1
|
Electrochemistry and Electrochemiluminescence of Resorufin Dye: Synergetic Reductive-Oxidation Boosted by Hydrogen Peroxide. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Zhou Y, Mazur F, Fan Q, Chandrawati R. Synthetic nanoprobes for biological hydrogen sulfide detection and imaging. VIEW 2022. [DOI: 10.1002/viw.20210008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yingzhu Zhou
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Federico Mazur
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Qingqing Fan
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN) The University of New South Wales (UNSW Sydney) Sydney New South Wales Australia
| |
Collapse
|
3
|
Shin J, Kang DM, Yoo J, Heo J, Jeong K, Chung JH, Han YS, Kim S. Superoxide-responsive fluorogenic molecular probes for optical bioimaging of neurodegenerative events in Alzheimer's disease. Analyst 2021; 146:4748-4755. [PMID: 34231563 DOI: 10.1039/d1an00692d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Since oxidative stress has been recognized as a major factor contributing to the progression of several neurodegenerative disorders, reactive oxygen species (ROS) including superoxide have received great attention as a representative molecular marker for the diagnosis of Alzheimer's disease (AD). Here, superoxide-sensitive fluorogenic molecular probes, benzenesulfonylated resorufin derivatives (BSRs), were newly devised for optical bioimaging of oxidative events in neurodegenerative processes. BSRs, fluorescence-quenched benzenesulfonylated derivatives of resorufin, were designed to recover their fluorescence upon exposure to superoxide through a selective nucleophilic uncaging reaction of the benzenesulfonyl cage. Among BSRs, BSR6 presented the best sensitivity and selectivity to superoxide likely due to the optimal reactivity matching between the nucleophilicity of superoxide and its electrophilicity ascribed to the highly electron-withdrawing pentafluoro-substitution on the benzenesulfonyl cage. Fluorescence imaging of inflammatory cells and animal models presented the potential of BSR6 for optical sensing of superoxide in vitro and in vivo. Furthermore, microglial cell (Bv2) imaging with BSR6 enabled the optical monitoring of intracellular oxidative events upon treatment with an oxidative stimulus (amyloid beta, Aβ) or the byproduct of oxidative stress (4-hydroxynonenal, HNE).
Collapse
Affiliation(s)
- Jawon Shin
- Center for Theragnosis, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ibrahim H, Serag A, Farag MA. Emerging analytical tools for the detection of the third gasotransmitter H 2S, a comprehensive review. J Adv Res 2021; 27:137-153. [PMID: 33318873 PMCID: PMC7728591 DOI: 10.1016/j.jare.2020.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Hydrogen sulfide (H2S) is currently considered among the endogenously produced gaseous molecules that exert various signaling effects in mammalian species. It is the third physiological gasotransmitter discovered so far after NO and CO. H2S was originally ranked among the toxic gases at elevated levels to humans. Currently, it is well-known that, in the cardiovascular system, H2S exerts several cardioprotective effects including vasodilation, antioxidant regulation, inhibition of inflammation, and activation of anti-apoptosis. With an increasing interest in monitoring H2S, the development of analysis methods should now follow. AIM OF REVIEW This review stages special emphasis on the several analytical technologies used for its determination including spectroscopic, chromatographic, and electrochemical methods. Advantages and limitations with regards to the application of each technique are highlighted with special emphasis on its employment for H2S in vivo measurement i.e., biofluids, tissues. KEY SCIENTIFIC CONCEPTS AND IMPORTANT FINDINGS OF REVIEW Fluorescence methods applied for H2S measurement offer an attractive non-invasive and promising approach in addition to its selectivity, however they cannot be considered as H2S-specific probes. On the other hand, colorimetric assays are among the most common methods used for in vitro H2S detection, albeit their employment in vivo H2S measurement has not yet been possible . Separation techniques such as gas or liquid chromatography offer higher selectivity compared to direct spectrophotometric or fluorescence methods especially for suitable for endpoint H2S measurements i.e. plasma or tissue samples. Despite all the developed analytical procedures used for H2S determination, the need for highly selective, much work should be devoted to resolve all the pitfalls of the current methods.
Collapse
Affiliation(s)
- Hany Ibrahim
- Analytical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Cairo 11829, Egypt
| | - Ahmed Serag
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11751, Egypt
| | - Mohamed A. Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
5
|
Wen Y, Huo F, Wang J, Yin C. Molecular isomerization triggered by H 2S to an NIR accessible first direct visualization of Ca 2+-dependent production in living HeLa cells. J Mater Chem B 2019; 7:6855-6860. [PMID: 31613293 DOI: 10.1039/c9tb01885a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few studies determined the role of intracellular labile Ca2+ in H2S homeostasis. Undoubtedly, fluorescent probes are powerful tools for exploring the question because of their unique advantages: non-destruction, visualization, and multi-levels imaging. Herein, a near-infrared (λem = 687 nm) and methylene blue chromophore-based fluorescent probe (MB1) for H2S was rationally developed. Based on its high sensitivity and selectivity, MB1 was employed to image the concentration change of H2S, upon stimulating it with ionomycin (a specific calcium ionophore). We found that the intracellular labile Ca2+ acted as a promotor for H2S production in living cells. Furthermore, cystathionine γ-lyase (CSE) might have functioned as a positive mediator of Ca2+-dependent H2S production. These direct and visible links for H2S/Ca2+ will help us to understand the complex signaling in a better way.
Collapse
Affiliation(s)
- Ying Wen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Junping Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Caixia Yin
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Ghosh S, Roy B, Bandyopadhyay S. Formation or Cleavage of Rings via Sulfide-Mediated Reduction Offers Background-Free Detection of Sulfide. J Org Chem 2019; 84:12031-12039. [PMID: 31461274 DOI: 10.1021/acs.joc.9b01946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A set of three highly selective probes for sulfide detection has been developed. Two novel mechanistic strategies for the detection, including (a) transformation of a pro-fluorophore into an active fluorophore and (b) destruction of a fused ring to activate a fluorophore, have been explored. The structural features of the probes including azido groups ("active" and "latent") and leaving groups (with or without being attached to the fluorophore) have been investigated. During the course of the mechanistic studies, the single-crystal structures of all the probes and the products were obtained. One of the probes proved to be superior in terms of its ability to detect sulfide in pure water via an in situ formation of a fluorophore from a nonfluorescent precursor. These cheap and easy-to-prepare probes offer practical applications of sulfide recognition in environmental water samples and in the ovaries of fruit flies. A detection and quantification method using one of these probes and analysis with a smartphone enabled nonspecialists to detect sulfide reliably.
Collapse
Affiliation(s)
- Sanjib Ghosh
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , Nadia 741246 , India
| | - Biswajit Roy
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , Nadia 741246 , India
| | - Subhajit Bandyopadhyay
- Department of Chemical Sciences , Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur , Nadia 741246 , India
| |
Collapse
|
7
|
Luo Y, Zhu C, Du D, Lin Y. A review of optical probes based on nanomaterials for the detection of hydrogen sulfide in biosystems. Anal Chim Acta 2019; 1061:1-12. [DOI: 10.1016/j.aca.2019.02.045] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 02/08/2023]
|
8
|
Wang F, Zhang C, Qu X, Cheng S, Xian Y. Cationic cyanine chromophore-assembled upconversion nanoparticles for sensing and imaging H2S in living cells and zebrafish. Biosens Bioelectron 2019; 126:96-101. [DOI: 10.1016/j.bios.2018.10.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/11/2018] [Accepted: 10/25/2018] [Indexed: 01/15/2023]
|
9
|
Zeng H, Liu Y, Xu Z, Wang Y, Chai Y, Yuan R, Liu H. Construction of a Z-scheme g-C3N4/Ag/AgI heterojunction for highly selective photoelectrochemical detection of hydrogen sulfide. Chem Commun (Camb) 2019; 55:11940-11943. [DOI: 10.1039/c9cc05356e] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report the photoelectrochemical detection of hydrogen sulfide based on the transformation of the Z-scheme g-C3N4/Ag/AgI heterojunction to C3N4/Ag/Ag2S.
Collapse
Affiliation(s)
- Hongmei Zeng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yaling Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Zhigang Xu
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yajun Wang
- School of Materials and Energy
- Southwest University
- Chongqing 400715
- P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Hongyan Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University)
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
10
|
Yang L, Su Y, Sha Z, Geng Y, Qi F, Song X. A red-emitting fluorescent probe for hydrogen sulfide in living cells with a large Stokes shift. Org Biomol Chem 2018; 16:1150-1156. [DOI: 10.1039/c7ob02641b] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An azido-based fluorescent probe was developed for the sensitive and selective detection of H2S with a red emission and a large Stokes shift. The probe was successfully applied to detect H2S both in aqueous solution and in living cells.
Collapse
Affiliation(s)
- Lei Yang
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Yuanan Su
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zhankui Sha
- Faculty of Materials Science and Chemistry
- China University of Geosciences
- Wuhan
- P.R. China 430074
| | - Yani Geng
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Fengpei Qi
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
- Department of Chemistry and Environmental Engineering
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
11
|
Wei S, Zhou XR, Huang Z, Yao Q, Gao Y. Hydrogen sulfide induced supramolecular self-assembly in living cells. Chem Commun (Camb) 2018; 54:9051-9054. [DOI: 10.1039/c8cc05174g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A gasotransmitter mediated reduction instructs supramolecular self-assembly in multiple living cell lines, revealing the variation in intracellular H2S production.
Collapse
Affiliation(s)
- Simin Wei
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Xi-Rui Zhou
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Zhentao Huang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Qingxin Yao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| | - Yuan Gao
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology
- Beijing 100190
- China
| |
Collapse
|
12
|
Viger ML, Collet G, Lux J, Nguyen Huu VA, Guma M, Foucault-Collet A, Olejniczak J, Joshi-Barr S, Firestein GS, Almutairi A. Distinct ON/OFF fluorescence signals from dual-responsive activatable nanoprobes allows detection of inflammation with improved contrast. Biomaterials 2017; 133:119-131. [PMID: 28433935 PMCID: PMC5704950 DOI: 10.1016/j.biomaterials.2017.03.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/21/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
Visualization of biochemical changes associated with disease is of great clinical significance, as it should allow earlier, more accurate diagnosis than structural imaging, facilitating timely clinical intervention. Herein, we report combining stimuli-responsive polymers and near-infrared fluorescent dyes (emission max: 790 nm) to create robust activatable fluorescent nanoprobes capable of simultaneously detecting acidosis and oxidative stress associated with inflammatory microenvironments. The spectrally-resolved mechanism of fluorescence activation allows removal of unwanted background signal (up to 20-fold reduction) and isolation of a pure activated signal, which enables sensitive and unambiguous localization of inflamed areas; target-to-background ratios reach 22 as early as 3 h post-injection. This new detection platform could have significant clinical impact in early detection of pathologies, individual tailoring of drug therapy, and image-guided tumor resection.
Collapse
Affiliation(s)
- Mathieu L Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, KACST - UCSD Center for Excellence in Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0600, USA
| | - Guillaume Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, KACST - UCSD Center for Excellence in Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0600, USA
| | - Jacques Lux
- UT Southwestern Medical Center, Department of Radiology, 5323 Harry Hines Blvd., Dallas, TX 75390-8896, USA
| | - Viet Anh Nguyen Huu
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0448, USA
| | - Monica Guma
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0656, USA
| | - Alexandra Foucault-Collet
- Skaggs School of Pharmacy and Pharmaceutical Sciences, KACST - UCSD Center for Excellence in Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0600, USA
| | - Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0332, USA
| | - Shivanjali Joshi-Barr
- Skaggs School of Pharmacy and Pharmaceutical Sciences, KACST - UCSD Center for Excellence in Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0600, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0656, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, KACST - UCSD Center for Excellence in Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0600, USA.
| |
Collapse
|