1
|
Aidibi Y, Azar S, Hardoin L, Voltz M, Goeb S, Allain M, Sallé M, Costil R, Jacquemin D, Feringa B, Canevet D. Light- and Temperature-Controlled Hybridization, Chiral Induction and Handedness of Helical Foldamers. Angew Chem Int Ed Engl 2025; 64:e202413629. [PMID: 39225451 DOI: 10.1002/anie.202413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Helical foldamers have attracted much attention over the last decades given their resemblance to certain biomacromolecules and their potential in domains as different as pharmaceutics, catalysis and photonics. Various research groups have successfully controlled the right- or left- handedness of these oligomers by introducing stereogenic centers through covalent or non-covalent chemistry. However, developing helical structures whose handedness can be reversibly switched remains a major challenge for chemists. To date, such an achievement has been reported with light-responsive single-stranded foldamers only. Herein, we demonstrate that grafting a unidirectional motor onto foldamer strands constitutes a relevant strategy to i) control the single or double helical state of a foldamer, ii) switch on the chiral induction process from the motor to the helical strands and iii) select the handedness of double helical structures through photochemical and thermal stimulations.
Collapse
Affiliation(s)
- Youssef Aidibi
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Soussana Azar
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Louis Hardoin
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Marie Voltz
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Romain Costil
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, 49747 AG Groningen, Netherlands
| | - Denis Jacquemin
- Nantes Université, CNRS, CEISAM UMR 6230, 44000, Nantes, France
- Institut Universitaire de France (IUF), 75005, Paris, France
| | - Ben Feringa
- Stratingh Institute for Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, 49747 AG Groningen, Netherlands
| | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
2
|
Davis AR, Dismorr JO, Male L, Tucker JHR, Pike SJ. Dual, Photo-Responsive and Redox-Active Supramolecular Foldamers. Chemistry 2024; 30:e202402423. [PMID: 39137164 DOI: 10.1002/chem.202402423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
We report on dual, light-responsive and redox-active foldamers that demonstrate reversible and robust stimuli-induced behaviour. Herein, UV/Vis, 1H NMR and circular dichroism (CD) spectroscopy and cyclic voltammetry have been used to establish the reversibility and highly robust nature of the light- and redox-driven behaviour of these new foldamers with minimal levels of fatigue observed even upon multiple cyclic treatments with irradiative/non-irradiative and oxidative/reductive conditions. This proof-of-concept work paves the way towards the creation of novel stimuli-responsive foldamers of increasing sophistication capable of demonstrating reversible and robust responses to multiple distinct stimuli.
Collapse
Affiliation(s)
- Alexander R Davis
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jack O Dismorr
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
3
|
Goual N, Métivier R, Laurent G, Retailleau P, Nakatani K, Xie J. Tuning the Thermal Stability of Tetra-o-chloroazobenzene Derivatives by Transforming Push-Pull to Push-Push Systems. Chemistry 2024; 30:e202401737. [PMID: 39224068 DOI: 10.1002/chem.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Molecular photoswitches provide interesting tools to reversibly control various biological functions with light. Thanks to its small size and easy introduction into the biomolecules, azobenzene derivatives have been widely employed in the field of photopharmacology. All visible-light switchable azobenzenes with controllable thermostability are highly demanded. Based on the reported tetra-o-chloroazobenzenes, we synthesized push-pull systems, by introducing dialkyl amine and nitro groups as strong electron-donating and electron-withdrawing groups on the para-positions, and then transformed to push-push systems by a simple reduction step. The developed push-pull and push-push tetra-o-chloroazobenzene derivatives displayed excellent photoswitching properties, as previously reported. The half-life of the Z-isomers can be tuned from milliseconds for the push-pull system to several hours for the push-push system. The n-π* and π-π* transitions have better resolution in the push-push molecules, and excitation at different wavelengths can tune the E/Z ratio at the photostationary state. For one push-pull molecule, structure and absorption spectra obtained from theoretical calculations are compared with experimental data, along with data on the push-push counterpart.
Collapse
Affiliation(s)
- Nawel Goual
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Rémi Métivier
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Guillaume Laurent
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Pascal Retailleau
- University Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, 91198, France
| | - Keitaro Nakatani
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| | - Juan Xie
- Photophysique et Photochimie Supramoléculaires et Macromoléculaires, ENS Paris-Saclay, CNRS, University Paris-Saclay, Gif-sur-Yvette, 91190, France
| |
Collapse
|
4
|
Shen P, Jiao S, Zhuang Z, Dong X, Song S, Li J, Tang BZ, Zhao Z. Switchable Dual Circularly Polarized Luminescence in Through-Space Conjugated Chiral Foldamers. Angew Chem Int Ed Engl 2024; 63:e202407605. [PMID: 38698703 DOI: 10.1002/anie.202407605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024]
Abstract
Organic materials with switchable dual circularly polarized luminescence (CPL) are highly desired because they can not only directly radiate tunable circularly polarized light themselves but also induce CPL for guests by providing a chiral environment in self-assembled structures or serving as the hosts for energy transfer systems. However, most organic molecules only exhibit single CPL and it remains challenging to develop organic molecules with dual CPL. Herein, novel through-space conjugated chiral foldamers are constructed by attaching two biphenyl arms to the 9,10-positions of phenanthrene, and switchable dual CPL with opposite signs at different emission wavelengths are successfully realized in the foldamers containing high-polarizability substitutes (cyano, methylthiol and methylsulfonyl). The combined experimental and computational results demonstrate that the intramolecular through-space conjugation has significant contributions to stabilizing the folded conformations. Upon photoexcitation in high-polar solvents, strong interactions between the biphenyl arms substituted with cyano, methylthio or methylsulfonyl and the polar environment induce conformation transformation for the foldamers, resulting in two transformable secondary structures of opposite chirality, accounting for the dual CPL with opposite signs. These findings highlight the important influence of the secondary structures on the chiroptical property of the foldamers and pave a new avenue towards efficient and tunable dual CPL materials.
Collapse
Affiliation(s)
- Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Shaoshao Jiao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang, 637371, Singapore
| | - Xiaobin Dong
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Shaoxin Song
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jinshi Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
5
|
Matsumura K, Kinjo K, Tateno K, Ono K, Tsuchido Y, Kawai H. M/ P Helicity Switching and Chiral Amplification in Double-Helical Monometallofoldamers. J Am Chem Soc 2024; 146:21078-21088. [PMID: 39029122 PMCID: PMC11295176 DOI: 10.1021/jacs.4c06560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/21/2024]
Abstract
Short-stranded double-helical monometallofoldamers capable of M/P-switching were constructed by the complexation of two strands, each with two L-shaped units linked by a 2,2'-bipyridine, with a Zn(II) cation. The helix terminals of the "double-helical form" folded by π-π interactions can unfold in solution to equilibrate with the "open forms" that are favored at higher temperatures. Interestingly, the helical chirality of the monometallofoldamers with chiral side chains induced a single-handed helix sense and controlled M/P-switching depending on achiral solvent stimuli. For instance, the (M)-helicity was favored in nonpolarized solvents (toluene, hexane, Et2O), whereas the (P)-helicity was favored in Lewis basic solvents (acetone, DMSO). Circular dichroism (CD) and rotating-frame overhauser enhancement spectroscopy (ROESY) measurements revealed that the conformational change of the chiral side chains due to interaction of Lewis basic solvents with the double helices induced helicity bias. These novel double-helical monometallofoldamers possessed a stable helical structure and exhibited switchable chiroptical properties (gabs ∼ 10-3-10-2). In addition, the chiral strand exhibited chiral transfer and amplification abilities through the formation of chiral heteroleptic double-helical monometallofoldamers when mixed with an achiral strand.
Collapse
Affiliation(s)
- Kotaro Matsumura
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Keigo Kinjo
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kotaro Tateno
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Kosuke Ono
- School
of Science, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | - Yoshitaka Tsuchido
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Hidetoshi Kawai
- Department
of Chemistry, Faculty of Science, Tokyo
University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
6
|
Fan Y, El Rhaz A, Maisonneuve S, Gillon E, Fatthalla M, Le Bideau F, Laurent G, Messaoudi S, Imberty A, Xie J. Photoswitchable glycoligands targeting Pseudomonas aeruginosa LecA. Beilstein J Org Chem 2024; 20:1486-1496. [PMID: 38978747 PMCID: PMC11228623 DOI: 10.3762/bjoc.20.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024] Open
Abstract
Biofilm formation is one of main causes of bacterial antimicrobial resistance infections. It is known that the soluble lectins LecA and LecB, produced by Pseudomonas aeruginosa, play a key role in biofilm formation and lung infection. Bacterial lectins are therefore attractive targets for the development of new antibiotic-sparing anti-infective drugs. Building synthetic glycoconjugates for the inhibition and modulation of bacterial lectins have shown promising results. Light-sensitive lectin ligands could allow the modulation of lectins activity with precise spatiotemporal control. Despite the potential of photoswitchable tools, few photochromic lectin ligands have been developed. We have designed and synthesized several O- and S-galactosyl azobenzenes as photoswitchable ligands of LecA and evaluated their binding affinity with isothermal titration calorimetry. We show that the synthesized monovalent glycoligands possess excellent photophysical properties and strong affinity for targeted LecA with K d values in the micromolar range. Analysis of the thermodynamic contribution indicates that the Z-azobenzene isomers have a systematically stronger favorable enthalpy contribution than the corresponding E-isomers, but due to stronger unfavorable entropy, they are in general of lower affinity. The validation of this proof-of-concept and the dissection of thermodynamics of binding will help for the further development of lectin ligands that can be controlled by light.
Collapse
Affiliation(s)
- Yu Fan
- Université Paris-Saclay, ENS Paris-Saclay, Institut d'Alembert, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France
| | - Ahmed El Rhaz
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | - Stéphane Maisonneuve
- Université Paris-Saclay, ENS Paris-Saclay, Institut d'Alembert, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France
| | - Emilie Gillon
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Maha Fatthalla
- Université Paris-Saclay, CNRS, BioCIS, 92290, Orsay, France
| | | | - Guillaume Laurent
- Université Paris-Saclay, ENS Paris-Saclay, Institut d'Alembert, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France
| | - Samir Messaoudi
- Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Institut Polytechnique de Paris, 91128 Palaiseau, France
| | - Anne Imberty
- Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, Institut d'Alembert, CNRS, Photophysique et Photochimie Supramoléculaires et Macromoléculaires, 91190, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Nagami S, Kaguchi R, Akahane T, Harabuchi Y, Taniguchi T, Monde K, Maeda S, Ichikawa S, Katsuyama A. Photoinduced dual bond rotation of a nitrogen-containing system realized by chalcogen substitution. Nat Chem 2024; 16:959-969. [PMID: 38418536 DOI: 10.1038/s41557-024-01461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/26/2024] [Indexed: 03/01/2024]
Abstract
Photoinduced concerted multiple-bond rotation has been proposed in some biological systems. However, the observation of such phenomena in synthetic systems, in other words, the synthesis of molecules that undergo photoinduced multiple-bond rotation upon photoirradiation, has been a challenge in the photochemistry field. Here we describe a chalcogen-substituted benzamide system that exhibits photoinduced dual bond rotation in heteroatom-containing bonds. Introduction of the chalcogen substituent into a sterically hindered benzamide system provides sufficient kinetic stability and photosensitivity to enable the photoinduced concerted rotation. The presence of two different substituents on the phenyl ring in the thioamide derivative enables the generation of a pair of enantiomers and E/Z isomers. Using these four stereoisomers as indicators of which bonds are rotated, we monitor the photoinduced C-N/C-C concerted bond rotation in the thioamide derivative depending on external stimuli such as temperature and photoirradiation. Theoretical calculations provide insight on the mechanism of this selective photoinduced C-N/C-C concerted rotation.
Collapse
Affiliation(s)
- Shotaro Nagami
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Rintaro Kaguchi
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Taichi Akahane
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Harabuchi
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Tohru Taniguchi
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Kenji Monde
- Frontier Research Center of Advanced Material and Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
- JST, ERATO, Maeda Artificial Intelligence in Chemical Reaction Design and Discovery Project, Sapporo, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| | - Akira Katsuyama
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
- Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.
- Center for Research and Education on Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
8
|
Peelikuburage BGD, Martens WN, Waclawik ER. Light switching for product selectivity control in photocatalysis. NANOSCALE 2024; 16:10168-10207. [PMID: 38722105 DOI: 10.1039/d4nr00885e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Artificial switchable catalysis is a new, rapidly expanding field that offers great potential advantages for both homogeneous and heterogeneous catalytic systems. Light irradiation is widely accepted as the best stimulus to artificial switchable chemical systems. In recent years, tremendous progress has been made in the synthesis and application of photo-switchable catalysts that can control when and where bond formation and dissociation take place in reactant molecules. Photo-switchable catalysis is a niche area in current catalysis, on which systematic analysis and reviews are still lacking in the scientific literature, yet it offers many intriguing and versatile applications, particularly in organic synthesis. This review aims to highlight the recent advances in photo-switchable catalyst systems that can result in two different chemical product outcomes and thus achieve a degree of control over organic synthetic reactions. Furthermore, this review evaluates different approaches that have been employed to achieve dynamic control over both the catalytic function and the selectivity of several different types of synthesis reactions, along with the remaining challenges and potential opportunities. Owing to the great diversity of the types of reactions and conditions adopted, a quantitative comparison of efficiencies between considered systems is not the focus of this review, instead the review showcases how insights from successful adopted strategies can help better harness and channel the power of photoswitchability in this new and promising area of catalysis research.
Collapse
Affiliation(s)
- Bayan G D Peelikuburage
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Wayde N Martens
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| | - Eric R Waclawik
- Centre of Materials Science & School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia.
| |
Collapse
|
9
|
Gallardo-Rosas D, Guevara-Vela JM, Rocha-Rinza T, Toscano RA, López-Cortés JG, Ortega-Alfaro MC. Structure and isomerization behavior relationships of new push-pull azo-pyrrole photoswitches. Org Biomol Chem 2024; 22:4123-4134. [PMID: 38700442 DOI: 10.1039/d4ob00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A family of stilbenyl-azopyrroles compounds 2a-d and 3a-d was efficiently obtained via a Mizoroki-Heck C-C-type coupling reaction between 2-(4'-iodophenyl-azo)-N-methyl pyrrole (1a) and different vinyl precursors. The influence of the π-conjugated backbone and the effect of the pyrrole moiety were correlated with their optical properties. Studies via UV-Visible spectrophotometry revealed that the inclusion of EWG or EDG favors a red-shift of the main absorption band in these azo compounds compared with their non-substituted analogues. Furthermore, there is a clear influence between the half-life of the Z isomer formed by irradiation with white light and the push-pull behavior of the molecules. In several cases, the stilbenyl-azopyrroles led to the formation of J-type aggregates in binary MeOH : H2O solvents, which are of interest for water compatible applications.
Collapse
Affiliation(s)
- D Gallardo-Rosas
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| | - J M Guevara-Vela
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - T Rocha-Rinza
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - R A Toscano
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - J G López-Cortés
- Instituto de Química UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Cuidad de México, Mexico
| | - M C Ortega-Alfaro
- Instituto de Ciencias Nucleares, UNAM, Circuito Exterior, Ciudad Universitaria, Coyoacán C.P. 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Debnath S, Flood AH, Raghavachari K. Solvent-Dependent Folding Behavior of a Helix-Forming Aryl-Triazole Foldamer. J Phys Chem B 2024; 128:1586-1594. [PMID: 38324342 DOI: 10.1021/acs.jpcb.3c04907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Aromatic foldamers make up a novel class of bioinspired molecules that display helical conformations and have functions that rely on control over their coil-helix folding preferences. While the folding has been extensively examined by experiment, it has rarely been paired with the types of atomic level insights offered by theory. We present the results of all-atom molecular dynamics (MD) simulations to examine the role of solvent polarity on driving the helical folding behavior of the aryl-triazole foldamer. The temperature-dependent enhanced sampling technique, replica-exchange MD simulations, was employed to understand the folding phenomena. The simulation results show that in a low polarity solvent (dichloromethane), the foldamer prefers to stay in the unfolded state. The unfolded state has four dipolar triazoles (5 D) in their favored all-anti geometries and favoring anti-parallel geometries. However, an increase in solvent polarity using acetonitrile resulted in solvophobic collapse, yielding the helically folded form as the predominant state. The folded helix has an all-syn geometry, with triazoles in parallel arrangements. Intermediate conformations with a mixture of syn and anti arrangements of the triazoles are of lower abundance in both the DCM and MeCN solvents. The chiral handedness of the helix observed experimentally is assigned as left-handed by correlation with computed electronic circular dichroism spectra using time-dependent density functional theory.
Collapse
Affiliation(s)
- Sibali Debnath
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Amar H Flood
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Lago-Silva M, Fernández-Míguez M, Rodríguez R, Quiñoá E, Freire F. Stimuli-responsive synthetic helical polymers. Chem Soc Rev 2024; 53:793-852. [PMID: 38105704 DOI: 10.1039/d3cs00952a] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Synthetic dynamic helical polymers (supramolecular and covalent) and foldamers share the helix as a structural motif. Although the materials are different, these systems also share many structural properties, such as helix induction or conformational communication mechanisms. The introduction of stimuli responsive building blocks or monomer repeating units in these materials triggers conformational or structural changes, due to the presence/absence of the external stimulus, which are transmitted to the helix resulting in different effects, such as assymetry amplification, helix inversion or even changes in the helical scaffold (elongation, J/H helical aggregates). In this review, we show through selected examples how different stimuli (e.g., temperature, solvents, cations, anions, redox, chiral additives, pH or light) can alter the helical structures of dynamic helical polymers (covalent and supramolecular) and foldamers acting on the conformational composition or molecular structure of their components, which is also transmitted to the macromolecular helical structure.
Collapse
Affiliation(s)
- María Lago-Silva
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Manuel Fernández-Míguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| |
Collapse
|
12
|
Dong X, Wang Z, Zhang P, Liu Y, Ji L, Wang Y, Zhou X, Ma K, Yu H. Substituent alkyl-chain-dependent supramolecular chirality, tunable chiroptical property, and dye adsorption in azobenzene-glutamide-amphiphile based hydrogel. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123018. [PMID: 37392534 DOI: 10.1016/j.saa.2023.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Controlling the supramolecular chirality of a self-assembly system by molecular structure design and external stimuli in aqueous solution is significant but challenging. Here, we design and synthesize several glutamide-azobenzene-based amphiphiles with different length alkyl chains. The amphiphiles can form self-assemblies in aqueous solution and show CD signals. As the number of the alkyl chain of amphiphiles increases, the CD signals of the assemblies can be enhanced. However, the long alkyl chains conversely restrict the isomerization of the azobenzene and the corresponding chiroptical property. Moreover, the alkyl length can determine the nanostructure of the assemblies and exert critical influence on the dye adsorption efficiency. This work exhibits some insights into the tunable chiroptical property of the self-assembly by delicate molecular design and external stimuli, and emphasizes the molecular structure can determine the corresponding application.
Collapse
Affiliation(s)
- Xuan Dong
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China; Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Zhixia Wang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Penghui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| | - Yuanyuan Wang
- Department of Pharmacology, College of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiaoqin Zhou
- School of Chemistry and Chemical Engineering Institute of Physical Chemistry, Lingnan Normal University, Development Centre for New Materials Engineering & Technology in Universities of Guangdong Zhanjiang 524048, PR China
| | - Kai Ma
- School of Materials Science and Engineering, Henan Joint International Research Laboratory of Nanocomposite Sensing Materials, Anyang Institute of Technology, Anyang 455000, China.
| | - Haitao Yu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, China.
| |
Collapse
|
13
|
Matsuura K, Inaba H. Photoresponsive peptide materials: Spatiotemporal control of self-assembly and biological functions. BIOPHYSICS REVIEWS 2023; 4:041303. [PMID: 38505425 PMCID: PMC10903425 DOI: 10.1063/5.0179171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Peptides work as both functional molecules to modulate various biological phenomena and self-assembling artificial materials. The introduction of photoresponsive units to peptides allows the spatiotemporal remote control of their structure and function upon light irradiation. This article overviews the photoresponsive peptide design, interaction with biomolecules, and applications in self-assembling materials over the last 30 years. Peptides modified with photochromic (photoisomerizable) molecules, such as azobenzene and spiropyran, reversibly photo-controlled the binding to biomolecules and nanostructure formation through self-assembly. Photocleavable molecular units irreversibly control the functions of peptides through cleavage of the main chain and deprotection by light. Photocrosslinking between peptides or between peptides and other biomolecules enhances the structural stability of peptide assemblies and complexes. These photoresponsive peptides spatiotemporally controlled the formation and dissociation of peptide assemblies, gene expressions, protein-drug interactions, protein-protein interactions, liposome deformation and motility, cytoskeleton structure and stability, and cell functions by appropriate light irradiation. These molecular systems can be applied to photo-control biological functions, molecular robots, artificial cells, and next-generation smart drug delivery materials.
Collapse
|
14
|
Tilly DP, Morris DTJ, Clayden J. Anion-Dependent Hydrogen-Bond Polarity Switching in Ethylene-bridged Urea Oligomers. Chemistry 2023; 29:e202302210. [PMID: 37589333 PMCID: PMC10946793 DOI: 10.1002/chem.202302210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023]
Abstract
The reversible coordination of anions to an N,N'-disubstituted 3,5-bis(trifluoromethyl)phenylurea located at a terminus of a linear chain of ethylene-bridged hydrogen-bonded ureas triggers a cascade of conformational changes. A series of hydrogen-bond polarity reversals propagates along the oligomer, leading to a global switch of its hydrogen-bond directionality. The induced polarity switch, transmitted through four reversible urea groups, results in a change in emission and excitation wavelengths of a fluorophore located at the opposite terminus of the oligomer. The molecule thus behaves as a chemical sensor with a relayed remote spectroscopic response to variations in anion concentration. The polarity switch induced by anion concentration constitutes an artificial communication mechanism for conveying information through oligomeric structures.
Collapse
Affiliation(s)
- David P. Tilly
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - David T. J. Morris
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Jonathan Clayden
- School of ChemistryUniversity of Bristol Cantock's CloseBristolBS8 1TSUK
| |
Collapse
|
15
|
Pike SJ, Telford R, Male L. Reversible conformational switching of a photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. Org Biomol Chem 2023; 21:7717-7723. [PMID: 37565617 DOI: 10.1039/d3ob01137b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
We report on a convenient synthetic route to rapidly access a new photo-responsive ortho-azobenzene/2,6-pyridyldicarboxamide heterofoldamer. The adoption of a stable helical conformation has been established for this scaffold in both the solid state and in solution using single crystal X-ray diffraction and circular dichroism (CD) spectroscopy respectively. Reversible control over the stimuli-driven structural re-ordering of the supramolecular scaffold, from a stable helical conformation under non-irradiative conditions, to a less well-ordered state under irradiative conditions, has been identified. The robust nature of the responsive, conformational, molecular switching behaviour has been determined using UV/Vis, 1H NMR and CD spectroscopy. Minimal loss in the efficiency of the stimuli-driven, structural re-ordering processes of the foldamer scaffold is observed, even upon multiple cyclic treatments with irradiative/non-irradiative conditions.
Collapse
Affiliation(s)
- Sarah J Pike
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Richard Telford
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, West Yorkshire, BD7 1DP, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
16
|
Tilly DP, Heeb JP, Webb SJ, Clayden J. Switching imidazole reactivity by dynamic control of tautomer state in an allosteric foldamer. Nat Commun 2023; 14:2647. [PMID: 37156760 PMCID: PMC10167260 DOI: 10.1038/s41467-023-38339-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular biology achieves control over complex reaction networks by means of molecular systems that translate a chemical input (such as ligand binding) into an orthogonal chemical output (such as acylation or phosphorylation). We present an artificial molecular translation device that converts a chemical input - the presence of chloride ions - into an unrelated chemical output: modulation of the reactivity of an imidazole moiety, both as a Brønsted base and as a nucleophile. The modulation of reactivity operates through the allosteric remote control of imidazole tautomer states. The reversible coordination of chloride to a urea binding site triggers a cascade of conformational changes in a chain of ethylene-bridged hydrogen-bonded ureas, switching the chain's global polarity, that in turn modulates the tautomeric equilibrium of a distal imidazole, and hence its reactivity. Switching reactivities of active sites by dynamically controlling their tautomer states is an untapped strategy for building functional molecular devices with allosteric enzyme-like properties.
Collapse
Affiliation(s)
- David P Tilly
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Jean-Paul Heeb
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jonathan Clayden
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK.
| |
Collapse
|
17
|
Hirschmann M, Soltwedel O, Ritzert P, von Klitzing R, Thiele CM. Light-Controlled Lyotropic Liquid Crystallinity of Polyaspartates Exploited as Photo-Switchable Alignment Medium. J Am Chem Soc 2023; 145:3615-3623. [PMID: 36749116 DOI: 10.1021/jacs.2c12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Two polyaspartates bearing ortho-fluorinated azobenzenes (pFAB) as photo-responsive groups in the side chain were synthesized: PpFABLA (1) and co-polyaspartate PpFABLA-co-PBLA [11, 75%(n/n) PpFABLA content]. As a consequence of the E/Z-isomerization of the side chain, PpFABLA (1) undergoes a visible-light-induced reversible coil-helix transition in solution: Green light (525 nm) affords the coil, and violet light (400 nm) affords the helix. pFAB significantly increases the thermal stability of the Z-isomer at 20 °C (t1/2 = 66 d for the Z-isomer) and effectively counters the favored back formation of the helix. At 20%(w/w) polymer concentration, the helical polymer forms a lyotropic liquid crystal (LLC) that further orients unidirectionally inside a magnetic field, while the coil polymer results in an isotropic solution. The high viscosity of the polymer solution stabilizes the coexistence of liquid crystalline and isotropic domains, which were obtained with spatial control by partial light irradiation. When used as an alignment medium, PpFABLA (1) enables (i) the measurement of dipolar couplings without the need for a separate isotropic reference and (ii) the differentiation of enantiomers. PpFABLA-co-PBLA (11) preserves the helical structure, by intention, independently of the E/Z-isomerization of the side chain: Both photo-isomers of PpFABLA-co-PBLA (11) form a helix that─at a concentration of 16%(w/w)─form an LLC. Despite the absence of a change in the secondary structure, the E/Z-isomerization of the side chain changes the morphology of the liquid crystal and leads to different sets of dipolar coupling for the same probe molecule.
Collapse
Affiliation(s)
- Max Hirschmann
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| | - Olaf Soltwedel
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Philipp Ritzert
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Regine von Klitzing
- Institute for Condensed Matter Physics, Technical University of Darmstadt (TUDa), Hochschulstraße 8, DE 64289 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institute, Technical University of Darmstadt (TUDa), Alarich-Weiss-Straße 4, DE 64287 Darmstadt, Germany
| |
Collapse
|
18
|
Coskuner-Weber O, Yuce-Erarslan E, Uversky VN. Paving the Way for Synthetic Intrinsically Disordered Polymers for Soft Robotics. Polymers (Basel) 2023; 15:polym15030763. [PMID: 36772065 PMCID: PMC9919048 DOI: 10.3390/polym15030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/15/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Nature is full of examples of processes that, through evolution, have been perfected over the ages to effectively use matter and sustain life. Here, we present our strategies for designing intrinsically disordered smart polymers for soft robotics applications that are bio-inspired by intrinsically disordered proteins. Bio-inspired intrinsically disordered smart and soft polymers designed using our deep understanding of intrinsically disordered proteins have the potential to open new avenues in soft robotics. Together with other desirable traits, such as robustness, dynamic self-organization, and self-healing abilities, these systems possess ideal characteristics that human-made formations strive for but often fail to achieve. Our main aim is to develop materials for soft robotics applications bio-inspired by intrinsically disordered proteins to address what we see as the largest current barriers in the practical deployment of future soft robotics in various areas, including defense. Much of the current literature has focused on the de novo synthesis of tailor-made polymers to perform specific functions. With bio-inspired polymers, the complexity of protein folding mechanisms has limited the ability of researchers to reliably engineer specific structures. Unlike existing studies, our work is focused on utilizing the high flexibility of intrinsically disordered proteins and their self-organization characteristics using synthetic quasi-foldamers.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, No. 106, Beykoz, Istanbul 34820, Turkey
- Correspondence:
| | - Elif Yuce-Erarslan
- Chemical Engineering, Istanbul University-Cerrahpasa, Avcılar, Istanbul 34320, Turkey
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
19
|
Liu Y, Du M, Zhang P, Wang H, Dong X, Wang Z, Wang Y, Ji L. Host-guest interaction enabled chiroptical property, morphology transition, and phase switch in azobenzene-glutamide amphiphile based hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Rodríguez R, Rivadulla‐Cendal E, Fernández‐Míguez M, Fernández B, Maeda K, Quiñoá E, Freire F. Full Control of the Chiral Overpass Effect in Helical Polymers: P/M Screw Sense Induction by Remote Chiral Centers After Bypassing the First Chiral Residue. Angew Chem Int Ed Engl 2022; 61:e202209953. [PMID: 36121741 PMCID: PMC9828504 DOI: 10.1002/anie.202209953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 01/12/2023]
Abstract
In helical polymers, helical sense induction is usually commanded by teleinduction mechanism, where the largest substituent of the chiral residue directly attached to the main chain is the one that commands the helical sense. In this work, different helical structures with different helical senses are induced in a helical polymer [poly-(phenylacetylene)] when the conformational composition of two different dihedral angles of a pendant group with more than two chiral residues is tamed. Thus, while the dihedral angle at chiral residue 1 [(R)- or (S)-alanine], attached to the backbone, produces an extended or bent conformation in the pendant resulting in two scaffolds with different stretching degree, the second dihedral angle at chiral residue 2 [(R)- or (S)-methoxyphenylacetamide] places the substituents of this chiral center in a different spatial orientation, originating opposite helical senses at the polymer that are induced through a total control of the "chiral overpass effect".
Collapse
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa UniversityKakuma-machiKanazawa920-1192Japan
| | - Elena Rivadulla‐Cendal
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Manuel Fernández‐Míguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Berta Fernández
- Departamento de Química FísicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Katsuhiro Maeda
- WPI Nano Life Science Institute (WPI-NanoLSI)Kanazawa UniversityKakuma-machiKanazawa920-1192Japan
- Graduate School of Natural Science and TechnologyKanazawa UniversityKakuma-machiKanazawa920-1192Japan
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) e Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
21
|
Wezenberg SJ. Photoswitchable molecular tweezers: isomerization to control substrate binding, and what about vice versa? Chem Commun (Camb) 2022; 58:11045-11058. [PMID: 36106956 PMCID: PMC9531670 DOI: 10.1039/d2cc04329g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022]
Abstract
The linkage of two identical binding motifs by a molecular photoswitch has proven to be a straightforward and versatile strategy to control substrate binding affinity by light. Stimulus control of binding properties in artificial receptors is partly inspired by the dynamic behavior of proteins and is highly attractive as it could, for example, improve extraction processes and allow (de)activation of membrane transport on demand. This feature article summarizes the development and design principles of molecular tweezers containing a molecular photoswitch as the core unit. Besides the control of binding affinity by isomerization, the effect of substrate binding on the isomerization behavior is discussed where data is available. While the latter often receives less attention, it could be of benefit in the future creation of multi-stimuli-controlled molecular switching and machine-like systems.
Collapse
Affiliation(s)
- Sander J Wezenberg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
22
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Lin Y, Wu H, Liu Z, Li J, Cai R, Hashimoto M, Wang L. Additive-free aerobic oxidation of hydroazobenzenes: Access to azobenzenes and epoxidation of enones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Kumar P, Gupta D, Grewal S, Srivastava A, Kumar Gaur A, Venkataramani S. Multiple Azoarenes Based Systems - Photoswitching, Supramolecular Chemistry and Application Prospects. CHEM REC 2022; 22:e202200074. [PMID: 35860915 DOI: 10.1002/tcr.202200074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/16/2022] [Indexed: 11/05/2022]
Abstract
In the recent decades, the investigations on photoresponsive molecular systems with multiple azoarenes are quite popular in diverse perspectives ranging from fundamental understanding of multiple photoswitches, supramolecular chemistry, and various application prospects. In fact, several insightful and conceptual designs of such systems were investigated with architectural distinctions. In particular, the demonstration of applications such as data storage with the help of multistate or orthogonal photoswitches, light modulation of catalysis via cooperative switching, sensors using supramolecular host-guest interactions, and materials such as liquid crystals, grating, actuators, etc. are some of the milestones in this area. Herein, we cover the recent advancements in the research areas of multiazoarenes containing systems that have been classified into Type-1 {linear, non-linear, and core-based (A)}, Type-2 {tripodal C3 -symmetric (C3)} and Type-3 {macrocyclic (M)} structural motifs.
Collapse
Affiliation(s)
- Pravesh Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Debapriya Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Surbhi Grewal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Anjali Srivastava
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Ankit Kumar Gaur
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| | - Sugumar Venkataramani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, Knowledge City, SAS Nagar, Manauli (PO), Punjab, 140306, INDIA
| |
Collapse
|
25
|
Fernández Z, Fernández B, Quiñoá E, Freire F. Merging Supramolecular and Covalent Helical Polymers: Four Helices Within a Single Scaffold. J Am Chem Soc 2021; 143:20962-20969. [PMID: 34860519 PMCID: PMC8679087 DOI: 10.1021/jacs.1c10327] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Supramolecular and covalent polymers share multiple structural effects such as chiral amplification, helical inversion, sergeants and soldiers, or majority rules, among others. These features are related to the axial helical structure found in both types of materials, which are responsible for their properties. Herein a novel material combining information and characteristics from both fields of helical polymers, supramolecular (oligo(p-phenyleneethynylene) (OPE)) and covalent (poly(acetylene) (PA)), is presented. To achieve this goal, the poly(acetylene) must adopt a dihedral angle between conjugated double bonds (ω1) higher than 165°. In such cases, the tilting degree (Θ) between the OPE units used as pendant groups is close to 11°, like that observed in supramolecular helical arrays of these molecules. Polymerization of oligo[(p-phenyleneethynylene)n]phenylacetylene monomers (n = 1, 2) bearing L-decyl alaninate as the pendant group yielded the desired scaffolds. These polymers adopt a stretched and almost planar polyene helix, where the OPE units are arranged describing a helical structure. As a result, a novel multihelix material was prepared, the ECD spectra of which are dominated by the OPE axial array.
Collapse
Affiliation(s)
- Zulema Fernández
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Fernández
- Departamento
de Química Física, University
of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS) and Departamento de Química
Orgánica, Universidade de Santiago
de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
26
|
Dudek M, Deiana M, Szkaradek K, Janicki MJ, Pokładek Z, Góra RW, Matczyszyn K. Light-Induced Modulation of Chiral Functions in G-Quadruplex-Photochrome Systems. J Phys Chem Lett 2021; 12:9436-9441. [PMID: 34554762 PMCID: PMC8503878 DOI: 10.1021/acs.jpclett.1c02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
The design of artificially engineered chiral structures has received much attention, but the implementation of dynamic functions to modulate the chiroptical response of the systems is less explored. Here, we present a light-responsive G-quadruplex (G4)-based assembly in which chirality enrichment is induced, tuned, and fueled by molecular switches. In particular, the mirror-image dependence on photoactivated azo molecules, undergoing trans-to-cis isomerization, shows chiral recognition effects on the inherent flexibility and conformational diversity of DNA G4s having distinct handedness (right- and left-handed). Through a detailed experimental and computational analysis, we bring compelling evidence on the binding mode of the photochromes on G4s, and we rationalize the origin of the chirality effect that is associated with the complexation event.
Collapse
Affiliation(s)
- Marta Dudek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Marco Deiana
- Department
of Medical Biochemistry and Biophysics, Umeå University, 90187 Umeå, Sweden
| | - Kinga Szkaradek
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Mikołaj J. Janicki
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ziemowit Pokładek
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Robert W. Góra
- Theoretical
Photochemistry and Photophysics Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
27
|
Sahoo D, Benny R, Ks NK, De S. Stimuli-Responsive Chiroptical Switching. Chempluschem 2021; 87:e202100322. [PMID: 34694736 DOI: 10.1002/cplu.202100322] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
"Chirality" governs many fundamental properties in chemistry and biochemistry. While early investigations on stereochemistry are primarily dedicated to static chirality, there is an increasing interest in the field of dynamic chirality (chiral switches). These chiral switches are essential in controlling the directionality in molecular motors. Dynamic chiralities are equally crucial in switchable stereoselectivity, switchable asymmetric catalysis and enantioselective separation. Herein, we limit our discussion to recent advances on stimuli-induced chiroptical switching of axial, helical, and planar chirality in response to external stimuli. We also discuss a few examples of applications of the switchable chirality.
Collapse
Affiliation(s)
- Diptiprava Sahoo
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Renitta Benny
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Nithish Kumar Ks
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| | - Soumen De
- School of Chemistry, Indian Institute of Science Education and, Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, 695551, India
| |
Collapse
|
28
|
Abstract
Abstract
This article describes the defining characteristics of photochromic dyes and highlights the subset of properties that are of greatest commercial importance. It outlines the history of the industrial exploitation of photochromic colorants before moving on to discuss current and potential applications. In doing so, a brief tour of key types of photochromic dye is provided.
Collapse
|
29
|
|
30
|
Tamaki K, Aizawa T, Yagai S. Wavy supramolecular polymers formed by hydrogen-bonded rosettes. Chem Commun (Camb) 2021; 57:4779-4782. [PMID: 33949513 DOI: 10.1039/d1cc01636a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A barbiturate-functionalized supramolecular monomer bearing an ester-linked biphenyl and azobenzene π-conjugated core affords wavy supramolecular polymers. The periodic inversion of curvature is due to the conformational rigidity of the monomer and repulsive interactions between rosettes. Photoisomerization of the azobenzene moiety increases the fragility of the main chain without deteriorating its periodic structure.
Collapse
Affiliation(s)
- Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takumi Aizawa
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan. and Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
31
|
Fukushima T, Tamaki K, Isobe A, Hirose T, Shimizu N, Takagi H, Haruki R, Adachi SI, Hollamby MJ, Yagai S. Diarylethene-Powered Light-Induced Folding of Supramolecular Polymers. J Am Chem Soc 2021; 143:5845-5854. [PMID: 33755463 DOI: 10.1021/jacs.1c00592] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Helical folding of randomly coiled linear polymers is an essential organization process not only for biological polypeptides but also for synthetic functional polymers. Realization of this dynamic process in supramolecular polymers (SPs) is, however, a formidable challenge because of their inherent lability of main chains upon changing an external environment that can drive the folding process (e.g., solvent, concentration, and temperature). We herein report a photoinduced reversible folding/unfolding of rosette-based SPs driven by photoisomerization of a diarylethene (DAE). Temperature-controlled supramolecular polymerization of a barbiturate-functionalized DAE (open isomer) in nonpolar solvent results in the formation of intrinsically curved, but randomly coiled, SPs due to the presence of defects. Irradiation of the randomly coiled SPs with UV light causes efficient ring-closure reaction of the DAE moieties, which induces helical folding of the randomly coiled structures into helicoidal ones, as evidenced by atomic force microscopy and small-angle X-ray scattering. The helical folding is driven by internal structure ordering of the SP fiber that repairs the defects and interloop interaction occurring only for the resulting helicoidal structure. In contrast, direct supramolecular polymerization of the ring-closed DAE monomers by temperature control affords linearly extended ribbon-like SPs lacking intrinsic curvature that are thermodynamically less stable compared to the helicoidal SPs. The finding represents an important concept applicable to other SP systems; that is, postpolymerization (photo)reaction of preorganized kinetic structures can lead to more thermodynamically stable structures that are inaccessible directly through temperature-controlled protocols.
Collapse
Affiliation(s)
- Takuya Fukushima
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenta Tamaki
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Isobe
- Division of Advanced Science and Engineering, Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Hideaki Takagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Rie Haruki
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801, Japan
| | - Martin J Hollamby
- School of Chemical and Physical Sciences, Keele University, Keele, U.K
| | - Shiki Yagai
- Institute for Global Prominent Research (IGPR), Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.,Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
32
|
Mravec B, Marini A, Tommasini M, Filo J, Cigáň M, Mantero M, Tosi S, Canepa M, Bianco A. Structural and Spectroscopic Properties of Benzoylpyridine‐Based Hydrazones. Chemphyschem 2021; 22:533-541. [DOI: 10.1002/cphc.202000941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/24/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Bernard Mravec
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | - Anna Marini
- Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Matteo Tommasini
- Dipartimento di Chimica Materiali e Ingegneria Chimica Politecnico di Milano P.zza Leonardo da Vinci 32 20133 Milano Italy
| | - Juraj Filo
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | - Marek Cigáň
- Institute of Chemistry Faculty of Natural Sciences Comenius University Ilkovičova 6, 842 15 Bratislava Slovakia
| | | | - Silvano Tosi
- Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
- INFN Sezione di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Maurizio Canepa
- OPTMATLAB Dipartimento di Fisica Università di Genova Via Dodecaneso 33 Genova 16146 Italy
| | - Andrea Bianco
- INAF – Osservatorio Astronomico di Brera via Bianchi 46 23807 Merate Italy
| |
Collapse
|
33
|
Ortuño AM, Reiné P, Resa S, Álvarez de Cienfuegos L, Blanco V, Paredes JM, Mota AJ, Mazzeo G, Abbate S, Ugalde JM, Mujica V, Longhi G, Miguel D, Cuerva JM. Extended enantiopure ortho-phenylene ethylene ( o-OPE)-based helical systems as scaffolds for supramolecular architectures: a study of chiroptical response and its connection to the CISS effect. Org Chem Front 2021. [DOI: 10.1039/d1qo00822f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Versatile enantiopure helical systems are described and are of interest owing to their intense chiroptical responses, their attractive architecture for metallosupramolecular chemistry and CISS effect.
Collapse
Affiliation(s)
- Ana M. Ortuño
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| | - Pablo Reiné
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| | - Sandra Resa
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| | - Victor Blanco
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| | | | - Antonio J. Mota
- Department of Inorganic Chemistry, Faculty of Science, UGR-UEQ
| | - Giuseppe Mazzeo
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica – CNR, Brescia Research Unit, via Branze 45, 25123 Brescia, Italy
| | - Sergio Abbate
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica – CNR, Brescia Research Unit, via Branze 45, 25123 Brescia, Italy
| | - Jesus M. Ugalde
- Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain
| | - Vladimiro Mujica
- Kimika Fakultatea, Euskal Herriko Unibertsitatea and Donostia International Physics Center (DIPC), P. K. 1072, 20080 Donostia, Euskadi, Spain
- Arizona State University, School of Molecular Sciences, Tempe, AZ 85287, USA
| | - Giovanna Longhi
- Department of Molecular and Translational Medicine, Università di Brescia, Brescia, Italy
- Istituto Nazionale di Ottica – CNR, Brescia Research Unit, via Branze 45, 25123 Brescia, Italy
| | - Delia Miguel
- Department of Physical Chemistry, Faculty of Pharmacy, UGR-UEQ
| | - Juan Manuel Cuerva
- Department of Organic Chemistry, Faculty of Science, Universidad de Granada (UGR), Unidad de Excelencia de Química (UEQ), E-18071 Granada, Spain
| |
Collapse
|
34
|
Toya M, Ito H, Itami K. Synthesis and properties of helically-folded poly(arylenediethynylene)s. Polym Chem 2021. [DOI: 10.1039/d1py00144b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three arylenediethnylene-based helical foldamers having pyridine, naphthaleneimide and pyrene cores show unique conformational changes and photophysical properties in various organic solvents.
Collapse
Affiliation(s)
| | - Hideto Ito
- Graduate School of Science
- Nagoya University
- Chikusa
- Japan
- JST-ERATO
| | - Kenichiro Itami
- Graduate School of Science
- Nagoya University
- Chikusa
- Japan
- JST-ERATO
| |
Collapse
|
35
|
Poyer S, Choi CM, Deo C, Bogliotti N, Xie J, Dugourd P, Chirot F, Salpin JY. Kinetic study of azobenzene E/Z isomerization using ion mobility-mass spectrometry and liquid chromatography-UV detection. Analyst 2020; 145:4012-4020. [PMID: 32347851 DOI: 10.1039/d0an00048e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Z and E azobenzene isomers are molecular switches which can interconvert both photochemically and thermally. Presently, we studied a ketal-substituted bridged azobenzene in which two stable diastereomeric conformers (Z1 and Z2) photochemically interconvert through the transient E isomer. UV-VIS absorption spectroscopy is commonly used to study the relaxation kinetics of azobenzenes, but it does not allow direct quantitation of the process in this case. In the present paper, liquid chromatography coupled to UV detection (LC-UV) and ion mobility-mass spectrometry (IMS-MS) were combined to study the thermal back relaxation kinetics of the E isomer. LC separation of the three isomers was achieved in less than 10 minutes, allowing the characterization of the relatively slow thermal back relaxation kinetics at low temperature through UV detection. In addition, the faster E→Z thermal back relaxation at higher temperature was studied using IMS-MS, which allows shorter timescale separation than LC. Baseline separation of the two Z isomers was achieved in IMS-MS for [Z + Ag]+ ions, and their gas-phase conformations were determined by IRMPD experiments. Both IMS-MS and LC-UV methodologies succeeded to study the E→Z thermal back relaxation kinetics, and appeared to be complementary techniques. We show that the combination of the two techniques allows the characterization of the isomerization processes over a broad temperature range, and the determination of the associated thermodynamic observables.
Collapse
Affiliation(s)
- Salomé Poyer
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE, 91025, Evry-Courcouronnes, France.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Cobos K, Rodríguez R, Domarco O, Fernández B, Quiñoá E, Riguera R, Freire F. Polymeric Helical Structures à la Carte by Rational Design of Monomers. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Katherine Cobos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rafael Rodríguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Olaya Domarco
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Berta Fernández
- Departamento de Química Física, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ricardo Riguera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
37
|
Rodríguez R, Suárez‐Picado E, Quiñoá E, Riguera R, Freire F. A Stimuli‐Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Esteban Suárez‐Picado
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
38
|
Rodríguez R, Suárez‐Picado E, Quiñoá E, Riguera R, Freire F. A Stimuli‐Responsive Macromolecular Gear: Interlocking Dynamic Helical Polymers with Foldamers. Angew Chem Int Ed Engl 2020; 59:8616-8622. [DOI: 10.1002/anie.201915488] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/07/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Rafael Rodríguez
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Esteban Suárez‐Picado
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Emilio Quiñoá
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Ricardo Riguera
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Félix Freire
- Centro Singular de investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
39
|
Lin C, Jiao J, Maisonneuve S, Mallétroit J, Xie J. Stereoselective synthesis and properties of glycoazobenzene macrocycles through intramolecular glycosylation. Chem Commun (Camb) 2020; 56:3261-3264. [PMID: 32101198 DOI: 10.1039/c9cc09853d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An intramolecular glycosylation strategy was used to synthesize a series of new glycoazobenzene macrocycles with high α-selectivity and interesting chiroptical properties. The photoisomerization of an azobenzene template influences mainly the efficiency of the glycosylation.
Collapse
Affiliation(s)
- Chaoqi Lin
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 61 Av. du Président Wilson, 94235 Cachan, France.
| | - Jinbiao Jiao
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 61 Av. du Président Wilson, 94235 Cachan, France.
| | - Stéphane Maisonneuve
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 61 Av. du Président Wilson, 94235 Cachan, France.
| | - Julien Mallétroit
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 61 Av. du Président Wilson, 94235 Cachan, France.
| | - Juan Xie
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, PPSM, 61 Av. du Président Wilson, 94235 Cachan, France.
| |
Collapse
|
40
|
Qiu Y, Yan H, Wang J, Jiang Q, Wang H, Peng H, Liao Y, Xie X, Brycki BE. Concurrent helix extension and chirality enhancement for an artificial helical foldamer complexed with sterically hindered chiral molecules. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Abstract
Photoswitchable catalysis using organometallic complexes: a ligand design perspective.
Collapse
Affiliation(s)
- Zoraida Freixa
- Department of Applied Chemistry
- University of the Basque Country (UPV-EHU)
- San Sebastián
- Spain
- IKERBASQUE
| |
Collapse
|
42
|
Abstract
Recent progress in chiroptical switches including on/off, amplification, and inversion of the chiral signals such as ECD and CPL in supramolecular assemblies is shown.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Shuai Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
43
|
Tateno K, Ono K, Kawai H. Fluorescent Short‐Stranded Helical Foldamers Based on L‐shaped Dibenzopyrrolo[1,2‐
a
][1,8]naphthyridine. Chemistry 2019; 25:15765-15771. [DOI: 10.1002/chem.201903538] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Kotaro Tateno
- Department of ChemistryFaculty of ScienceTokyo University of Science 1–3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| | - Kosuke Ono
- Department of ChemistryTokyo Institute of Technology 2–12-1 O-okayama, Meguro-ku Tokyo 152-8551 Japan
| | - Hidetoshi Kawai
- Department of ChemistryFaculty of ScienceTokyo University of Science 1–3 Kagurazaka Shinjuku-ku Tokyo 162-8601 Japan
| |
Collapse
|
44
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Zweig JE, Ko TA, Huang J, Newhouse TR. Effects of π-extension on pyrrole hemithioindigo photoswitches. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Nojo W, Ishigaki Y, Takeda T, Akutagawa T, Suzuki T. Selective Formation of a Mixed‐Valence State from Linearly Bridged Oligo(aromatic diamines): Drastic Structural Change into a Folded Columnar Stack for Half‐filled Polycations. Chemistry 2019; 25:7759-7765. [DOI: 10.1002/chem.201901272] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Wataru Nojo
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Yusuke Ishigaki
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| | - Takashi Takeda
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University Sendai Miyagi 980-8577 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University Sendai Miyagi 980-8577 Japan
| | - Takanori Suzuki
- Department of ChemistryFaculty of ScienceHokkaido University Sapporo 060-0810 Japan
| |
Collapse
|
47
|
Remote coordination approach for electronic tuning of a rhodium(I)-N-heterocyclic carbene (NHC)-complex. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
48
|
Jiang H, Jiang Y, Han J, Zhang L, Liu M. Helical Nanostructures: Chirality Transfer and a Photodriven Transformation from Superhelix to Nanokebab. Angew Chem Int Ed Engl 2019; 58:785-790. [DOI: 10.1002/anie.201811060] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/12/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Hejin Jiang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Jianlei Han
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS)CAS Laboratory of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- Laboratory for Nanosystem and Hierarchical FabricationCAS Center for Excellence in NanoscienceNational Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Collaborative Innovation Center of Chemical Science, and Engineering Tianjin 300072 China
| |
Collapse
|
49
|
Mravec B, Filo J, Csicsai K, Garaj V, Kemka M, Marini A, Mantero M, Bianco A, Cigáň M. Photoswitching hydrazones based on benzoylpyridine. Phys Chem Chem Phys 2019; 21:24749-24757. [DOI: 10.1039/c9cp05049c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoswitching behaviour of three readily accesible benzoylpyridine hydrazones, whose photochromic properties depend on the benzoyl substituent and intermolecular interactions, was investigated.
Collapse
Affiliation(s)
- Bernard Mravec
- Institute of Chemistry
- Faculty of Natural Sciences
- Comenius University
- SK-842 15 Bratislava
- Slovakia
| | - Juraj Filo
- Institute of Chemistry
- Faculty of Natural Sciences
- Comenius University
- SK-842 15 Bratislava
- Slovakia
| | - Klaudia Csicsai
- Institute of Chemistry
- Faculty of Natural Sciences
- Comenius University
- SK-842 15 Bratislava
- Slovakia
| | - Vladimír Garaj
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Comenius University
- SK-832 32 Bratislava
- Slovakia
| | - Miroslav Kemka
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Comenius University
- SK-832 32 Bratislava
- Slovakia
| | - Anna Marini
- INAF-Osservatorio Astronomico di Brera
- Merate
- Italy
| | | | | | - Marek Cigáň
- Institute of Chemistry
- Faculty of Natural Sciences
- Comenius University
- SK-842 15 Bratislava
- Slovakia
| |
Collapse
|
50
|
Maji B, Choudhury J. Switchable hydrogenation with a betaine-derived bifunctional Ir–NHC catalyst. Chem Commun (Camb) 2019; 55:4574-4577. [DOI: 10.1039/c9cc00972h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A bifunctional iridium catalyst based on the ‘uracil–abnormal NHC’ hybrid ligand platform was developed for switchable hydrogenation of quinoxalines.
Collapse
Affiliation(s)
- Babulal Maji
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER) Bhopal
- Bhopal 462 066
- India
| |
Collapse
|