability to bind to a large range of non-immunogenic targets greatly expands their potential as tools for diagnosis, therapeutic agents, detection of food risks, biosensors, detection of toxins, drug carriers, and nanoparticle markers, among others. One aptamer named Pegaptanib is currently used for treating macular degeneration associated with age, and many other aptamers are in different clinical stages of development of evaluation for various human diseases. In the area of parasitology, research on aptamers has been growing rapidly in the past few years. Here we describe the development of aptamers raised against the main protozoan parasites that affect hundreds of millions of people in underdeveloped and developing countries, remaining a major health concern worldwide, i.e. Trypanosoma spp., Plasmodium spp., Leishmania spp., Entamoeba histolytica, and Cryptosporidium parvuum. The latest progress made in this area confirmed that DNA and RNA aptamers represent attractive alternative molecules in the search for new tools to detect and treat these parasitic infections that affect human health worldwide.
Collapse
|
14
|
Shiu SCC, Kinghorn AB, Sakai Y, Cheung YW, Heddle JG, Tanner JA. The Three S's for Aptamer-Mediated Control of DNA Nanostructure Dynamics: Shape, Self-Complementarity, and Spatial Flexibility. Chembiochem 2018; 19:1900-1906. [PMID: 30007003 DOI: 10.1002/cbic.201800308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 01/11/2023]
Abstract
DNA aptamers are ideal tools to enable modular control of the dynamics of DNA nanostructures. For molecular recognition, they have a particular advantage over antibodies in that they can be integrated into DNA nanostructures in a bespoke manner by base pairing or nucleotide extension without any complex bioconjugation strategy. Such simplicity will be critical upon considering advanced therapeutic and diagnostic applications of DNA nanostructures. However, optimizing DNA aptamers for functional control of the dynamics of DNA nanostructure can be challenging. Herein, we present three considerations-shape, self-complementarity, and spatial flexibility-that should be paramount upon optimizing aptamer functionality. These lessons, learnt from the growing number of aptamer-nanostructure reports thus far, will be helpful for future studies in which aptamers are used to control the dynamics of nucleic acid nanostructures.
Collapse
Affiliation(s)
- Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yusuke Sakai
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Yee-Wai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jonathan G Heddle
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
15
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
16
|
Jia XY, Xue YR, Li HW, Fu DY, Wang WX, Wu Y. The capsid assembly-induced luminescence enhancement (AILE) of DNA-protected silver nanoclusters and anin situapplication. NEW J CHEM 2018. [DOI: 10.1039/c8nj03179g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The study presents an AILE phenomenon for silver nanoclusters and supplies a fluorescence method to evaluate the processes of VLP assembly/disassembly.
Collapse
Affiliation(s)
- Xiang-Yu Jia
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ya-Rong Xue
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Wei-Xian Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Institute of Theoretical Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
17
|
Cheung YW, Dirkzwager RM, Wong WC, Cardoso J, D'Arc Neves Costa J, Tanner JA. Aptamer-mediated Plasmodium-specific diagnosis of malaria. Biochimie 2017; 145:131-136. [PMID: 29080831 DOI: 10.1016/j.biochi.2017.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
Abstract
There is a critical need for better malaria rapid diagnostic tests to discriminate Plasmodium falciparum and Plasmodium vivax infection given the recent observation of HRP2 deletions in P. falciparum parasites. We previously identified a DNA aptamer, 2008s, that targets P. falciparum lactate dehydrogenase (PfLDH) and developed a sensitive aptamer-tethered enzyme capture (APTEC) assay. Here, we characterise two different LDH-binding DNA aptamers in their species-specific activities, then integrate within biochemical diagnostic assays and test in clinical samples. An enzyme-linked oligonucleotide assay demonstrated that aptamer pL1 bound with high affinity to both PfLDH and P. vivax lactate dehydrogenase (PvLDH), whereas aptamer 2008s was specific to PfLDH. An aptamer-tethered enzyme capture (APTEC) assay confirmed the specificity of 2008s in binding and capturing the enzyme activity of PfLDH which could be observed colorimetrically. In malaria patient samples, the 2008s APTEC assay was specific for P. falciparum blood samples and could discriminate against P. vivax blood samples. An aptamer for specific detection of falciparum malaria holds promise as a new strategy for species-specific malaria diagnosis rather than the conventional HRP2 immuno-assay.
Collapse
Affiliation(s)
- Yee-Wai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roderick M Dirkzwager
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Wai-Chung Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Joana D'Arc Neves Costa
- Centro de Pesquisa em Medicina Tropical de Rondônia (CEPEM), Laboratory of Epidemiology, Porto Velho, Rondônia, Brazil
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
18
|
Wang WX, Wu Y, Li HW. Regulation on the aggregation-induced emission (AIE) of DNA-templated silver nanoclusters by BSA and its hydrolysates. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Fraser LA, Kinghorn AB, Dirkzwager RM, Liang S, Cheung YW, Lim B, Shiu SCC, Tang MSL, Andrew D, Manitta J, Richards JS, Tanner JA. A portable microfluidic Aptamer-Tethered Enzyme Capture (APTEC) biosensor for malaria diagnosis. Biosens Bioelectron 2017; 100:591-596. [PMID: 29032164 DOI: 10.1016/j.bios.2017.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/04/2023]
Abstract
There is a critical need for better biosensors for the detection and diagnosis of malaria. We previously developed a DNA aptamer that recognises the Plasmodium falciparum lactate dehydrogenase (PfLDH) enzyme with high sensitivity and specificity. The aptamer was integrated into an Aptamer-Tethered Enzyme Capture (APTEC) assay as a laboratory-based diagnostic approach. However, a portable equipment-free point-of-care aptamer-mediated biosensor could have a significant impact on malaria diagnosis in endemic regions. Here, we present a new concept for a malaria biosensor whereby aptamers are coated onto magnetic microbeads for magnet-guided capture, wash and detection of the biomarker. A biosensor incorporating three separate microfluidic chambers was designed to enable such magnet-guided equipment-free colorimetric detection of PfLDH. A series of microfluidic biosensor prototypes were optimised to lower rates of inter-chamber diffusion, increase sensitivity, and provide a method for point-of-care sample testing. The biosensor showed high sensitivity and specificity when detecting PfLDH using both in vitro cultured parasite samples and using clinical samples from malaria patients. The high performance of the biosensor provides a proof-of-principle for a portable biosensor that could be adaptable for a variety of aptamer-mediated diagnostic scenarios.
Collapse
Affiliation(s)
- Lewis A Fraser
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Andrew B Kinghorn
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Roderick M Dirkzwager
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Shaolin Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yee-Wai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Bryce Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Simon Chi-Chin Shiu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Marco S L Tang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Dean Andrew
- Centre for Biomedical Research, The Burnet Institute of Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Joseph Manitta
- Department of Haematology, Victorian Infectious Diseases Reference Laboratory, Melbourne, Victoria, Australia
| | - Jack S Richards
- Centre for Biomedical Research, The Burnet Institute of Medical Research and Public Health, Melbourne, Victoria, Australia; Department of Medicine, University of Melbourne, Parkville, Victoria, Australia; Department of Infectious Diseases, Monash University, Melbourne, Victoria, Australia
| | - Julian A Tanner
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|