1
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
2
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
3
|
Yoon SA, Hong SJ, Han J, Lee MH. Sensitive Cancer Hypoxia Detection via a Dual-Locking Fluorescence Response System Using Two Hypoxia Indicators. Anal Chem 2024. [PMID: 39258982 DOI: 10.1021/acs.analchem.4c03179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Hypoxia is intricately associated with various diseases, including ischemia, vascular disorders, and cancer. Particularly in cancer cells, hypoxia promotes tumor growth, cell proliferation, migration, and invasion and enhances treatment resistance, making its detection crucial for cancer diagnosis and therapy. However, methods for detecting hypoxia are limited, often relying on single-detection systems. In this study, we developed a dual-lock-based fluorescent probe that selectively exhibits strong green fluorescence under hypoxic conditions due to simultaneous activity of nitroreductases (NTRs) and hydrogen sulfide (H2S), with a high signal-to-background ratio. The biocompatibility and photophysical properties of the probes were thoroughly investigated through both extracellular and intracellular experimental analyses. Among the synthesized naphthalimide-based probes, the dual-detection probe DNNC demonstrated excellent selectivity and sensitivity to the simultaneous activity of NTR/H2S compared to other single-detection probes. The performance of DNNC was applied to various organ-derived cancer cells and tumor tissue models such as HeLa cell sparoids, enabling spatiotemporal confocal fluorescence imaging and quantitative analysis of hypoxic levels in cancer. Our development of DNNC is expected to significantly advance cancer diagnosis and treatment by molecularly detecting hypoxia associated with cancer aggressiveness, therapy resistance, and unfavorable prognosis.
Collapse
Affiliation(s)
- Shin A Yoon
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - So Jin Hong
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Jiyou Han
- Department of Biomedical and Chemical Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Min Hee Lee
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
4
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
5
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Anichina K, Lumov N, Bakov V, Yancheva D, Georgiev N. Recent Advances in the Application of Nitro(het)aromatic Compounds for Treating and/or Fluorescent Imaging of Tumor Hypoxia. Molecules 2024; 29:3475. [PMID: 39124883 PMCID: PMC11314162 DOI: 10.3390/molecules29153475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
This review delves into recent advancements in the field of nitro(het)aromatic bioreductive agents tailored for hypoxic environments. These compounds are designed to exploit the low-oxygen conditions typically found in solid tumors, making them promising candidates for targeted cancer therapies. Initially, this review focused on their role as gene-directed enzyme prodrugs, which are inert until activated by specific enzymes within tumor cells. Upon activation, these prodrugs undergo chemical transformations that convert them into potent cytotoxic agents, selectively targeting cancerous tissue while sparing healthy cells. Additionally, this review discusses recent developments in prodrug conjugates containing nitro(het)aromatic moieties, designed to activate under low-oxygen conditions within tumors. This approach enhances their efficacy and specificity in cancer treatment. Furthermore, this review covers innovative research on using nitro(het)aromatic compounds as fluorescent probes for imaging hypoxic tumors. These probes enable non-invasive visualization of low-oxygen regions within tumors, providing valuable insights for the diagnosis, treatment planning, and monitoring of therapeutic responses. We hope this review will inspire researchers to design and synthesize improved compounds for selective cancer treatment and early diagnostics.
Collapse
Affiliation(s)
- Kameliya Anichina
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Nikolay Lumov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Ventsislav Bakov
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| | - Denitsa Yancheva
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev str. Bl. 9, 1113 Sofia, Bulgaria
| | - Nikolai Georgiev
- Department of Organic Synthesis, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (K.A.); (N.L.); (V.B.); (D.Y.)
| |
Collapse
|
7
|
Khan A. Cleavable azobenzene linkers for the design of stimuli-responsive materials. Chem Commun (Camb) 2024; 60:6591-6602. [PMID: 38872512 DOI: 10.1039/d4cc02311k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The azo linkage (NN) is one of the very few functional groups in organic chemistry that exhibits sensitivity towards thermal, chemical, photochemical, and biological stimuli. Consequently, this property has given rise to a distinct class of responsive materials. For example, thermal sensitivity has led to generation of free radical initiators useful in curing and polymerization applications. Chemically-induced cleavage has aided the development of self-immolative polymers and reactive scaffolds for proteomics applications. Photo-isomerization capability has given rise to photo-responsive systems. Azobenzene cleavage in biologically reducing environments, such as that of the colon, and under tumor hypoxia conditions has led to diagnostic, therapeutic, and delivery materials. Such conditions have also allowed for control over formation (assembly) and disruption (disassembly) of micellar nanoparticles. The aim of this review article is to look beyond the prevalent photosensitivity aspect of the aromatic azo compounds and draw attention to the azo scission reaction as a trigger of the change in the structure and properties of organic materials. Thus, the main discussion begins with the mechanism of the reductive cleavage. Then, its application in the design of molecules that can be activated as drugs and fluorescent sensors, (nano)materials with potential to release active substances, and polymers with side-chain and main-chain self-immolative capacity is discussed. Finally, the status and future challenges in this field are discussed.
Collapse
Affiliation(s)
- Anzar Khan
- National Institute for Research and Development of Isotopic and Molecular Technologies - INCDTIM, 67-103 Donat Street, 400293 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Krishnamurthy C, Jathi K, K M P, Yesudhasan C. Hydrazo Pyrazole-Pyridone Fluorescent tag for NLO, Live cell imaging, LFPs visualization, Photophysical probing, and Electrochemical sensor for Dopamine detection. LUMINESCENCE 2024; 39:e4760. [PMID: 38738510 DOI: 10.1002/bio.4760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The present communication reports on the synthesis of a novel methyl-pyridone azo fluorescent tag (MPAFT) were proven through 1H (NMR), FT-IR, UV-vis, and high-resolution mass spectrometry. The quantum chemical parameters of MPAFT were evaluated using density functional theory (DFT) analysis. It was further investigated for its latent fingerprint (LFPs) in various surfaces and anticounterfeiting applications. By exposing Level I-Level III, ridge features to UV light with a wavelength of 365 nm, a bioimaging investigation has also demonstrated the potential of MPAFT's emission behaviour. The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) at MPAFT/MGCE (modified glassy carbon electrode) were used to explore the electrochemical sensitivity and reliable detection of dopamine (DA) in neutral PBS (pH 7) electrolyte solution, and the results show good sensitivity and detection. The lower detection limit for LSV was 0.81 μM under optimum conditions.
Collapse
Affiliation(s)
- Chethan Krishnamurthy
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Keshavayya Jathi
- Department of PG Studies and Research in Chemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Pallavi K M
- Department of Studies in Chemistry, Davangere University, Davanagere, Karnataka, India
| | - Chinnaraj Yesudhasan
- Supramolecular and Organometallic Chemistry Laboratory, Department of Inorganic Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
9
|
Shen J, Chen L, Liu J, Li A, Zheng L, Chen S, Li Y. EGFR degraders in non-small-cell lung cancer: Breakthrough and unresolved issue. Chem Biol Drug Des 2024; 103:e14517. [PMID: 38610074 DOI: 10.1111/cbdd.14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/02/2024] [Accepted: 03/16/2024] [Indexed: 04/14/2024]
Abstract
The epidermal growth factor receptor (EGFR) has been well validated as a therapeutic target for anticancer drug discovery. Osimertinib has become the first globally accessible third-generation EGFR inhibitor, representing one of the most advanced developments in non-small-cell lung cancer (NSCLC) therapy. However, a tertiary Cys797 to Ser797 (C797S) point mutation has hampered osimertinib treatment in patients with advanced EGFR-mutated NSCLC. Several classes of fourth-generation EGFR inhibitors were consequently discovered with the aim of overcoming the EGFRC797S mutation-mediated resistance. However, no clinical efficacy data of the fourth-generation EGFR inhibitors were reported to date, and EGFRC797S mutation-mediated resistance remains an "unmet clinical need." Proteolysis-targeting chimeric molecules (PROTACs) obtained from EGFR-TKIs have been developed to target drug resistance EGFR in NSCLC. Some PROTACs are from nature products. These degraders compared with EGFR inhibitors showed better efficiency in their cellular potency, inhibition, and toxicity profiles. In this review, we first introduce the structural properties of EGFR, the resistance, and mutations of EGFR, and then mainly focus on the recent advances of EGFR-targeting degraders along with its advantages and outstanding challenges.
Collapse
Affiliation(s)
- Jiayi Shen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Liping Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Jihu Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Anzhi Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lüyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Sheng Chen
- Jiangxi Chiralsyn Biological Medicine Co., Ltd, Ganzhou, Jiangxi, China
| | - Yongdong Li
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
10
|
Liu D, Liang M, Fan A, Bing W, Qi J. Hypoxia-responsive AIEgens for precise disease theranostics. LUMINESCENCE 2024; 39:e4659. [PMID: 38286609 DOI: 10.1002/bio.4659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/01/2023] [Accepted: 12/04/2023] [Indexed: 01/31/2024]
Abstract
Specific biomarker-activatable probes have revolutionized theranostics, being beneficial for precision medicine. Hypoxia is a critical pathological characteristic prevalent in numerous major diseases such as cancers, cardiovascular disorders, inflammatory diseases, and acute ischemia. Aggregation-induced emission luminogens (AIEgens) have emerged as a promising tool to tackle the biomedical issues. Of particular significance are the hypoxia-responsive AIEgens, representing a kind of crucial probe capable of delicately sensing and responding to the hypoxic microenvironment, thereby enhancing the precision of disease diagnosis and treatment. In this review, we summarize the recent advances of hypoxia-responsive AIEgens for varied biomedical applications. The hypoxia-responsive structures based on AIEgens, such as azobenzene, nitrobenzene, and N-oxide are presented, which are in response to the reduction property to bring about significant alternations in response spectra and/or fluorescence intensity. The bioapplications including imaging and therapy of tumor and ischemia diseases are discussed. Moreover, the review sheds light on the future challenges and prospects in this field. This review aims to provide comprehensive guidance and understanding into the development of activatable bioprobes, especially the hypoxia-responsive AIEgens for improving the diagnosis and therapy outcome of related diseases.
Collapse
Affiliation(s)
- Dongfang Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Mengyun Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| | - Aohua Fan
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Wei Bing
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, China
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
11
|
Zhou Q, Xiang J, Qiu N, Wang Y, Piao Y, Shao S, Tang J, Zhou Z, Shen Y. Tumor Abnormality-Oriented Nanomedicine Design. Chem Rev 2023; 123:10920-10989. [PMID: 37713432 DOI: 10.1021/acs.chemrev.3c00062] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Anticancer nanomedicines have been proven effective in mitigating the side effects of chemotherapeutic drugs. However, challenges remain in augmenting their therapeutic efficacy. Nanomedicines responsive to the pathological abnormalities in the tumor microenvironment (TME) are expected to overcome the biological limitations of conventional nanomedicines, enhance the therapeutic efficacies, and further reduce the side effects. This Review aims to quantitate the various pathological abnormalities in the TME, which may serve as unique endogenous stimuli for the design of stimuli-responsive nanomedicines, and to provide a broad and objective perspective on the current understanding of stimuli-responsive nanomedicines for cancer treatment. We dissect the typical transport process and barriers of cancer drug delivery, highlight the key design principles of stimuli-responsive nanomedicines designed to tackle the series of barriers in the typical drug delivery process, and discuss the "all-into-one" and "one-for-all" strategies for integrating the needed properties for nanomedicines. Ultimately, we provide insight into the challenges and future perspectives toward the clinical translation of stimuli-responsive nanomedicines.
Collapse
Affiliation(s)
- Quan Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Xiang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Nasha Qiu
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yechun Wang
- Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Ying Piao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Shiqun Shao
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jianbin Tang
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Zhuxian Zhou
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Chemical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
12
|
Uyar B, Ozsamur NG, Celik FS, Ozbayram I, Erbas-Cakmak S. Downregulation of gene expression in hypoxic cancer cells by an activatable G-quadruplex stabiliser. Chem Commun (Camb) 2023; 59:2247-2250. [PMID: 36723070 DOI: 10.1039/d2cc06347f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the research, the modulation of gene expression with a novel G-quadruplex stabiliser was analysed. Activation by the removal of bulky hypoxia-responsive substituent enhances G-quadruplex stabilisation. Hypoxic MCF7 cells incubated with the stabiliser displayed significant downregulation of oncogenes c-myc, bcl-2, and hif-1α. This study presents the first hypoxia-activatable G-quadruplex stabilization and transcriptional regulation.
Collapse
Affiliation(s)
- Busra Uyar
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Nezahat Gokce Ozsamur
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Fatma Secer Celik
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Ilkyaz Ozbayram
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey.
| | - Sundus Erbas-Cakmak
- Konya Food and Agriculture University, Department of Biotechnology, Konya 42080, Turkey. .,Konya Food and Agriculture University, Department of Molecular Biology and Genetics, Konya 42080, Turkey
| |
Collapse
|
13
|
Wallabregue AD, Bolland H, Faulkner S, Hammond EM, Conway SJ. Two Color Imaging of Different Hypoxia Levels in Cancer Cells. J Am Chem Soc 2023; 145:2572-2583. [PMID: 36656915 PMCID: PMC9896549 DOI: 10.1021/jacs.2c12493] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypoxia (low oxygen levels) occurs in a range of biological contexts, including plants, bacterial biofilms, and solid tumors; it elicits responses from these biological systems that impact their survival. For example, conditions of low oxygen make treating tumors more difficult and have a negative impact on patient prognosis. Therefore, chemical probes that enable the study of biological hypoxia are valuable tools to increase the understanding of disease-related conditions that involve low oxygen levels, ultimately leading to improved diagnosis and treatment. While small-molecule hypoxia-sensing probes exist, the majority of these image only very severe hypoxia (<1% O2) and therefore do not give a full picture of heterogeneous biological hypoxia. Commonly used antibody-based imaging tools for hypoxia are less convenient than small molecules, as secondary detection steps involving immunostaining are required. Here, we report the synthesis, electrochemical properties, photophysical analysis, and biological validation of a range of indolequinone-based bioreductive fluorescent probes. We show that these compounds image different levels of hypoxia in 2D and 3D cell cultures. The resorufin-based probe 2 was activated in conditions of 4% O2 and lower, while the Me-Tokyo Green-based probe 4 was only activated in severe hypoxia─0.5% O2 and less. Simultaneous application of these compounds in spheroids revealed that compound 2 images similar levels of hypoxia to pimonidazole, while compound 4 images more extreme hypoxia in a manner analogous to EF5. Compounds 2 and 4 are therefore useful tools to study hypoxia in a cellular setting and represent convenient alternatives to antibody-based imaging approaches.
Collapse
Affiliation(s)
- Antoine
L. D. Wallabregue
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Hannah Bolland
- Oxford
Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.
| | - Stephen Faulkner
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Ester M. Hammond
- Oxford
Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, U.K.,
| | - Stuart J. Conway
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| |
Collapse
|
14
|
Porubský M, Řezníčková E, Křupková S, Kryštof V, Hlaváč J. Development of fluorescent dual-FRET probe for simultaneous detection of caspase-8 and caspase-9 activities and their relative quantification. Bioorg Chem 2022; 129:106151. [DOI: 10.1016/j.bioorg.2022.106151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/24/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022]
|
15
|
Karan S, Cho MY, Lee H, Park HS, Han EH, Song Y, Lee Y, Kim M, Cho JH, Sessler JL, Hong KS. Hypoxia-Responsive Luminescent CEST MRI Agent for In Vitro and In Vivo Tumor Detection and Imaging. J Med Chem 2022; 65:7106-7117. [PMID: 35580357 DOI: 10.1021/acs.jmedchem.1c01745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxia is a feature of most solid tumors and a key determinant of cancer growth and propagation. Sensing hypoxia effectively could lead to more favorable clinical outcomes. Here, we report a molecular antenna-based bimodal probe designed to exploit the complementary advantages of magnetic resonance (MR)- and optical-based imaging. Specifically, we describe the synthesis and evaluation of a dual-action probe (NO2-Eu) that permits hypoxia-activated chemical exchange saturation transfer (CEST) MR and optical imaging. In CT26 cells, this NO2-Eu probe not only provides an enhanced CEST MRI signal but also turns "on" the optical signal under hypoxic conditions. Time-dependent in vivo CEST imaging in a hypoxic CT26 tumor xenograft mouse model revealed probe-dependent tumor detection by CEST MRI contrast in the tumor area. We thus suggest that dual-action hypoxia probes, like that reported here, could have a role to play in solid tumor diagnosis and monitoring.
Collapse
Affiliation(s)
- Sanu Karan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hyunseung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Eun Hee Han
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youngkyu Song
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Youlee Lee
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Mina Kim
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Science, London WC1N 3BG, United Kingdom
| | - Jee-Hyun Cho
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
16
|
Das S, Indurthi HK, Asati P, Sharma DK. Small Molecule Fluorescent Probes for Sensing and Bioimaging of Nitroreductase. ChemistrySelect 2022. [DOI: 10.1002/slct.202102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Samarpita Das
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Harish K. Indurthi
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Pulkit Asati
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| | - Deepak K. Sharma
- Department of Pharmaceutical Engg. and Tech Indian Institute of Technology-Banaras Hindu University Varanasi, Up 221005
| |
Collapse
|
17
|
Lee LCC, Lo KKW. Strategic design of photofunctional transition metal complexes for cancer diagnosis and therapy. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Cheng W, Li S, Wen X, Han S, Wang S, Wei H, Song Z, Wang Y, Tian X, Zhang X. Development of hypoxia-activated PROTAC exerting a more potent effect in tumor hypoxia than in normoxia. Chem Commun (Camb) 2021; 57:12852-12855. [PMID: 34788776 DOI: 10.1039/d1cc05715d] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypoxia is a hallmark of many solid tumors, and it causes the overexpression of a variety of proteins including the epidermal growth factor receptor (EGFR). Many antitumor prodrugs have been designed to target hypoxia. Here we report the identification of a kind of hypoxia-activated proteolysis targeting chimera (ha-PROTAC) by introducing the hypoxia-activated leaving group (1-methyl-2-nitro-1H-imidazol-5-yl)methyl or 4-nitrobenzyl into the structure of an EGFRDel19-based PROTAC. Among the obtained molecules, ha-PROTAC 13 exhibits a more potent degradation activity for EGFRDel19 in hypoxia than in normoxia in HCC4006 cells. This is the first example of identifying a PROTAC to selectively act on tumors utilizing the characteristic of tumor hypoxia and provides a new approach for PROTAC development.
Collapse
Affiliation(s)
- Weiyan Cheng
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xueqian Wen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Siyuan Han
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suhua Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Han Wei
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhizhen Song
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China. .,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
19
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 702] [Impact Index Per Article: 175.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
20
|
Wang J, Liu J, Yang Z. Recent advances in peptide-based nanomaterials for targeting hypoxia. NANOSCALE ADVANCES 2021; 3:6027-6039. [PMID: 36133944 PMCID: PMC9418673 DOI: 10.1039/d1na00637a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/16/2023]
Abstract
Hypoxia is a prominent feature of many severe diseases such as malignant tumors, ischemic strokes, and rheumatoid arthritis. The lack of oxygen has a paramount impact on angiogenesis, invasion, metastasis, and chemotherapy resistance. The potential of hypoxia as a therapeutic target has been increasingly recognized over the last decade. In order to treat these disease states, peptides have been extensively investigated due to their advantages in safety, target specificity, and tumor penetrability. Peptides can overcome difficulties such as low drug/energy delivery efficiency, hypoxia-induced drug resistance, and tumor nonspecificity. There are three main strategies for targeting hypoxia through peptide-based nanomaterials: (i) using peptide ligands to target cellular environments unique to hypoxic conditions, such as cell surface receptors that are upregulated in cells under hypoxic conditions, (ii) utilizing peptide linkers sensitive to the hypoxic microenvironment that can be cleaved to release therapeutic or diagnostic payloads, and (iii) a combination of the above where targeting peptides will localize the system to a hypoxic environment for it to be selectively cleaved to release its payload, forming a dual-targeting system. This review focuses on recent developments in the design and construction of novel peptide-based hypoxia-targeting nanomaterials, followed by their mechanisms and potential applications in diagnosis and treatment of hypoxic diseases. In addition, we address challenges and prospects of how peptide-based hypoxia-targeting nanomaterials can achieve a wider range of clinical applications.
Collapse
Affiliation(s)
- Jun Wang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Jing Liu
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| | - Zhongxing Yang
- School of Pharmacy, Jining Medical University Rizhao 276800 China
| |
Collapse
|
21
|
Liu T, Wang Y, Feng L, Tian X, Cui J, Yu Z, Wang C, Zhang B, James TD, Ma X. 2D Strategy for the Construction of an Enzyme-Activated NIR Fluorophore Suitable for the Visual Sensing and Profiling of Homologous Nitroreductases from Various Bacterial Species. ACS Sens 2021; 6:3348-3356. [PMID: 34469146 PMCID: PMC8477384 DOI: 10.1021/acssensors.1c01216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Nitroreductases (NTRs) mediate the reduction of nitroaromatic compounds to the corresponding nitrite, hydroxylamine, or amino derivatives. The activity of NTRs in bacteria facilitates the metabolic activation and antibacterial activity of 5-nitroimidazoles. Therefore, NTR activity correlates with the drug susceptibility and resistance of pathogenic bacteria. As such, it is important to develop a rapid and visual assay for the real-time sensing of bacterial NTRs for the evaluation and development of antibiotics. Herein, an activatable near-infrared fluorescent probe (HC-NO2) derived from a hemicyanine fluorophore was designed and developed based on two evaluation factors, including the calculated partition coefficient (Clog P) and fluorescence wavelength. Using HC-NO2 as the special substrate of NTRs, NTR activity can be assayed efficiently, and then, bacteria can be imaged based on the detection of NTRs. More importantly, a sensitive in-gel assay using HC-NO2 has been developed to selectively identify NTRs and sensitively determine NTR activity. Using the in-gel assay, NTRs from various bacterial species have been profiled visually from the "fluorescence fingerprints", which facilitates the rapid identification of NTRs from bacterial lysates. Thus, various homologous NTRs were identified from three metronidazole-susceptible bacterial species as well as seven unsusceptible species, which were confirmed by the whole-genome sequence. As such, the evaluation of NTRs from different bacterial species should help improve the rational usage of 5-nitroimidazole drugs as antibiotics.
Collapse
Affiliation(s)
- Tao Liu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Yifei Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Zhenlong Yu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Baojing Zhang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaochi Ma
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
22
|
Shen J, Shao K, Zhang W, He Y. Hypoxia-Triggered In Situ Self-Assembly of a Charge Switchable Azo Polymer with AIEgens for Tumor Imaging. ACS Macro Lett 2021; 10:702-707. [PMID: 35549096 DOI: 10.1021/acsmacrolett.1c00183] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, stimuli-responsive in situ self-assembly fluorescent probes for tumor imaging, which leverage the advantage of efficient penetrability and satisfactory accumulation, have attracted much attention. In this work, we rationally integrate charge switchable azobenzene moiety and long wavelength aggregation-induced emission fluorogens (AIEgens) into one water-soluble polymer to construct the hypoxia-triggered in situ self-assembly fluorescent probe for tumor imaging. Due to the good water solubility and the quenching effect of azobenzene moiety, the AIEgens containing polymer showed no significant fluorescence. Under a tumor hypoxic environment, the enzymatic reduction of azobenzene triggered cationic quaternary ammonium converting into anionic carboxylate. Then self-assembly nanoparticles were obtained, driven by the electrostatic interaction between negatively charged carboxylate ion and positively charged AIEgens, which emitted a strong orange-red fluorescence.
Collapse
Affiliation(s)
- Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Kuanchun Shao
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Wenlong Zhang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| |
Collapse
|
23
|
Rajapaksha AA, Fu YX, Guo WY, Liu SY, Li ZW, Xiong CQ, Yang WC, Yang GF. Review on the recent progress in the development of fluorescent probes targeting enzymes. Methods Appl Fluoresc 2021; 9. [PMID: 33873170 DOI: 10.1088/2050-6120/abf988] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
Enzymes are very important for biological processes in a living being, performing similar or multiple tasks in and out of cells, tissues and other organisms at a particular location. The abnormal activity of particular enzyme usually caused serious diseases such as Alzheimer's disease, Parkinson's disease, cancers, diabetes, cardiovascular diseases, arthritis etc. Hence, nondestructive and real-time visualization for certain enzyme is very important for understanding the biological issues, as well as the drug administration and drug metabolism. Fluorescent cellular probe-based enzyme detectionin vitroandin vivohas become broad interest for human disease diagnostics and therapeutics. This review highlights the recent findings and designs of highly sensitive and selective fluorescent cellular probes targeting enzymes for quantitative analysis and bioimaging.
Collapse
Affiliation(s)
- Asanka Amith Rajapaksha
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China.,Department of Nano Science Technology, Faculty of Technology, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Wu Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Shi-Yu Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Wen Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Cui-Qin Xiong
- Department of Interventional Medicine, Wuhan Third Hospital-Tongren Hospital of Wuhan University, Wuhan 430070, People's Republic of China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
24
|
Colas K, Doloczki S, Kesidou A, Sainero‐Alcolado L, Rodriguez‐Garcia A, Arsenian‐Henriksson M, Dyrager C. Photophysical Characteristics of Polarity‐Sensitive and Lipid Droplet‐Specific Phenylbenzothiadiazoles. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kilian Colas
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Susanne Doloczki
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Aikaterina Kesidou
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| | - Lourdes Sainero‐Alcolado
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Aida Rodriguez‐Garcia
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Marie Arsenian‐Henriksson
- Department of Microbiology Tumor and Cell biology (MTC), Biomedicum Karolinska Institute 17165 Stockholm Sweden
| | - Christine Dyrager
- Department of Chemistry-BMC Uppsala University Box 576 75123 Uppsala Sweden
| |
Collapse
|
25
|
Jenni S, Ponsot F, Baroux P, Collard L, Ikeno T, Hanaoka K, Quesneau V, Renault K, Romieu A. Design, synthesis and evaluation of enzyme-responsive fluorogenic probes based on pyridine-flanked diketopyrrolopyrrole dyes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119179. [PMID: 33248891 DOI: 10.1016/j.saa.2020.119179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
The ever-growing demand for fluorogenic dyes usable in the rapid construction of analyte-responsive fluorescent probes, has recently contributed to a revival of interest in the chemistry of diketopyrrolopyrrole (DPP) pigments. In this context, we have explored the potential of symmetrical and unsymmetrical DPP derivatives bearing two or one 4-pyridyl substituents acting as optically tunable group(s). The unique fluorogenic behavior of these molecules, closely linked to N-substitution/charge state of their pyridine unit (i.e., neutral pyridine or cationic pyridinium), has been used to design DPP-based fluorescent probes for detection of hypoxia-related redox enzymes and penicillin G acylase (PGA). In this paper, we describe synthesis, spectral characterization and bioanalytical validations of these probes. Dramatic differences in terms of aqueous stability and enzymatic fluorescence activation were observed. This systematic study enables to delineate the scope of application of pyridine-flanked DPP fluorophores in the field of enzyme biosensing.
Collapse
Affiliation(s)
- Sébastien Jenni
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| | - Flavien Ponsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Pierre Baroux
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Lucile Collard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Takayuki Ikeno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Valentin Quesneau
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Kévin Renault
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne, UMR 6302, CNRS, Univ. Bourgogne Franche-Comté, 9, Avenue Alain Savary, 21000 Dijon, France.
| |
Collapse
|
26
|
Recent Progress in the Molecular Imaging of Tumor-Treating Bacteria. Nucl Med Mol Imaging 2021; 55:7-14. [PMID: 33643484 DOI: 10.1007/s13139-021-00689-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022] Open
Abstract
Bacterial cancer therapy (BCT) approaches have been extensively investigated because bacteria can show unique features of strong tropism for cancer, proliferation inside tumors, and antitumor immunity, while bacteria are also possible agents for drug delivery. Despite the rapidly increasing number of preclinical studies using BCT to overcome the limitations of conventional cancer treatments, very few BCT studies have advanced to clinical trials. In patients undergoing BCT, the precise localization and quantification of bacterial density in different body locations is important; however, most clinical trials have used subjective clinical signs and invasive sampling to confirm bacterial colonization. There is therefore a need to improve the visualization of bacterial densities using noninvasive and repetitive in vivo imaging techniques that can facilitate the clinical translation of BCT. In vivo optical imaging techniques using bioluminescence and fluorescence, which are extensively employed to image the therapeutic process of BCT in small animal research, are hard to apply to the human body because of their low penetrative power. Thus, new imaging techniques need to be developed for clinical trials. In this review, we provide an overview of the various in vivo bacteria-specific imaging techniques available for visualizing tumor-treating bacteria in BCT studies.
Collapse
|
27
|
Jia C, Zhang Y, Wang Y, Ji M. A fast-responsive fluorescent turn-on probe for nitroreductase imaging in living cells. RSC Adv 2021; 11:8516-8520. [PMID: 35423362 PMCID: PMC8695130 DOI: 10.1039/d0ra09512e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 11/21/2022] Open
Abstract
Nitroreductase (NTR) may be more active under the environment of hypoxic conditions, which are the distinctive features of the multiphase solid tumor. It is of great significance to effectively detect and monitor NTR in the living cells for the diagnosis of hypoxia in a tumor. Here, we synthesized a novel turn-on fluorescent probe NTR-NO2 based on a fused four-ring quinoxaline skeleton for NTR detection. The highly efficient probe can be easily synthesized. The probe NTR-NO2 showed satisfactory sensitivity and selectivity to NTR. Upon incubation with NTR, NTR-NO2 could successively undergo a nitro reduction reaction and then generate NTR-NH2 along with significant fluorescence enhancement (30 folds). Moreover, the fluorescent dye NTR-NH2 exhibits a large Stokes shift (Δλ = 111 nm) due to the intramolecular charge transfer (ICT) process. As a result, NTR-NO2 displayed a wide linear range (0–4.5 μg mL−1) and low detection limit (LOD = 58 ng mL−1) after responding to NTR. In addition, this probe was adopted for the detection of endogenous NTR within hypoxic HeLa cells. Probe NTR-NO2 was effectively reduced in the presence of NTR generating a highly fluorescent product.![]()
Collapse
Affiliation(s)
- Chengli Jia
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yong Zhang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Yuesong Wang
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| | - Min Ji
- School of Biological Sciences and Medical Engineering, Southeast University Nanjing Jiangsu 210009 PR China +86-13851570005 +86-13851570005
| |
Collapse
|
28
|
Bailey MD, Jin GX, Carniato F, Botta M, Allen MJ. Rational Design of High-Relaxivity Eu II -Based Contrast Agents for Magnetic Resonance Imaging of Low-Oxygen Environments. Chemistry 2021; 27:3114-3118. [PMID: 33226696 PMCID: PMC7902434 DOI: 10.1002/chem.202004450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/21/2020] [Indexed: 01/01/2023]
Abstract
Metal-based contrast agents for magnetic resonance imaging present a promising avenue to image hypoxia. EuII -based contrast agents have a unique biologically relevant redox couple, EuII/III , that distinguishes this metal for use in hypoxia imaging. To that end, we investigated a strategy to enhance the contrast-enhancing capabilities of EuII -based cryptates in magnetic resonance imaging by controlling the rotational dynamics. Two dimetallic, EuII -containing cryptates were synthesized to test the efficacy of rigid versus flexible coupling strategies. A flexible strategy to dimerization led to a modest (114 %) increase in contrast enhancement per Eu ion (60 MHz, 298 K), but a rigid linking strategy led to an excellent (186 %) increase in contrast enhancement despite this compound's having the smaller molecular mass of the two dimetallic complexes. We envision the rigid linking strategy to be useful in the future design of potent EuII -based contrast agents for magnetic resonance imaging.
Collapse
Affiliation(s)
- Matthew D Bailey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Guo-Xia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Matthew J Allen
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
29
|
Prasad S, Chandra A, Cavo M, Parasido E, Fricke S, Lee Y, D'Amone E, Gigli G, Albanese C, Rodriguez O, Del Mercato LL. Optical and magnetic resonance imaging approaches for investigating the tumour microenvironment: state-of-the-art review and future trends. NANOTECHNOLOGY 2021; 32:062001. [PMID: 33065554 DOI: 10.1088/1361-6528/abc208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The tumour microenvironment (TME) strongly influences tumorigenesis and metastasis. Two of the most characterized properties of the TME are acidosis and hypoxia, both of which are considered hallmarks of tumours as well as critical factors in response to anticancer treatments. Currently, various imaging approaches exist to measure acidosis and hypoxia in the TME, including magnetic resonance imaging (MRI), positron emission tomography and optical imaging. In this review, we will focus on the latest fluorescent-based methods for optical sensing of cell metabolism and MRI as diagnostic imaging tools applied both in vitro and in vivo. The primary emphasis will be on describing the current and future uses of systems that can measure intra- and extra-cellular pH and oxygen changes at high spatial and temporal resolution. In addition, the suitability of these approaches for mapping tumour heterogeneity, and assessing response or failure to therapeutics will also be covered.
Collapse
Affiliation(s)
- Saumya Prasad
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Anil Chandra
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Marta Cavo
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Erika Parasido
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Stanley Fricke
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Yichien Lee
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Eliana D'Amone
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| | - Giuseppe Gigli
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
- Department of Mathematics and Physics 'Ennio De Giorgi', University of Salento, via Arnesano, 73100, Lecce, Italy
| | - Chris Albanese
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
- Department of Radiology, Georgetown University Medical Center, Washington, DC, United States of America
| | - Olga Rodriguez
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States of America
- Center for Translational Imaging, Georgetown University Medical Center, Washington, DC, United States of America
| | - Loretta L Del Mercato
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100, Lecce, Italy
| |
Collapse
|
30
|
Wang BY, Wang JY, Chang WW, Chu CC. A dendrimer-functionalized turn-on fluorescence probe based on enzyme-activated debonding feature of azobenzene linkage. NEW J CHEM 2021. [DOI: 10.1039/d1nj03943a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hypoxic feature of tumors has led to researchers developing hypoxia-activated prodrugs and probes that leverage oxidoreductases overexpressed in tumor tissues.
Collapse
Affiliation(s)
- Bing-Yen Wang
- Division of Thoracic Surgery, Department of Surgery, Changhua Christian Hospital, Changhua City 50006, Taiwan
- School of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung City 40201, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Road, Sanmin Dist., Kaohsiung City 80708, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
- College of Medicine, National Chung Hsing University, No. 145 Xingda Rd., South Dist., Taichung City 40227, Taiwan
| | - Jia-Yi Wang
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Science, Chung Shan Medical University, Taichung City 40201, Taiwan
| | - Chih-Chien Chu
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung City 40201, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| |
Collapse
|
31
|
Wang S, Wu X, Zhang Y, Zhang D, Xie B, Pan Z, Ouyang K, Peng T. Discovery of a highly efficient nitroaryl group for detection of nitroreductase and imaging of hypoxic tumor cells. Org Biomol Chem 2021; 19:3469-3478. [PMID: 33899896 DOI: 10.1039/d1ob00356a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypoxia is a pathological hallmark of solid tumors. Detection of hypoxia is therefore of great interest for tumor diagnosis and treatment. As a well-established biomarker of hypoxia, nitroreductase (NTR) has been widely exploited in the development of hypoxia-responsive fluorescent probes on the basis of its enzymatic activity to reduce nitroaryl groups. However, studies on the relationship between the nitroaryl structure and the probe performance for optimal probe design are still rare. Here we report a comparative investigation of nitroaryl groups and identification of the optimal nitroaryl structure for developing new fluorescent probes with extremely high efficiency in the detection of NTR and the imaging of hypoxic tumor cells. Specifically, we synthesized a series of resorufin-based fluorescent probes containing different nitroaryl groups, compared their fluorescence responses to NTR, and identified 2-nitro-N-methyl-imidazolyl as the optimal nitroaryl group that is much more efficient than the most widely used 4-nitrophenyl for NTR detection. The structure-performance relationship was then studied by theoretical molecular docking, revealing the unique features of 2-nitro-N-methyl-imidazolyl in binding and reaction with NTR. We further incorporated the 2-nitro-N-methyl-imidazolyl group into a near-infrared (NIR) hemicyanine fluorophore and developed a NIR fluorescent probe NFP-7 for the detection of NTR and hypoxic tumor cells. NFP-7 exhibits a strong fluorescence increase toward NTR in vitro with an ultrafast (within 40 seconds to fluorescence maximum) and ultrasensitive (0.2 ng mL-1 detection limit) response. NFP-7 has also been demonstrated for imaging the degree of hypoxia in live tumor cells and, more importantly, in a murine tumor model. Our study provides important insights into hypoxia probe development and new tools for hypoxia imaging.
Collapse
Affiliation(s)
- Shushu Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Xiaojun Wu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yuqing Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Dong Zhang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Boyu Xie
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhixiang Pan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
32
|
Imaging Hypoxia. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
33
|
Wang F, Luo R, Xin H, Zhang Y, Córdova Wong BJ, Wang W, Lei J. Hypoxia-stimulated tumor therapy associated with the inhibition of cancer cell stemness. Biomaterials 2020; 263:120330. [DOI: 10.1016/j.biomaterials.2020.120330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/06/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022]
|
34
|
Gorbatov SA, Uvarov DY, Scherbakov AM, Zavarzin IV, Volkova YA, Romieu A. A novel water-soluble BODIPY dye as red fluorescent probe for imaging hypoxic status of human cancer cells. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
36
|
Rizvi SFA, Zhang H, Mehmood S, Sanad M. Synthesis of 99mTc-labeled 2-Mercaptobenzimidazole as a novel radiotracer to diagnose tumor hypoxia. Transl Oncol 2020; 13:100854. [PMID: 32862104 PMCID: PMC7475274 DOI: 10.1016/j.tranon.2020.100854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/24/2020] [Accepted: 08/03/2020] [Indexed: 01/04/2023] Open
Abstract
Discovery of 99mTc-labeled imidazole derivatives as a potential radiotracer for hypoxic tumor imaging is considered to be of great interest because of non-invasive detection capabilities. 2-Mercaptobenzimidazole (2-MBI) was successfully synthesized, characterized and radiolabeled with [99mTc (CO)3(H2O)3]+ intermediate to form 99mTc-2-MBI complex with radiochemical purity of ≥95% yield as observed by instant-thin layer chromatography (ITLC) and radio-high performance liquid chromatography (radio-HPLC). The 99mTc-2-MBI complex was observed to be stable in saline and serum with no noticeable decomposition at room temperature and 37 °C, respectively, over a time period of 24 h. Biodistribution results in Balb/c mice bearing S180 tumor show that 99mTc-2-MBI highly internalized in tumor tissue, also possess preferably high tumor/muscle and tumor/blood ratios 4.14 ± 0.77 and 3.91 ± 0.63, respectively at 24 h incubation. Scintigraphic imaging study shows 99mTc-2-MBI is visibly accumulated in hypoxic tumor tissue, suggesting it would be a promising radiotracer for early stage diagnosis of tumor hypoxia. Radiolabeled imidazole derivatives are non-invasive imaging radiotracers Benzoimidazole as basic subunit of biomolecules Hypoxia or oxygen deprivation plays key role in tumor progression and resistance to therapy Imidazole moiety reduce into reactive intermediary metabolites to show high accumulation in viable hypoxic cells 99mTc-2-MBI radiotracer possess enhanced tumor/muscle and tumor/blood ratios
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China; Isotope Production Group, Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad, Punjab, Pakistan
| | - Haixia Zhang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, Gansu, PR China.
| | - Sajid Mehmood
- Isotope Production Group, Chemistry Division, Pakistan Institute of Nuclear Science and Technology (PINSTECH), P.O. Nilore, Islamabad, Punjab, Pakistan
| | - Mahmoud Sanad
- Labeled Compounds Department, Hot Laboratories Center, Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt
| |
Collapse
|
37
|
Herrlinger E, Hau M, Redhaber DM, Greve G, Willmann D, Steimle S, Müller M, Lübbert M, Miething CC, Schüle R, Jung M. Nitroreductase-Mediated Release of Inhibitors of Lysine-Specific Demethylase 1 (LSD1) from Prodrugs in Transfected Acute Myeloid Leukaemia Cells. Chembiochem 2020; 21:2329-2347. [PMID: 32227662 PMCID: PMC7497180 DOI: 10.1002/cbic.202000138] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/29/2020] [Indexed: 12/14/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) has evolved as a promising therapeutic target for cancer treatment, especially in acute myeloid leukaemia (AML). To approach the challenge of site-specific LSD1 inhibition, we developed an enzyme-prodrug system with the bacterial nitroreductase NfsB (NTR) that was expressed in the virally transfected AML cell line THP1-NTR+ . The cellular activity of the NTR was proven with a new luminescent NTR probe. We synthesised a diverse set of nitroaromatic prodrugs that by design do not affect LSD1 and are reduced by the NTR to release an active LSD1 inhibitor. The emerging side products were differentially analysed using negative controls, thereby revealing cytotoxic effects. The 2-nitroimidazolyl prodrug of a potent LSD1 inhibitor emerged as one of the best prodrug candidates with a pronounced selectivity window between wild-type and transfected THP1 cells. Our prodrugs are selectively activated and release the LSD1 inhibitor locally, proving their suitability for future targeting approaches.
Collapse
Affiliation(s)
- Eva‐Maria Herrlinger
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Mirjam Hau
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
| | - Desiree Melanie Redhaber
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Gabriele Greve
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Dominica Willmann
- Department of Urology and Center for Clinical ResearchUniversity of Freiburg Medical CenterBreisacher Strasse 6679106FreiburgGermany
| | - Simon Steimle
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Michael Müller
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
| | - Michael Lübbert
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)
| | - Christoph Cornelius Miething
- Division of Hematology, Oncology and Stem Cell TransplantationUniversity of Freiburg Medical CenterHugstetter Strasse 5579106FreiburgGermany
| | - Roland Schüle
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
- Department of Urology and Center for Clinical ResearchUniversity of Freiburg Medical CenterBreisacher Strasse 6679106FreiburgGermany
| | - Manfred Jung
- Department of Chemistry and Pharmacy, University of FreiburgInstitute of Pharmaceutical SciencesAlbertstrasse 2579104FreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling StudiesUniversity of FreiburgSchänzlestrasse 1879104FreiburgGermany
- German Cancer Consortium (DKTK)FreiburgGermany
- German Cancer Research Center (DKFZ)
| |
Collapse
|
38
|
Adair LD, Trinh N, Vérité PM, Jacquemin D, Jolliffe KA, New EJ. Synthesis of Nitro-Aryl Functionalised 4-Amino-1,8-Naphthalimides and Their Evaluation as Fluorescent Hypoxia Sensors. Chemistry 2020; 26:10064-10071. [PMID: 32428299 DOI: 10.1002/chem.202002088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/14/2020] [Indexed: 01/03/2023]
Abstract
Fluorescent sensors are a vital research tool, enabling the study of intricate cellular processes in a sensitive manner. The design and synthesis of responsive and targeted probes is necessary to allow such processes to be interrogated in the cellular environment. This remains a challenge, and requires methods for functionalisation of fluorophores with multiple appendages for sensing and targeting groups. Methods to synthesise more structurally complex derivatives of fluorophores will expand their potential scope. Most known 4-amino-1,8-naphthalimides are only functionalised at imide and 4-positions, and structural modifications at additional positions will increase the breadth of their utility as responsive sensors. In this work, methods for the incorporation of a hypoxia sensing group to 4-amino-1,8-naphthalimide were evaluated. An intermediate was developed that allowed us to incorporate a sensing group, targeting group, and ICT donor to the naphthalimide core in a modular fashion. Synthetic strategies for attaching the hypoxia sensing group and how they affected the fluorescence of the naphthalimide were evaluated by photophysical characterisation and time-dependent density functional theory. An extracellular hypoxia probe was then rationally designed that could selectively image the hypoxic and necrotic region of tumour spheroids. Our results demonstrate the versatility of the naphthalimide scaffold and expand its utility. This approach to probe design will enable the flexible, efficient generation of selective, targeted fluorescent sensors for various biological purposes.
Collapse
Affiliation(s)
- Liam D Adair
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Natalie Trinh
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia
| | - Pauline M Vérité
- CNRS, CEISAM UMR 6230, Université de Nantes, 44000, Nantes, France
| | - Denis Jacquemin
- CNRS, CEISAM UMR 6230, Université de Nantes, 44000, Nantes, France
| | - Katrina A Jolliffe
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Elizabeth J New
- The University of Sydney, School of Chemistry, Sydney, NSW, 2006, Australia.,The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia.,Australian Research Council Centre of Excellence for, Innovations in Peptide and Protein Science, University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
39
|
Synthesis of azobenzenes with high reactivity towards reductive cleavage: Enhancing the repertoire of hypersensitive azobenzenes and examining their dissociation behavior. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Zhu M, Liu RR, Zhai HL, Meng YJ, Han L, Ren CL. The binding mechanism of nitroreductase fluorescent probe: Active pocket deformation and intramolecular hydrogen bonds. Int J Biol Macromol 2020; 150:509-518. [PMID: 32057851 DOI: 10.1016/j.ijbiomac.2020.02.084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/08/2020] [Accepted: 02/09/2020] [Indexed: 11/17/2022]
Abstract
Nitroreductase (NTR), a member of the flavoenzyme family, could react with nicotinamide adenine dinucleotide by reducing nitro to amino at hypoxic tumor, which can be monitored by some fluorescent probes in vivo. Here, molecular docking and molecular dynamics simulation techniques were used to explore the molecular mechanisms between NTR and probes. The results showed that formation of hydrogen bond in 1F5V-13 between A@His215 and B@Ser41 with 74.53% occupancy might be the main reason for the decrease of probe fluorescence emission in experiment. Moreover, Probe 16 was rotated by nearly 60 degrees with respect to the position of other probes in protein binding pocket, deforming the protein active pocket, changing the hydrogen bond formation, which leads to the fluorescence performance of 16 with electron donor and electron acceptor groups was superior to other probes in experiment. The deformation of protein active pocket and the formation of intramolecular hydrogen bonds revealed the difference in performance of NTR fluorescent probe at molecular level, which provide theoretical guidance for latter design of fluorescent probes with better performance.
Collapse
Affiliation(s)
- Min Zhu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Rui Rui Liu
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Hong Lin Zhai
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| | - Ya Jie Meng
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Lu Han
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Cui Ling Ren
- College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
41
|
Zheng J, Liu Y, Song F, Jiao L, Wu Y, Peng X. A nitroreductase-activatable near-infrared theranostic photosensitizer for photodynamic therapy under mild hypoxia. Chem Commun (Camb) 2020; 56:5819-5822. [PMID: 32329480 DOI: 10.1039/d0cc02019b] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, a near-infrared (NIR) theranostic photosensitizer was developed based on a heptamethine aminocyanine dye with a long-lived triplet state. This theranostic molecule can be activated by nitroreductase under mild hypoxia to be used in fluorescence imaging and highly efficient photodynamic therapy (PDT) both in 2D and 3D (spheroids) HeLa cell culture models.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, 116024, China.
| | | | | | | | | | | |
Collapse
|
42
|
Zhang P, Yang H, Shen W, Liu W, Chen L, Xiao C. Hypoxia-Responsive Polypeptide Nanoparticles Loaded with Doxorubicin for Breast Cancer Therapy. ACS Biomater Sci Eng 2020; 6:2167-2174. [PMID: 33455312 DOI: 10.1021/acsbiomaterials.0c00125] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microenvironments of various solid tumors are characterized by hypoxia. Herein, we report a novel nanoparticle that can selectively release loaded drugs in hypoxic environments. The nanoparticle was prepared using a hypoxia-responsive amphiphilic polymer in aqueous media. The polymer was synthesized by conjugating a hydrophobic small molecule, 4-nitrobenzyl (3-azidopropyl) carbamate, to the side chains of an mPEG-PPLG copolymer. Doxorubicin (DOX) could be loaded into the nanoparticles with a high efficiency of 97.8%. The generated drug-loaded micellar nanoparticles (PPGN@DOX) presented hypoxia-sensitive drug release behavior in vitro. Meanwhile, PPGN@DOX could be effectively internalized by 4T1 cells and could release DOX into the cell nuclei under hypoxic conditions. The in vitro anticancer results suggested that PPGN@DOX presented superior tumor cell-killing ability compared with free DOX in hypoxic environments. Furthermore, PPGN@DOX prolonged the blood circulation time and improved the biological distribution of DOX, resulting in increased antitumor outcomes and reduced side effects in vivo. Overall, the present work demonstrates that hypoxia-responsive nanoparticles have great application potential in the treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| | - Huailin Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Wei Shen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, P. R. China
| | - Li Chen
- Department of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, P. R. China
| |
Collapse
|
43
|
A mitochondria-targeting nitroreductase fluorescent probe with large Stokes shift and long-wavelength emission for imaging hypoxic status in tumor cells. Anal Chim Acta 2020; 1103:202-211. [DOI: 10.1016/j.aca.2019.12.063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/12/2019] [Accepted: 12/20/2019] [Indexed: 12/31/2022]
|
44
|
Klockow JL, Hettie KS, LaGory EL, Moon EJ, Giaccia AJ, Graves EE, Chin FT. An Activatable NIR Fluorescent Rosol for Selectively Imaging Nitroreductase Activity. SENSORS AND ACTUATORS. B, CHEMICAL 2020; 306:127446. [PMID: 32265579 PMCID: PMC7138224 DOI: 10.1016/j.snb.2019.127446] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hypoxia (pO2 ≤ ~1.5%) is an important characteristic of tumor microenvironments that directly correlates with resistance against first-line therapies and tumor proliferation/infiltration. The ability to accurately identify hypoxic tumor cells/tissue could afford tailored therapeutic regimens for personalized treatment, development of more-effective therapies, and discerning the mechanisms underlying disease progression. Fluorogenic constructs identifying aforesaid cells/tissue operate by targeting the bioreductive activity of primarily nitroreductases (NTRs), but collectively present photophysical and/or physicochemical shortcomings that could limit effectiveness. To overcome these limitations, we present the rational design, development, and evaluation of the first activatable ultracompact xanthene core-based molecular probe (NO 2 -Rosol) for selectively imaging NTR activity that affords an "OFF-ON" near-infrared (NIR) fluorescence response (> 700 nm) alongside a remarkable Stokes shift (> 150 nm) via NTR activity-facilitated modulation to its energetics whose resultant interplay discontinues an intramolecular d-PET fluorescence-quenching mechanism transpiring between directly-linked electronically-uncoupled π-systems comprising its components. DFT calculations guided selection of a suitable fluorogenic scaffold and nitroaromatic moiety candidate that when adjoined could (i) afford such photophysical response upon bioreduction by upregulated NTR activity in hypoxic tumor cells/tissue and (ii) employ a retention mechanism strategy that capitalizes on an inherent physical property of the NIR fluorogenic scaffold for achieving signal amplification. NO 2 -Rosol demonstrated 705 nm NIR fluorescence emission and 157 nm Stokes shift, selectivity for NTR over relevant bioanalytes, and a 28-/12-fold fluorescence enhancement in solution and between cells cultured under different oxic conditions, respectively. In establishing feasibility for NO 2 -Rosol to provide favorable contrast levels in solutio/vitro, we anticipate NO 2 -Rosol doing so in preclinical studies.
Collapse
Affiliation(s)
| | - Kenneth S. Hettie
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Corresponding author: Kenneth S. Hettie, Ph.D., 3165 Porter Drive, Palo Alto, CA 94304, , Frederick T. Chin, Ph.D., 3165 Porter Drive, Room 2129, Palo Alto, CA 94304,
| | - Edward L. LaGory
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Eui Jung Moon
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Edward E. Graves
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Frederick T. Chin
- Department of Radiology, Stanford University, Stanford, CA, 94305, USA
- Corresponding author: Kenneth S. Hettie, Ph.D., 3165 Porter Drive, Palo Alto, CA 94304, , Frederick T. Chin, Ph.D., 3165 Porter Drive, Room 2129, Palo Alto, CA 94304,
| |
Collapse
|
45
|
Eom T, Khan A. Hypersensitive azobenzenes: facile synthesis of clickable and cleavable azo linkers with tunable and high reducibility. Org Biomol Chem 2020; 18:420-424. [PMID: 31904038 DOI: 10.1039/c9ob02515d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The aim of this work is to show that by increasing the number of donor substituents in a donor/acceptor system, the sensitivity of the azobenzene linkage towards a reductive cleavage reaction can be enhanced to unprecedented high levels. For instance, in a triple-donor system, less than a second constitutes the half-life of the azo (N[double bond, length as m-dash]N) bond. Synthetic access to such redox active scaffolds is highly practical and requires only 1-2 synthetic steps. The fundamental molecular design is also adaptable. This is demonstrated through scaffold functionalization by azide, tetraethylene glycol, and biotin groups. The availability of the azide group is shown in a copper-free 'click' reaction suitable in context with protein conjugation and proteomics application. Finally, the clean nature of the scission process is demonstrated with the help of liquid chromatography coupled with mass analysis. This work, therefore, describes development of cleavable azobenzene linkers that can be accessed with synthetic ease, can be multiply functionalized, and show a clean and rapid response to mild reducing conditions.
Collapse
Affiliation(s)
- Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul 02841, Korea.
| | | |
Collapse
|
46
|
Xue T, Shen J, Shao K, Wang W, Wu B, He Y. Strategies for Tumor Hypoxia Imaging Based on Aggregation-Induced Emission Fluorogens. Chemistry 2020; 26:2521-2528. [PMID: 31692097 DOI: 10.1002/chem.201904327] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Indexed: 01/13/2023]
Abstract
Hypoxia, as a crucial characteristic of cancer, has become an extremely significant direction for researchers to construct fluorescent probes for early diagnosis of tumors. Aggregation-induced emission fluorogens (AIEgens) possess many superior properties to those of conventional fluorophores due to aggregation-induced emission (AIE) features, such as a linear concentration-dependent increase in brightness, remarkable resistance to photobleaching, and the long-term tracking and imaging of cells. Constructing hypoxic response AIEgen-based probes will be very useful for the early diagnosis of tumors. Herein, several hypoxia-responsive probes based on AIEgens reported in the last three years are reported; these examples may lead to the construction of hypoxia-responsive AIE probes used for tumor hypoxia imaging in the future. In addition, typical, conventional hypoxia-responsive bioprobes are presented to further understand hypoxia-responsive fluorescent probes based on AIEgens.
Collapse
Affiliation(s)
- Tianhao Xue
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Kuanchun Shao
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Wei Wang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Bing Wu
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, P.R. China
| |
Collapse
|
47
|
Xu F, Li H, Yao Q, Ge H, Fan J, Sun W, Wang J, Peng X. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy. Chem Sci 2019; 10:10586-10594. [PMID: 32110344 PMCID: PMC7020795 DOI: 10.1039/c9sc03355f] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/01/2019] [Indexed: 12/16/2022] Open
Abstract
Photodynamic therapy is considered as a promising treatment for cancer, but still faces several challenges. The hypoxic environment in solid tumors, imprecise tumor recognition and the lack of selectivity between normal and cancer cells extremely hinder the applications of photodynamic therapy in clinics. Moreover, the "always on" property of photosensitizers also increases the toxicity to normal tissues when exposed to light irradiation. In this study, a hypoxia-activated NIR photosensitizer ICy-N was synthesized and successfully applied for in vivo cancer treatment. ICy-N is in the inactivated state with low fluorescence whereas its NIR emission (λ em = 716 nm) was induced via reduction caused by nitroreductase at the tumor site. In addition, the reduced product ICy-OH was specially located in the mitochondria and demonstrated a high singlet oxygen production under 660 nm light irradiation, which efficiently induced cell apoptosis (IC50 = 0.63 μM). The in vivo studies carried out in Balb/c mice indicated that ICy-N was suitable for precise tumor hypoxia imaging and can work as an efficient photosensitizer for restraining tumor growth through the PDT process.
Collapse
Affiliation(s)
- Feng Xu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Qichao Yao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Haoying Ge
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Wen Sun
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
| | - Jingyun Wang
- School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , Dalian 116024 , P. R. China .
- Shenzhen Research Institute , Dalian University of Technology , Nanshan District , Shenzhen 518057 , P. R. China
| |
Collapse
|
48
|
Kong F, Li Y, Yang C, Li X, Wu J, Liu X, Gao X, Xu K, Tang B. A fluorescent probe for simultaneously sensing NTR and hNQO1 and distinguishing cancer cells. J Mater Chem B 2019; 7:6822-6827. [PMID: 31608921 DOI: 10.1039/c9tb01581g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Identifying cancer at the cellular level during an early stage offers the hope of greatly improved outcomes for cancer patients. As potential cancer biomarkers, nitroreductase (NTR) and human quinine oxidoreductase 1 (hNQO1) are overexpressed in many type of cancer cells. Simultaneous detection of these two biomarkers would benefit diagnostic precision in related cancers without yielding false positive results. Herein, based on a dye generated in situ strategy, a dual-enzyme-responsive probe, CNN, was rationally designed and synthesized by installing p-nitrobenzene and trimethyl-locked quinone propionic acid groups, which are specific for NTR and hNQO1, respectively, into a single fluorophore. This probe is only activated in the presence of both NTR and hNQO1 and produces a large fluorescence response, enabling the detection of both endogenous NTR and hNQO1 activity in living cells. The imaging results indicate that the CNN probe differentiates cancer cells (HeLa, MDA-MB-231 and HepG2 cells) from normal liver HL-7702 cells owing to the existence of relatively high endogenous levels of both biomarkers in these cancer cells.
Collapse
Affiliation(s)
- Fanpeng Kong
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Ying Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Chao Yang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Xiao Li
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Junlin Wu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Xiaojun Liu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Xiaonan Gao
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Kehua Xu
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong normal University, Jinan 250014, P. R. China.
| |
Collapse
|
49
|
Welling MM, Hensbergen AW, Bunschoten A, Velders AH, Scheper H, Smits WK, Roestenberg M, van Leeuwen FWB. Fluorescent imaging of bacterial infections and recent advances made with multimodal radiopharmaceuticals. Clin Transl Imaging 2019. [DOI: 10.1007/s40336-019-00322-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Abstract
The availability of electrons to biological systems underpins the mitochondrial electron transport chain (ETC) that powers living cells. It is little wonder, therefore, that the sufficiency of electron supply is critical to cellular health. Considering mitochondrial redox activity alone, a lack of oxygen (hypoxia) leads to impaired production of adenosine triphosphate (ATP), the major energy currency of the cell, whereas excess oxygen (hyperoxia) is associated with elevated production of reactive oxygen species (ROS) from the interaction of oxygen with electrons that have leaked from the ETC. Furthermore, the redox proteome, which describes the reversible and irreversible redox modifications of proteins, controls many aspects of biological structure and function. Indeed, many major diseases, including cancer and diabetes, are now termed "redox diseases", spurring much interest in the measurement and monitoring of redox states and redox-active species within biological systems. In this Account, we describe recent efforts to develop magnetic resonance (MR) and fluorescence imaging probes for studying redox biology. These two classes of molecular imaging tools have proved to be invaluable in supplementing the structural information that is traditionally provided by MRI and fluorescence microscopy, respectively, with highly sensitive chemical information. Importantly, the study of biological redox processes requires sensors that operate at biologically relevant reduction potentials, which can be achieved by the use of bioinspired redox-sensitive groups. Since oxidation-reduction reactions are so crucial to modulating cellular function and yet also have the potential to damage cellular structures, biological systems have developed highly sophisticated ways to regulate and sense redox changes. There is therefore a plethora of diverse chemical structures in cells with biologically relevant reduction potentials, from transition metals to organic molecules to proteins. These chemical groups can be harnessed in the development of exogenous molecular imaging agents that are well-tuned to biological redox events. To date, small-molecule redox-sensitive tools for oxidative stress and hypoxia have been inspired from four classes of cellular regulators. The redox-sensitive groups found in redox cofactors, such as flavins and nicotinamides, can be used as reversible switches in both fluorescent and MR probes. Enzyme substrates that undergo redox processing within the cell can be modified to provide fluorescence or MR readout while maintaining their selectivity. Redox-active first-row transition metals are central to biological homeostasis, and their marked electronic and magnetic changes upon oxidation/reduction have been used to develop MR sensors. Finally, redox-sensitive amino acids, particularly cysteine, can be utilized in both fluorescent and MR sensors.
Collapse
Affiliation(s)
- Amandeep Kaur
- Discipline of Pathology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth J. New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|