1
|
Venel F, Volkringer C, Lafon O, Pourpoint F. Probing adsorption of water and DMF in UiO-66(Zr) using solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 120:101797. [PMID: 35749817 DOI: 10.1016/j.ssnmr.2022.101797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Florian Venel
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, 59000, Lille, France.
| |
Collapse
|
2
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Abánades Lázaro I, Forgan RS, Cirujano FG. MOF nanoparticles as heterogeneous catalysts for direct amide bond formations. Dalton Trans 2022; 51:8368-8376. [PMID: 35583628 DOI: 10.1039/d2dt00369d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of composition and textural characteristics of a family of ultra-small isoreticular UiO-type metal-organic frameworks (MOFs) with different functionalized and extended linkers on their catalytic performance is evaluated. Two direct amide bond formations across four different substrates (benzylamine + phenylacetic acid and aniline + formic acid) are employed as proof-of-concept reactions to test the activity of the Zr-MOF nanoparticles. The reaction rates of amide bond formation are evaluated against physico-chemical properties such as crystallinity, porosity, particle size or linker functionality, alongside the Lewis acid and hydrophobic properties of the MOFs, in order to gain insights into the catalytic mechanism and optimal properties for its enhancement.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain.
| | - Ross S Forgan
- WestCHEM School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow G12 8QQ, UK
| | - Francisco G Cirujano
- Instituto de Ciencia Molecular (ICMol), Universitat de Valencia, Catedrático José Beltrán Martínez n° 2, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
4
|
Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Xu F, Liu C, Li JX, Zhan C, Xun Q, Zhang W, Xing W, Chang GG. Hierarchically porous single catalyst Ru/HPW/UiO-66 with synergistic acid/metal sites for one-pot catalytic synthesis of γ–Valerolactone. NEW J CHEM 2022. [DOI: 10.1039/d2nj02266d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
γ-valerolactone (GVL) is an important lignocellulosic platform molecule with huge potential for various industrial and chemical applications, which is usually produced by using Levulinic acid (LA) or its esters as...
Collapse
|
6
|
Lázaro IA, Popescu C, Cirujano FG. Controlling the molecular diffusion in MOFs with the acidity of monocarboxylate modulators. Dalton Trans 2021; 50:11291-11299. [PMID: 34342329 DOI: 10.1039/d1dt01773j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performance of metal-organic frameworks (MOFs) is related to their physicochemical properties, such as particle size, defect chemistry and porosity, which can be potentially controlled by coordination modulation. By combining PXRD, 1HNMR, FT-IR, and N2 uptake measurements we have gained insights into the control of different types of defects (missing linker or missing cluster consequence of the spatial distribution of missing linkers, and a combination of both) by the type of modulator employed. We show that the molar percent of defects, either as missing linkers or as a part of missing cluster defects, is related to the acidity of a modulator and its subsequent incorporation into the UiO-66 structure. Modulators with strong acidity and small size result in a considerable defect induction that causes an increase in the external surface area and mesopore volume, which is beneficial for the ring-opening of epoxides with amines, using UiO-66 defect-modulated MOFs as heterogeneous catalysts.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no 2, 46980 Paterna, Valencia, Spain.
| | | | | |
Collapse
|
7
|
Lázaro IA, Rodrigo-Muñoz JM, Sastre B, Ángel MR, Martí-Gastaldo C, Del Pozo V. The excellent biocompatibility and negligible immune response of the titanium heterometallic MOF MUV-10. J Mater Chem B 2021; 9:6144-6148. [PMID: 34286816 DOI: 10.1039/d1tb00981h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ti-Ca heterometallic MOF MUV-10 exhibits good dispersibility in phosphate buffer and low phosphate-induced degradation in comparison to other MOF systems. It induces no cytotoxicity towards cells of the immune system and no inmune response, making it an attractive candidate for biomedical applications and demonstrating its safe use for other applications.
Collapse
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán Martínez no. 2, Paterna 46980, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Oozeerally R, Burnett DL, Chamberlain TW, Kashtiban RJ, Huband S, Walton RI, Degirmenci V. Systematic Modification of UiO‐66 Metal‐Organic Frameworks for Glucose Conversion into 5‐Hydroxymethyl Furfural in Water. ChemCatChem 2021. [DOI: 10.1002/cctc.202001989] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ryan Oozeerally
- School of Engineering University of Warwick Coventry CV4 7AL UK
| | - David L. Burnett
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | - Thomas W. Chamberlain
- School of Engineering University of Warwick Coventry CV4 7AL UK
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
| | | | - Steven Huband
- Department of Physics University of Warwick Coventry CV4 7AL UK
| | | | | |
Collapse
|
9
|
Jiao C, Song X, Zhang X, Sun L, Jiang H. MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO 2/CH 4 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18380-18388. [PMID: 33844496 DOI: 10.1021/acsami.1c03737] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Control of the surface morphology of polyamide membranes fabricated by interfacial polymerization is of great importance in dictating the separation performance. Herein, polyamide membranes with a specific nanoscale striped Turing structure are generated through facile addition of Zr-based metal-organic framework UiO-66-NH2 in the aqueous triethylenetetramine phase. Interestingly, accompanied by the degradation of UiO-66-NH2 in aqueous solution, an intermediate complex is in situ formed through the strong interaction between the Zr metal center and the amine group from triethylenetetramine, which can lower amine diffusion and induce a local interfacial reaction, contributing to the generation of a homogeneous nanoscale striped Turing structure. The resulting membranes are used for CO2/CH4 gas separation. Compared with the parent polyamide membrane displaying a CO2/CH4 selectivity of 43.1 and a CO2 permeance of 31.5 GPU, the membrane with 0.02 wt % of UiO-66-NH2 introduced into the aqueous phase shows a higher CO2/CH4 selectivity of 58.3, along with a CO2 permeance of 27.1 GPU. Additionally, when 0.1 wt % of UiO-66-NH2 is incorporated into the aqueous phase, the membrane exhibits a combination of a higher CO2/CH4 selectivity and an enhanced CO2 permeance in contrast with the parent polyamide membrane.
Collapse
Affiliation(s)
- Chengli Jiao
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiangju Song
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaoqian Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lixian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, P. R. China
| | - Heqing Jiang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
10
|
Zhong M, Kong L, Zhao K, Zhang Y, Li N, Bu X. Recent Progress of Nanoscale Metal-Organic Frameworks in Synthesis and Battery Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001980. [PMID: 33643787 PMCID: PMC7887588 DOI: 10.1002/advs.202001980] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/28/2020] [Indexed: 05/21/2023]
Abstract
As one type of promising inorganic-organic hybrid crystal material, metal-organic frameworks (MOFs) have attracted widespread attention in many potential fields, particularly in energy storage and conversion. Recently, effective strategies have been developed to construct uniform nanoscale MOFs (NMOFs), which not only retain inherent advantages of MOFs but also develop some improved superiorities, including shorter diffusion pathway for guest transportation and more accessible active sites for surface adsorption and reaction. Additonally, their nanometer size provides more opportunity for post-functionalization and hybridization. In this review, recent progress on the preparation of NMOFs is summarized, primarily through bottom-up strategies including reaction parameter- and coordination-assisted synthesis, and top-down strategies such as liquid exfoliation and salt-template confinement. Additionally, recent applications of NMOFs in batteries as electrodes, separators, and electrolytes is discussed. Finally, some important issues concerning the fabrication and application are emphasized, which should be paid attention in future.
Collapse
Affiliation(s)
- Ming Zhong
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Lingjun Kong
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Kun Zhao
- State Key Laboratory of Advanced Processing and Recycling of Nonferrous MetalsLanzhou University of TechnologyLanzhou730050P. R. China
| | - Ying‐Hui Zhang
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Na Li
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| | - Xian‐He Bu
- School of Materials Science and EngineeringTianjin Key Laboratory of Metal and Molecule‐Based Material ChemistryNational Institute for Advanced MaterialsNankai UniversityTianjin300350P. R. China
| |
Collapse
|
11
|
Lázaro IA. A Comprehensive Thermogravimetric Analysis Multifaceted Method for the Exact Determination of the Composition of Multifunctional Metal‐Organic Framework Materials. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Isabel Abánades Lázaro
- Instituto de Ciencia Molecular (ICMol) Universitat de València Paterna 46980 València Spain
| |
Collapse
|
12
|
Griffin SL, Briuglia ML, ter Horst JH, Forgan RS. Assessing Crystallisation Kinetics of Zr Metal-Organic Frameworks through Turbidity Measurements to Inform Rapid Microwave-Assisted Synthesis. Chemistry 2020; 26:6910-6918. [PMID: 32227534 PMCID: PMC7318326 DOI: 10.1002/chem.202000993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/27/2020] [Indexed: 12/29/2022]
Abstract
Controlling the crystallisation of metal-organic frameworks (MOFs), network solids of metal ions or clusters connected by organic ligands, is often hindered by the significant number of synthetic variables inherent to their synthesis. Coordination modulation, the addition of monotopic competing ligands to solvothermal syntheses, can allow tuning of physical properties (particle size, porosity, surface chemistry), enhance crystallinity, and select desired phases, by modifying the kinetics of self-assembly, but its mechanism(s) are poorly understood. Herein, turbidity measurements were used to assess the effects of modulation on the solvothermal synthesis of the prototypical Zr terephthalate MOF UiO-66 and the knowledge gained was applied to its rapid microwave synthesis. The studied experimental parameters-temperature, reagent concentration, reagent aging, metal precursor, water content, and modulator addition-all influence the time taken for onset of nucleation, and subsequently allow microwave synthesis of UiO-66 in as little as one minute. The simple, low cost turbidity measurements align closely with previously reported in situ synchrotron X-ray diffraction studies, proving their simplicity and utility for probing the nucleation of complex materials while offering significant insights to the synthetic chemist.
Collapse
Affiliation(s)
- Sarah L. Griffin
- WestCHEM School of ChemistryUniversity of GlasgowGlasgowUK
- EPSRC Centre for Innovative Manufacturing in, Continuous Manufacturing and Crystallisation (CMAC)Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation CentreUniversity of Strathclyde99 George StreetGlasgowUK
| | - Maria L. Briuglia
- EPSRC Centre for Innovative Manufacturing in, Continuous Manufacturing and Crystallisation (CMAC)Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation CentreUniversity of Strathclyde99 George StreetGlasgowUK
| | - Joop H. ter Horst
- EPSRC Centre for Innovative Manufacturing in, Continuous Manufacturing and Crystallisation (CMAC)Strathclyde Institute of Pharmacy and Biomedical Sciences, Technology and Innovation CentreUniversity of Strathclyde99 George StreetGlasgowUK
| | - Ross S. Forgan
- WestCHEM School of ChemistryUniversity of GlasgowGlasgowUK
| |
Collapse
|
13
|
Taddei M, van Bokhoven JA, Ranocchiari M. Influence of Water in the Synthesis of the Zirconium-Based Metal–Organic Framework UiO-66: Isolation and Reactivity of [ZrCl(OH)2(DMF)2]Cl. Inorg Chem 2020; 59:7860-7868. [DOI: 10.1021/acs.inorgchem.0c00991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marco Taddei
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Villigen, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen-PSI, Villigen, Switzerland
| |
Collapse
|
14
|
Decker GE, Stillman Z, Attia L, Fromen CA, Bloch ED. Controlling Size, Defectiveness, and Fluorescence in Nanoparticle UiO-66 Through Water and Ligand Modulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:4831-4839. [PMID: 33223613 PMCID: PMC7678749 DOI: 10.1021/acs.chemmater.9b01383] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
UiO-66, a zirconium(IV) metal-organic framework (MOF) comprised of six-metal clusters and terephthalic acid ligands, displays excellent thermal and chemical stability and has functions in gas storage, catalysis, selective adsorption, and drug delivery. Though the stability of UiO-66 is highly advantageous, simultaneous synthetic control over particle size and defectiveness of UiO-66 remains difficult to attain. Using an acid-free solvothermal synthesis, we demonstrate that particle size, defectiveness, and inherent fluorescence of UiO-66 can be precisely tuned using the molar ligand to metal ratio, quantified water content, and reaction time during synthesis. These three synthetic handles allow for reproducible modulation of UiO-66 defectiveness between 0 and 12% and particle size between 20 to 120 nm, while maintaining high crystallinity in the nanoparticles that were formed. We also find that particle defectiveness is linked to common over-estimation of particle size measurements obtained via dynamic light scattering (DLS) and propose a model to correct elevated hydrodynamic diameter measurements. Finally, we report inherent fluorescence of non-functionalized UiO-66, which exhibits peak fluorescence at a wavelength of 390 nm following excitation at 280 nm and is maximized in large, defect-free particles. Overall, this synthetic approach and characterization of defect, size, and fluorescence represent new opportunities to tune the physiochemical properties of UiO-66.
Collapse
Affiliation(s)
- Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
- Corresponding Author: (E.D.B.) , (C.A.F.)
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
- Corresponding Author: (E.D.B.) , (C.A.F.)
| |
Collapse
|
15
|
Butova VV, Budnyk AP, Charykov KM, Vetlitsyna-Novikova KS, Lamberti C, Soldatov AV. Water as a structure-driving agent between the UiO-66 and MIL-140A metal-organic frameworks. Chem Commun (Camb) 2019; 55:901-904. [PMID: 30520891 DOI: 10.1039/c8cc07709f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report a careful investigation of a selective phase formation in the zirconium-terephthalic acid system during solvothermal synthesis, which could result in the UiO-66 (Zr6O6(OH)4(BDC)6) or MIL-140A (ZrO(BDC)) metal-organic frameworks (MOFs). The introduction of water varies the phase from MIL-140A to UiO-66 by producing at the nucleation stage tetragonal ZrO2 nanoparticles, where the local arrangement of Zr and O atoms is similar to that in the UiO-66 SBU.
Collapse
Affiliation(s)
- Vera V Butova
- The Smart Materials Research Institute, Southern Federal University, Sladkova str. 178/24, Rostov-on-Don, 344090, Russia.
| | | | | | | | | | | |
Collapse
|
16
|
Cabrera-García A, Checa-Chavarria E, Rivero-Buceta E, Moreno V, Fernández E, Botella P. Amino modified metal-organic frameworks as pH-responsive nanoplatforms for safe delivery of camptothecin. J Colloid Interface Sci 2019; 541:163-174. [PMID: 30685611 DOI: 10.1016/j.jcis.2019.01.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
MIL-100(Fe) and MIL-101(Fe) metal-organic frameworks (MOFs) are excellent vehicles for drug delivery systems (DDSs) due to their high biocompatibility and stability in physiological fluids, as well as their pore diameter in the mesoporous range. Although they are appropriate for the internal diffusion of 20-(S)-camptothecin (CPT), a strongly cytotoxic molecule with excellent antitumor activity, no stable delivery system has been proposed so far for this drug based in MOFs. We here present novel DDSs based in amine functionalized MIL-100(Fe) and MIL-101(Fe) nanoMOFs with covalently bonded CPT. These CPT nanoplatforms are able to incorporate almost 20% of this molecule and show high stability at physiological pH, with no non-specific release. Based on their surface charge, some of these CPT loaded nanoMOFs present improved cell internalization in in vitro experiments. Moreover, a strong response to acid pH is observed, with up to four fold drug discharge at pH 5, which boost intracellular release by endosomolytic activity. These novel DDSs will help to achieve safe delivery of the very cytotoxic CPT, allowing to reduce the therapeutic dose and minimizing drug secondary effects.
Collapse
Affiliation(s)
- Alejandro Cabrera-García
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Elisa Checa-Chavarria
- Institute of Bioengineering, Universidad Miguel Hernández Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain
| | - Eva Rivero-Buceta
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Victoria Moreno
- Neuronal and Tissue Regeneration Lab, Research Centre "Principe Felipe", Valencia, Spain
| | - Eduardo Fernández
- Institute of Bioengineering, Universidad Miguel Hernández Elche, Spain and Centre for Network Biomedical Research (CIBER-BBN), Spain
| | - Pablo Botella
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
17
|
Arcuri C, Monarca L, Ragonese F, Mecca C, Bruscoli S, Giovagnoli S, Donato R, Bereshchenko O, Fioretti B, Costantino F. Probing Internalization Effects and Biocompatibility of Ultrasmall Zirconium Metal-Organic Frameworks UiO-66 NP in U251 Glioblastoma Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E867. [PMID: 30360511 PMCID: PMC6267206 DOI: 10.3390/nano8110867] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/16/2018] [Accepted: 10/19/2018] [Indexed: 01/08/2023]
Abstract
The synthesis of ultrasmall UiO-66 nanoparticles (NPs) with an average size of 25 nm, determined by X-ray powder diffraction and electron microscopies analysis, is reported. The NPs were stabilized in water by dialyzing the NP from the DMF used for the synthesis. DLS measurements confirmed the presence of particles of 100 nm, which are spherical aggregates of smaller particles of 20⁻30 nm size. The NP have a BET surface area of 700 m²/g with an external surface area of 300 m²/g. UiO-66_N (UiO-66 nanoparticles) were loaded with acridine orange as fluorescent probe. UV-vis spectroscopy analysis revealed no acridine loss after 48 h of agitation in simulated body fluid. The biocompatibility of UiO-66_N was evaluated in human glioblastoma (GBM) cell line U251, the most malignant (IV grade of WHO classification) among brain tumors. In U251 cells, UiO-66_N are inert since they do not alter the cell cycle, the viability, migration properties, and the expression of kinases involved in cancer cell growth. The internalization process was evident after a few hours of incubation. After 24 h, UiO-66_N@Acr (UiO-66_N loaded with acridine orange) were detectable around the nuclei of the cells. These data suggest that small UiO-66 are biocompatible NP and could represent a potential carrier for drug delivery in glioblastoma therapies.
Collapse
Affiliation(s)
- Cataldo Arcuri
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Lorenzo Monarca
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Carmen Mecca
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Stefano Bruscoli
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti 48, 06123, Perugia, Italy.
| | - Rosario Donato
- Department of Experimental Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Oxana Bereshchenko
- Department of Medicine, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy.
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.
| |
Collapse
|
18
|
Chen H, He Y, Pfefferle LD, Pu W, Wu Y, Qi S. Phenol Catalytic Hydrogenation over Palladium Nanoparticles Supported on Metal-Organic Frameworks in the Aqueous Phase. ChemCatChem 2018. [DOI: 10.1002/cctc.201800211] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Chen
- School of Chemical Engineering and Technology; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| | - Yulian He
- Department of Chemical & Environmental Engineering; Yale University; New Haven Connecticut 06520-8286 USA
| | - Lisa D. Pfefferle
- Department of Chemical & Environmental Engineering; Yale University; New Haven Connecticut 06520-8286 USA
| | - Weihua Pu
- Institute of Nuclear and New Energy Technology; Tsinghua University; Beijing 100084 P.R. China
| | - Yulong Wu
- Institute of Nuclear and New Energy Technology; Tsinghua University; Beijing 100084 P.R. China
| | - Suitao Qi
- School of Chemical Engineering and Technology; Xi'an Jiaotong University; Xi'an 710049 P.R. China
| |
Collapse
|
19
|
Abánades Lázaro I, Abánades Lázaro S, Forgan RS. Enhancing anticancer cytotoxicity through bimodal drug delivery from ultrasmall Zr MOF nanoparticles. Chem Commun (Camb) 2018; 54:2792-2795. [DOI: 10.1039/c7cc09739e] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual delivery of dichloroacetate and 5-fluorouracil from Zr MOFs into cancer cells is found to enhance in vitro cytotoxicity.
Collapse
Affiliation(s)
| | | | - Ross S. Forgan
- WestCHEM
- School of Chemistry
- University of Glasgow
- University Avenue
- Glasgow
| |
Collapse
|
20
|
Vilela SMF, Salcedo-Abraira P, Micheron L, Solla EL, Yot PG, Horcajada P. A robust monolithic metal–organic framework with hierarchical porosity. Chem Commun (Camb) 2018; 54:13088-13091. [DOI: 10.1039/c8cc07252c] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanically robust centimetric single-piece MOF monoliths with hierarchical porosity.
Collapse
Affiliation(s)
| | | | - Loïc Micheron
- Institut Lavoisier de Versailles
- Université de Versailles St Quentin
- University Paris Saclay
- France
| | - Eugenio L. Solla
- Servicio de Microscopía Electrónica
- CACTI
- Universidade de Vigo
- Campus Lagoas Marcosende
- Pontevedra
| | - Pascal G. Yot
- Institut Charles Gerhardt Montpellier (ICGM) UMR 5253 Univ Montpellier CNRS ENSCM
- CC 1505
- Université de Montpellier
- Place Eugène Bataillon
- F-34095 Montpellier Cedex 05
| | - Patricia Horcajada
- Advanced Porous Materials Unit (APMU)
- IMDEA Energy Institute
- Madrid
- Spain
- Institut Lavoisier de Versailles
| |
Collapse
|
21
|
Donnadio A, Narducci R, Casciola M, Marmottini F, D'Amato R, Jazestani M, Chiniforoshan H, Costantino F. Mixed Membrane Matrices Based on Nafion/UiO-66/SO 3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation, and Filler Loading on the Mechanical and Conductivity Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42239-42246. [PMID: 29115824 DOI: 10.1021/acsami.7b14847] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed membrane matrices (MMMs) made up with Nafion and nanocrystals of zirconium metal-organic framework (MOF) UiO-66 or the analogous sulfonated SO3H-UiO-66 were prepared by varying the filler loading and the size of the crystals. The combined effects of size and loading, together with the presence of sulfonic groups covalently linked to the MOFs, were studied with regard to the conductivity and mechanical properties of the obtained composite matrices. A large screening of membranes was preliminarily made and, on the most promising samples, an accurate conductivity study at different relative humidities and temperatures was also carried out. The results showed that membranes containing large crystals (200 nm average size) in low amounts (around 2%) displayed the best results in terms of proton conductivity values, reaching values by 30% higher than those of pure Nafion, while leaving the mechanical properties substantially unchanged. On the contrary, MMMs containing MOFs of small size (20 nm average size) did not show any conductivity improvements if compared to pure Nafion membranes. The effect of MOF sulfonation was negligible at low filler loading whereas it became important at loading values around 10%. Finally, membranes with a high filler loading (up to 60 wt %) of sulfonated UiO-66 showed a slight reduction of conductivity in comparison with membranes loaded at 20% of nonsulfonated ones.
Collapse
Affiliation(s)
- Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia , Via A. Fabretti 48, 06123 Perugia, Italy
| | - Riccardo Narducci
- Department of Industrial Engineering, University of Rome Tor Vergata (URoma2) , Via del Politecnico 1, 00133 Roma, Italy
| | - Mario Casciola
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Fabio Marmottini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Roberto D'Amato
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mehdi Jazestani
- Department of Chemistry, Isfahan University of Technology , Isfahan 84156-83111, Iran
| | - Hossein Chiniforoshan
- Department of Chemistry, Isfahan University of Technology , Isfahan 84156-83111, Iran
| | - Ferdinando Costantino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia , Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
22
|
Taddei M. When defects turn into virtues: The curious case of zirconium-based metal-organic frameworks. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.04.010] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Bueken B, Van Velthoven N, Willhammar T, Stassin T, Stassen I, Keen DA, Baron GV, Denayer JFM, Ameloot R, Bals S, De Vos D, Bennett TD. Gel-based morphological design of zirconium metal-organic frameworks. Chem Sci 2017; 8:3939-3948. [PMID: 28553536 PMCID: PMC5433495 DOI: 10.1039/c6sc05602d] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/20/2017] [Indexed: 12/20/2022] Open
Abstract
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsorptive applications. In this work, we present the first examples of xero- or aerogel monoliths consisting solely of nanoparticles of several prototypical Zr4+-based MOFs: UiO-66-X (X = H, NH2, NO2, (OH)2), UiO-67, MOF-801, MOF-808 and NU-1000. High reactant and water concentrations during synthesis were observed to induce the formation of gels, which were converted to monolithic materials by drying in air or supercritical CO2. Electron microscopy, combined with N2 physisorption experiments, was used to show that irregular nanoparticle packing leads to pure MOF monoliths with hierarchical pore systems, featuring both intraparticle micropores and interparticle mesopores. Finally, UiO-66 gels were shaped into monolithic spheres of 600 μm diameter using an oil-drop method, creating promising candidates for packed-bed catalytic or adsorptive applications, where hierarchical pore systems can greatly mitigate mass transfer limitations.
Collapse
Affiliation(s)
- Bart Bueken
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Niels Van Velthoven
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Tom Willhammar
- EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
- Department of Materials and Environmental Chemistry , Stockholm University , S-106 91 Stockholm , Sweden
| | - Timothée Stassin
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Ivo Stassen
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - David A Keen
- ISIS Facility , Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxon OX11 0QX , UK
| | - Gino V Baron
- Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Joeri F M Denayer
- Department of Chemical Engineering , Vrije Universiteit Brussel , Pleinlaan 2 , 1050 Brussels , Belgium
| | - Rob Ameloot
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Sara Bals
- EMAT , University of Antwerp , Groenenborgerlaan 171 , 2020 Antwerp , Belgium
| | - Dirk De Vos
- Centre for Surface Chemistry and Catalysis , Department of Microbial and Molecular Systems (M2S) , KU Leuven , Celestijnenlaan 200F p.o. box 2461 , 3001 Leuven , Belgium .
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy , University of Cambridge , 27 Charles Babbage Road , Cambridge CB3 0FS , UK .
| |
Collapse
|
24
|
Wang Y, Hu Z, Cheng Y, Zhao D. Silver-Decorated Hafnium Metal–Organic Framework for Ethylene/Ethane Separation. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b00517] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuxiang Wang
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Zhigang Hu
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Youdong Cheng
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| | - Dan Zhao
- Department of Chemical and
Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore
| |
Collapse
|
25
|
Han Y, Liu M, Li K, Sun Q, Zhang W, Song C, Zhang G, Conrad Zhang Z, Guo X. In situ synthesis of titanium doped hybrid metal–organic framework UiO-66 with enhanced adsorption capacity for organic dyes. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00437k] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The adsorption ability of zirconium-based MOF UiO-66 for Congo red can be greatly promoted via the doping of Ti4+.
Collapse
Affiliation(s)
- Yitong Han
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Min Liu
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Keyan Li
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Qiao Sun
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Wensheng Zhang
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Chunshan Song
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| | - Guoliang Zhang
- College of Biological and Environmental Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- PR China
| | - Z. Conrad Zhang
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- PR China
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals
- PSU-DUT Joint Center for Energy Research
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
| |
Collapse
|
26
|
Taddei M, Casati N, Steitz DA, Dümbgen KC, van Bokhoven JA, Ranocchiari M. In situ high-resolution powder X-ray diffraction study of UiO-66 under synthesis conditions in a continuous-flow microwave reactor. CrystEngComm 2017. [DOI: 10.1039/c7ce00867h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|