1
|
Wang P, Sun S, Bai G, Zhang R, Liang F, Zhang Y. Nanosized Prussian blue and its analogs for bioimaging and cancer theranostics. Acta Biomater 2024; 176:77-98. [PMID: 38176673 DOI: 10.1016/j.actbio.2023.12.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Prussian blue (PB) nanoparticles (NPs) and Prussian blue analogs (PBAs) can form metal-organic frameworks through the programmable coordination of ferrous ions with cyanide. PB and PBAs represent a burgeoning class of hybrid functional nano-systems with a wide-ranging application spectrum encompassing biomedicine, cancer diagnosis, and therapy. A comprehensive overview of recent advancements is crucial for gaining insights for future research. In this context, we reviewed the synthesis techniques and surface modification strategies employed to tailor the dimensions, morphology, and attributes of PB NPs. Subsequently, we explored advanced biomedical utilities of PB NPs, encompassing photoacoustic imaging, magnetic resonance imaging, ultrasound (US) imaging, and multimodal imaging. In particular, the application of PB NPs-mediated photothermal therapy, photodynamic therapy, and chemodynamic therapy to cancer treatment was reviewed. Based on the literature, we envision an evolving trajectory wherein the future of Prussian blue-driven biological applications converge into an integrated theranostic platform, seamlessly amalgamating bioimaging and cancer therapy. STATEMENT OF SIGNIFICANCE: Prussian blue, an FDA-approved coordinative pigment with a centuries-long legacy, has paved the way for Prussian blue nanoparticles (PB NPs), renowned for their remarkable biocompatibility and biosafety. These PB NPs have found their niche in biomedicine, playing crucial roles in both diagnostics and therapeutic applications. The comprehensive review goes beyond PB NP-based cancer therapy. Alongside in-depth coverage of PB NP synthesis and surface modifications, the review delves into their cutting-edge applications in the realm of biomedical imaging, encompassing techniques such as photoacoustic imaging, magnetic resonance imaging, ultrasound imaging, and multimodal imaging.
Collapse
Affiliation(s)
- Pengfei Wang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Shaohua Sun
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Guosheng Bai
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Ruiqi Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Fei Liang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Yuezhou Zhang
- Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China; Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics (FSCFE), Key Laboratory of Flexible Electronics of Zhejiang Province, 218 Qingyi Road, Ningbo, 315103, China.
| |
Collapse
|
2
|
Xing Z, Dong B, Zhang X, Qiu L, Jiang P, Xuan Y, Ni X, Xu H, Wang J. Cypate-loaded hollow mesoporous Prussian blue nanoparticle/hydrogel system for efficient photodynamic therapy/photothermal therapy dual-modal antibacterial therapy. J Biomed Mater Res A 2024; 112:53-64. [PMID: 37728144 DOI: 10.1002/jbm.a.37613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/26/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms are a significant burden on public health and the economic stability of societies all over the world. The appearance of drug-resistant bacteria has severely blocked the effectiveness of conventional antibiotics. Therefore, developing novel antibiotic-free strategies to combat bacteria holds huge potential for maximizing validity and minimizing the risk of enhancing bacterial resistance. Herein, a cypate-loaded hollow mesoporous Prussian blue nanoparticles (Cy-HMPBs) was built to achieve the PDT/PTT synergistic antimicrobial therapy. The carbomer hydrogel (CH) was combined with the Cy-HMPBs to form a nanoparticle/hydrogel therapeutic system (Cy-HMPBs/CH) to reach the goal of local delivery of antimicrobial cargo. The low concentration of Cy-HMPBs/CH receives over 99% of antimicrobial ability against Escherichia coli and Staphylococcus aureus upon near-infrared (NIR) irradiation. More importantly, Cy-HMPBs/CH has favorable biocompatibility and can play therapeutic effects only after laser irradiation, indicating the on-demand therapy at the targeted region to avert side effects on healthy tissue. This study provides ideas for the design of an antibiotic-free antimicrobial strategy against infectious diseases.
Collapse
Affiliation(s)
- Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Bingyu Dong
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xiaoxiao Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Xinye Ni
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| |
Collapse
|
3
|
Singh P, Jain N, Shukla S, Tiwari AK, Kumar K, Singh J, Pandey AC. Luminescence nanothermometry using a trivalent lanthanide co-doped perovskite. RSC Adv 2023; 13:2939-2948. [PMID: 36756403 PMCID: PMC9847348 DOI: 10.1039/d2ra05935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 01/19/2023] Open
Abstract
This study investigates in detail the laser-mediated upconversion emission and temperature-sensing capability of (Ca0.99-a Yb0.01Er a )TiO3. Samples were prepared at different concentrations to observe the effect of erbium on upconversion while increasing its concentration and keeping all the other parameters constant. Doping is a widespread technological process which involves incorporating an element called a dopant in a lower ratio to the host lattice to derive hybrid materials with desired properties. The (Ca0.99-a Yb0.01Er a )TiO3 perovskite nanoparticles were synthesized via a sol-gel technique. The frequency upconversion was performed using a 980 nm laser diode excitation source. X-ray diffractometry (XRD) confirmed that the synthesized samples are crystalline in nature and have an orthorhombic structure. The temperature-sensing ability was examined using the fluorescence intensity ratio (FIR) algorithm of two emission bands (2H11/2 → 4I15/2 and 4S3/2 → 4I15/2) of the Er3+ ion. Temperature-dependent upconversion luminescence is observed over a broad temperature range of 298-623 K. The maximum sensor sensitivity obtained is 6.71 × 10-3 K-1 at 110°.
Collapse
Affiliation(s)
- Prashansha Singh
- Nanotechnology Application Centre, University of Allahabad Prayagraj 211002 UP India +91 9452105068
| | - Neha Jain
- Department of Physics, Dr Harisingh Gour Central UniversitySagar470003MPIndia
| | - Shraddha Shukla
- Nanotechnology Application Centre, University of Allahabad Prayagraj 211002 UP India +91 9452105068
| | - Anish Kumar Tiwari
- Nanotechnology Application Centre, University of Allahabad Prayagraj 211002 UP India +91 9452105068
| | - Kaushal Kumar
- Department of Physics, IIT (ISM) Dhanbad826004JharkhandIndia
| | - Jai Singh
- Department of Pure & Applied Physics, Guru Ghasidas Vishwavidyalaya (A Central University)Bilaspur 495009India
| | - Avinash C. Pandey
- Nanotechnology Application Centre, University of AllahabadPrayagraj211002UPIndia+91 9452105068,Inter University Accelerator CentreAruna Asaf Ali MargNew Delhi110067India
| |
Collapse
|
4
|
Advancements of Prussian blue-based nanoplatforms in biomedical fields: Progress and perspectives. J Control Release 2022; 351:752-778. [DOI: 10.1016/j.jconrel.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/07/2022]
|
5
|
Guari Y, Cahu M, Félix G, Sene S, Long J, Chopineau J, Devoisselle JM, Larionova J. Nanoheterostructures based on nanosized Prussian blue and its Analogues: Design, properties and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214497] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
7
|
Yuan X, Cen J, Chen X, Jia Z, Zhu X, Huang Y, Yuan G, Liu J. Iridium oxide nanoparticles mediated enhanced photodynamic therapy combined with photothermal therapy in the treatment of breast cancer. J Colloid Interface Sci 2021; 605:851-862. [PMID: 34371428 DOI: 10.1016/j.jcis.2021.07.136] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) of tumor has achieved good results, but the treatment efficiency is not high due to the lack of effective photosensitizers and tumor hypoxia. In this study, iridium dioxide nanoparticles (IrO2 NPs) with excellent photothermal/photodynamic effects and catalase like activity were synthesized by a simple method. The combination of glucose oxidase (GOx) and IrO2 NPs is formed by hyaluronic acid (HA), which have the activities of glucose oxidase and catalase, can target tumor sites and form in situ amplifiers in tumor microenvironment (IrO2-GOx@HA NPs). Firstly, GOx convert the high levels of glucose in the tumor to hydrogen peroxide (H2O2), and then IrO2 NPs convert H2O2 to oxygen (O2), which can enhance the type II of PDT. IrO2 NPs also can be used as a thermosensitive agent for photothermal therapy (PTT). In cancer cells, IrO2-GOx@HA NPs-mediated amplifier enhances the effect of type II of PDT, aggravating the apoptosis of breast cancer (4T1) cells and cooperating with its own PTT to further improve the overall treatment effect. Under simulated hypoxic conditions of tumor tissue, it was found that IrO2-GOx@HA NPs treatment can effectively relieve hypoxia inside tumor tissue. In addition, the results in vivo further proved that, IrO2-GOx@HA NPs can enhance the role of II PDT and cooperate with PTT to treat breast cancer effectively. The results highlight the prospect of IrO2-GOx@HA NPs in controlling and regulating tumor hypoxia to overcome the limitations of current cancer therapy.
Collapse
Affiliation(s)
- Xiaoyu Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jieqiong Cen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Xu Chen
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Zhi Jia
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Xufeng Zhu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yuqin Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Guanglong Yuan
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jie Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China.
| |
Collapse
|
8
|
Shen YM, Gao MY, Chen X, Shen AG, Hu JM. Fine synthesis of Prussian-blue analogue coated gold nanoparticles (Au@PBA NPs) for sorting specific cancer cell subtypes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119566. [PMID: 33607489 DOI: 10.1016/j.saa.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 05/23/2023]
Abstract
Multiplex surface-enhanced Raman scattering (SERS) detection of markers without background in tumor biosystems has its superiority over other optical methods. Herein, we reported a strategy of quantitative discrimination of two breast cancer cell subtypes. Based on our previous studies, two kinds of Prussian blue analogue coated gold nanoparticles (Au@PBA NPs) were designed and synthesized by the replacement of Fe2+ with Pb2+ or Cu2+. Therefore, two distinct SERS emissions of C≡N bonds at 2122 cm-1 and 2176 cm-1 have been acquired. When modified with aptamers of epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), which are both expressed in MCF-7 and MDA-MB-231 cell lines but in different levels, the SERS nanoprobes simultaneously identified the relative expression of these biomarkers on the cell surface, providing a good example for ratiometric detection in biosystems without any interference. Each surface marker of tumor cells corresponds to a single SERS emission. Thus, each subtype could be described in a molecular profiling way through duplex C≡N bonds-based SERS emission, which is more advanced than traditional flow cytometry method.
Collapse
Affiliation(s)
- Ya-Min Shen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China
| | - Meng-Yue Gao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xu Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan 430079, PR China.
| | - Ji-Ming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
9
|
Cell mechanics characteristics of anti-HER2 modified PPy@GNPs and its photothermal treatment of SKOV-3 cells. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Yang J, Wang H, Liu J, Ding M, Xie X, Yang X, Peng Y, Zhou S, Ouyang R, Miao Y. Recent advances in nanosized metal organic frameworks for drug delivery and tumor therapy. RSC Adv 2021; 11:3241-3263. [PMID: 35424280 PMCID: PMC8694185 DOI: 10.1039/d0ra09878g] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Metal organic-frameworks (MOFs) are novel materials that have attracted increasing attention for applications in a wide range of research, owing to their unique advantages including their small particle size, porous framework structure and high specific surface area. Because of their adjustable size, nanoscale MOFs (nano-MOFs) can be prepared as carriers of biotherapy drugs, thus enabling biotherapeutic applications. Nano-MOFs' metal ion catalytic activity and organic group functional characteristics can be exploited in biological treatments. Furthermore, the applications of nano-MOFs can be broadened by hybridization with other materials to form composites. This review focuses on the preparation and recent advances in nano-MOFs as drug carriers, therapeutic materials and functionalized materials in drug delivery and tumor therapy based on the single/multiple stimulus response of drug release to achieve the targeted therapy, offering a comprehensive reference for drug carrier design. At the end, the current challenges and prospects are discussed to provide significant insight into the design and applications of nano-MOFs in drug delivery and tumor therapy.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yaru Peng
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Shuang Zhou
- Cancer Institute, Tongji University School of Medicine Shanghai 200092 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
11
|
Boksebeld M, Kilin V, Taitt R, Bonacina L, Géloën A, Lysenko V, Chevolot Y, Monnier V. Nonlinear plasmonic nanohybrids as probes for multimodal cell imaging and potential phototherapeutic agents. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab0232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Effect of pH of Precursor on Up/Downconversion and Cathodoluminescence of Gd2
O3
:Ho3+
/Yb3+
Phosphor and Magneto-Optic Studies. ChemistrySelect 2018. [DOI: 10.1002/slct.201801556] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ban Q, Bai T, Duan X, Kong J. Noninvasive photothermal cancer therapy nanoplatforms via integrating nanomaterials and functional polymers. Biomater Sci 2018; 5:190-210. [PMID: 27990534 DOI: 10.1039/c6bm00600k] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the cutting-edge field of cancer therapy, noninvasive photothermal therapy (PTT) has received great attention because it is considered to overcome the drawbacks of conventional surgery, radiotherapy and chemotherapy of severe body injuries and side effects on the immune system. The construction of PTT therapeutic and theranostic nanoplatforms is the key issue in achieving tumor targeting, imaging and therapy in a synergetic manner. In this review, we focus on the recent advances in constructing PTT therapeutic and theranostic nanoplatforms by integrating nanomaterials and functional polymers. The noninvasive photothermal cancer therapy mechanism and achievement strategies of PTT therapeutic and theranostic nanoplatforms are presented as well as the innovative construction strategies and perspectives for the future. Owing to their high tumor ablation efficiency, biological availability and low- or non-toxicity, PTT therapeutic and theranostic nanoplatforms are promising and emerging in medicine and clinical applications.
Collapse
Affiliation(s)
- Qingfu Ban
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Ting Bai
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Xiao Duan
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Sciences, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| |
Collapse
|
14
|
Moore TJ, Moody AS, Payne TD, Sarabia GM, Daniel AR, Sharma B. In Vitro and In Vivo SERS Biosensing for Disease Diagnosis. BIOSENSORS 2018; 8:E46. [PMID: 29751641 PMCID: PMC6022968 DOI: 10.3390/bios8020046] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 01/24/2023]
Abstract
For many disease states, positive outcomes are directly linked to early diagnosis, where therapeutic intervention would be most effective. Recently, trends in disease diagnosis have focused on the development of label-free sensing techniques that are sensitive to low analyte concentrations found in the physiological environment. Surface-enhanced Raman spectroscopy (SERS) is a powerful vibrational spectroscopy that allows for label-free, highly sensitive, and selective detection of analytes through the amplification of localized electric fields on the surface of a plasmonic material when excited with monochromatic light. This results in enhancement of the Raman scattering signal, which allows for the detection of low concentration analytes, giving rise to the use of SERS as a diagnostic tool for disease. Here, we present a review of recent developments in the field of in vivo and in vitro SERS biosensing for a range of disease states including neurological disease, diabetes, cardiovascular disease, cancer, and viral disease.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Taylor D Payne
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Grace M Sarabia
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Alyssa R Daniel
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- Department of Chemistry, The University of Tennessee, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
15
|
Xiao L, Parchur AK, Gilbertson TA, Zhou A. SERS-fluorescence bimodal nanoprobes for in vitro imaging of fatty acid responsive receptor GPR120. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 10:22-29. [PMID: 29449902 PMCID: PMC5808993 DOI: 10.1039/c7ay02039b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
G-protein-coupled receptor 120 (GPR120), as a member of the rhodopsin family of G-protein-coupled receptors, has been shown to function as a sensor for dietary fat in the gustatory and digestive systems. Its specific role in the chemoreception of fatty acids, which is thought to be crucial in understanding the mechanism surrounding the control of fat intake and, accordingly, in the treatment of obesity, remains unclear. Here we report a novel surface-enhanced Raman spectroscopy (SERS)-fluorescence bimodal microscopic technique for detection and imaging of GPR120 in single living cells. CaMoO4:Eu3+@AuNR hybrid nanoparticles are synthesized and characterized as imaging probes. Biocompatibility and imaging capability of the probes are investigated using a model HEK293 cell line with an inducible GPR120 gene transfection. Cellular distribution of GPR120 is visualized by single-cell SERS and fluorescence imaging. A dose-dependent GPR120 response to linoleic acid treatment is revealed by SERS.
Collapse
Affiliation(s)
- Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, 46556, USA
| | - Abdul K. Parchur
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| | | | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, Utah 84322-4105, U.S.A
| |
Collapse
|
16
|
Sinha S, Mahata MK, Swart HC, Kumar A, Kumar K. Enhancement of upconversion, temperature sensing and cathodoluminescence in the K+/Na+ compensated CaMoO4:Er3+/Yb3+ nanophosphor. NEW J CHEM 2017. [DOI: 10.1039/c7nj00086c] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enhancing upconversion, temperature sensing and cathodoluminescence in the CaMoO4:Er3+/Yb3+ nanophosphor via K+/Na+ simultaneous codoping.
Collapse
Affiliation(s)
- Shriya Sinha
- Optical Materials & Bio-imaging Research Laboratory
- Department of Applied Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad-826004
- India
| | - Manoj Kumar Mahata
- Optical Materials & Bio-imaging Research Laboratory
- Department of Applied Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad-826004
- India
| | - H. C. Swart
- Department of Physics
- University of Free State
- Bloemfontein
- South Africa
| | - Ashwini Kumar
- Department of Physics
- University of Free State
- Bloemfontein
- South Africa
| | - Kaushal Kumar
- Optical Materials & Bio-imaging Research Laboratory
- Department of Applied Physics
- Indian Institute of Technology (Indian School of Mines)
- Dhanbad-826004
- India
| |
Collapse
|
17
|
Dang J, He H, Chen D, Yin L. Manipulating tumor hypoxia toward enhanced photodynamic therapy (PDT). Biomater Sci 2017; 5:1500-1511. [DOI: 10.1039/c7bm00392g] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This mini-review summarizes various methods for overcoming or utilizing hypoxia for enhanced PDT.
Collapse
Affiliation(s)
- Juanjuan Dang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| | - Donglai Chen
- Department of Thoracic Surgery
- Shanghai Pulmonary Hospital
- Tongji University School of Medicine
- Shanghai
- P.R. China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices
- Institute of Functional Nano and Soft Materials (FUNSOM)
- Soochow University
- Suzhou 215123
- P.R. China
| |
Collapse
|
18
|
Zhu R, Gao F, Piao JG, Yang L. Skin-safe photothermal therapy enabled by responsive release of acid-activated membrane-disruptive polymer from polydopamine nanoparticle upon very low laser irradiation. Biomater Sci 2017; 5:1596-1602. [DOI: 10.1039/c7bm00256d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
How to ablate tumor without damaging skin is a challenge for photothermal therapy.
Collapse
Affiliation(s)
- Rui Zhu
- CAS Key Laboratory of Soft Matter Chemistry
- University of Science and Technology of China
- Hefei
- China
- School of Chemistry and Materials Science
| | - Feng Gao
- CAS Key Laboratory of Soft Matter Chemistry
- University of Science and Technology of China
- Hefei
- China
- School of Chemistry and Materials Science
| | - Ji-Gang Piao
- CAS Key Laboratory of Soft Matter Chemistry
- University of Science and Technology of China
- Hefei
- China
- School of Chemistry and Materials Science
| | - Lihua Yang
- CAS Key Laboratory of Soft Matter Chemistry
- University of Science and Technology of China
- Hefei
- China
- School of Chemistry and Materials Science
| |
Collapse
|