1
|
Zhou X, Lai X, Hu K. Covalent organic frameworks with nitrogen-rich triazine units and suitable pore size for highly efficient adsorption and sensitive detection of bisphenols in water. J Chromatogr A 2025; 1743:465681. [PMID: 39824070 DOI: 10.1016/j.chroma.2025.465681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/20/2025]
Abstract
Herein, using 1,3,5-triformylphloroglucinol (Tp) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl) tris(1,1'-biphenyl) trianiline (Ttba) as ligands, nitrogen-rich triazine unit-based covalent organic frameworks (COFs) with a suitable pore size, named TpTtba-COFs, were synthesized, and they were employed as adsorbents for the extraction and detection of three bisphenols (BPs)-BP A (BPA), BP B (BPB), and BP S (BPS)-in water. Using 2,4,6-tris(4-aminophenyl)-1,3,5-triazine (Tapt) and 1,3,5-tris(4-aminophenyl)benzene (Tapb) ligands as substitutes for Ttba, nitrogen-rich triazine unit-based COFs with a smaller pore size and nitrogen-poor triazine unit-based COFs, named TpTapt-COFs and TpTapb-COFs, respectively, were also prepared for comparison. The adsorption performances of the three COF adsorbents with regard to the three BPs were tested. Owing to nitrogen-rich triazine units and a pore size suitable for BP adsorption, the maximum adsorption capacities of TpTtba-COFs for BPA, BPB, and BPS were 1.13, 1.33, and 1.37 times those of TpTapt-COFs and 2.10, 2.27, and 1.92 times those of TpTapb-COFs, respectively. The adsorption behavior and possible adsorption mechanism of the BPs on the TpTtba-COFs were also investigated. In addition, a TpTtba-COF-based dispersive solid-phase extraction-high-performance liquid chromatography/ultraviolet method exhibited an excellent linear range (1-800 ng/mL) and satisfactory limit of detection values (0.20-0.32 ng/mL) for the three BPs. The spiked recoveries of the three BPs in river and lake water ranged within 81.9%-101.9% and 82.8%-100.8%, respectively. Overall, this study offers valuable insights into the rational design of adsorbents for adsorption and sensitive detection of BPs in environmental water.
Collapse
Affiliation(s)
- Xiaoli Zhou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China; Guangxi Key Laboratory of Urban Water Environment, Baise University, Baise 533000, PR China
| | - Xiaofen Lai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China
| | - Kun Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
2
|
Hu W, Xia L, Hu Y, Li G. Calixarene-Based Magnetic Nanosponge Decorating AgNPs for Rapid and Selective Surface-Enhanced Raman Scattering Analysis in Complex Samples. Anal Chem 2025; 97:1347-1356. [PMID: 39772455 DOI: 10.1021/acs.analchem.4c05745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Rapid and accurate analysis of trace targets in complex samples remains an enormous challenge. Herein, the calix[x]arene-based magnetic cross-linked polymer decorating AgNPs, abbreviated Fe3O4-CXA-DAB@AgNPs nanosponge, was developed for fast surface-enhanced Raman scattering (SERS) analysis in complex samples. The Fe3O4-CXA-DAB@AgNPs nanosponge surface was constructed by high-density CXA units with special cavity size and structure, which could selectively recognize and enrich targets to the sensing surface by the host-guest effect and molecule interactions. The Fe3O4-C4A-DAB@AgNPs showed significant SERS enhancement to choline chloride (ChCl) and succinylcholine chloride (SCC) with an enhancement factor (EF) of 2.9 × 107 and 6.3 × 106, respectively. The Fe3O4-C6A-DAB@AgNPs exhibited high SERS activity to thiabendazole with an EF of 7.6 × 106. Introducing recognition-enrichment-separation with SERS sensing, the nanosponge could achieve rapid enrichment sensing of targets within 6-8 min. Also, the Fe3O4-CXA-DAB@AgNPs nanosponge exhibited good stability for rapid detection with relative standard deviations less than 6.3% for intra-batch (n = 25) and 6.8% for inter-batch (n = 15). Benefiting from these merits, the Fe3O4-C4A-DAB@AgNPs was employed for fast SERS analysis of ChCl and SCC in real samples. The limits of detection were 0.62 μg/L for ChCl and 2.0 μg/L for SCC. ChCl was found in feed sample with recoveries of 85.3-108%, and SCC was found in serum samples with recoveries of 85.7-111%. The methods provided a significant reference for the selective analysis of targets by regulating the calix[x]arenes cavity size to satisfy different molecules and rapid quantification strategy by integrating sample pretreatment technology with sensing detection all-in-one.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Bai F, Yang X, Yang C, Qian HL, Yan XP. Amidoxime covalent organic framework@Fe 3O 4 based magnetic solid-phase extraction for rapid and sensitive determination of trace uranium in seafood. J Chromatogr A 2025; 1740:465564. [PMID: 39637618 DOI: 10.1016/j.chroma.2024.465564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
The unintentional dissemination of uranium into environment poses substantial risks to both food sources and human populations. An advanced method for convenient and accurate detection of uranium in food is thus a pressing need. Herein, a novel magnetic amidoxime functionalized covalent organic framework (TpDb-AO@Fe3O4), prepared with 2,5-dinitrobenzonitrile, 1,3,5-triformylphloroglucinol and hydroxylamine hydrochloride, was synthesized as adsorbent for magnetic-solid phase extraction (MSPE) of UO22+. Furthermore, a TpDb-AO@Fe3O4 based MSPE coupled with UV-vis spectrophotometer was successfully developed to realize the determination of uranyl ions with low limit of detection of 1.63 μg L-1, wide linear range of 10 - 200 μg L-1. The spiking recoveries in real seafood samples (tuna, yesso scallop, kelp, eel, hairtail) ranged from 94.1 % - 106.8 %. The intraday (n = 5) and interday (n = 5) relative standard deviation (RSD) for determination of UO22+were 3.33 % and 6.23 %, respectively. This approach represents an advancement in the rapid extraction and sensitive quantification of trace uranium contaminants in food matrices, thereby contributing to enhanced environmental monitoring and public health safeguards.
Collapse
Affiliation(s)
- Fan Bai
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resource, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Zhong Y, Li H, Lin Z, Li G. Advances in covalent organic frameworks for sample preparation. J Chromatogr A 2024; 1736:465398. [PMID: 39342731 DOI: 10.1016/j.chroma.2024.465398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Sample preparation is crucial in analytical chemistry, impacting result accuracy, sensitivity, and reliability. Solid-phase separation media, especially adsorbents, are vital for preparing of liquid and gas samples, commonly analyzed by most analytical instruments. With the advancements in materials science, covalent organic frameworks (COFs) constructed through strong covalent bonds, have been increasingly employed in sample preparation in recent years. COFs have outstanding selectivity and/or excellent adsorption capacity for a single target or can selectively adsorb multiple targets from complex matrix, due to their large specific surface area, adjustable pore size, easy modification, and stable chemical properties. In this review, we summarize the classification of COFs, such as pristine COFs, COF composite particles, and COFs-based substrates. We aim to provide a comprehensive understanding of the different classifications of COFs in sample preparation within the last three years. The challenges and development trends of COFs in sample preparation are also presented.
Collapse
Affiliation(s)
- Yanhui Zhong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Jiang L, Liao J, Nie L, Dong G, Song D, Tang G, Zhou Q. Dual COF functionalized magnetic MXene composite for enhancing magnetic solid phase extraction of thiophene compounds from oilfield produced waters prior to GC-MS/MS analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135653. [PMID: 39217939 DOI: 10.1016/j.jhazmat.2024.135653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
In this study, a novel COFTABT@COFTATp modified magnetic MXene composite (CoFe2O4 @Ti3C2 @COFTABT@COFTATp) was synthesized by Schiff base reaction and irre-versible enol-keto tautomerization, and employed to establish a sensitive monitoring method for six thiophene compounds in oilfield produced water samples based on magnetic solid-phase extraction (MSPE) prior to gas chromatography coupled with a triple quadruple mass spectrometer (GC-MS/MS). The designed magnetic materials exhibited unexpected enrichment ability to target thiophene compounds and achieved good extraction efficiencies ranging from 83 % to 98 %. The developed MSPE/GC-MS/MS method exhibited good linearity in the range of 0.001-100 μg L-1, and obtained lower limits of detection ranging from 0.39 to 1.9 ng L-1. The spiked recoveries of thiophene compounds obtained in three oilfield produced water samples were over the range of 96.26 %-99.54 % with relative standard deviations (RSDs) less than 3.7 %. Notably, benzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene were detected in three oilfield-produced water samples. Furthermore, the material still kept favorable stability after six recycling experiments. The adsorption kinetics, adsorption isotherms as well as adsorption thermodynamics of thiophene compounds were investigated in detail to provide insight into the mechanisms. Overall, the present work contributed a promising strategy for designing and synthesizing new functionalized materials for the enrichment and detection of typical pollutants in the environment.
Collapse
Affiliation(s)
- Liushan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jiawei Liao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Linchun Nie
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guangyu Dong
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Denghao Song
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guojin Tang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Qingxiang Zhou
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
6
|
Cao H, Li Y, Feng J, Cao Y, Xiang Y, Li Y. Boronic acid-functionalized magnetic covalent organic frameworks based solid-phase extraction coupled with hydrophilic interaction chromatography-tandem mass spectrometry for the determination of trace gentamicin residues in milk. Talanta 2024; 279:126678. [PMID: 39116731 DOI: 10.1016/j.talanta.2024.126678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Boric acid-functionalized magnetic covalent organic frameworks (Fe3O4-TpBD-B) with large surface area and high porosity were prepared and applied for magnetic solid-phase extraction adsorbent of gentamicin from milk before UPLC-MS/MS detection. By utilizing a new HILIC chromatographic column with zwitterionic sulfoalkyl betaine stationary phase based on ethyl bridged hybrid particles (BEH), isomers of gentamicin (C1, C1a, and C2+C2a components). The developed methods demonstrated good linearity (R2 > 0.99), acceptable accuracy and good precision (<10 %), and low limit of quantitation (1.59 ng mL⁻1 for C1, 1.52 ng mL⁻1 for C1a and 2.72 ng mL⁻1 for C2+C2a). In addition, this method has been effectively applied to the analysis of real milk samples.
Collapse
Affiliation(s)
- Hao Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianan Feng
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, 201318, China
| | - Yiqing Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yangjiayi Xiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai, 200040, China
| | - Yan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, 201203, China.
| |
Collapse
|
7
|
Tang F, Zou T, Wang Z, Zhang J. Fabrication of fluorinated triazine-based covalent organic frameworks for selective extraction of fluoroquinolone in milk. J Chromatogr A 2024; 1730:465078. [PMID: 38889582 DOI: 10.1016/j.chroma.2024.465078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
A novel fluorinated triazine-based covalent organic frameworks (F-CTFs) was designed and synthesized by using melamine and 2,3,5,6-tetrafluoroterephthalaldehydeas as organic ligands for selective pipette tip solid-phase extraction (PT-SPE) of amphiphilic fluoroquinolones (FQs). The competitive adsorption experiment and mechanism study were carried out and verified that this F-CTFs possesses favorable adsorption affinity for FQs. The abundant fluorine affinity sites endowed the F-CTFs high selectivity to FQs extraction through F-F interactions. The adsorption capacity of F-CTFs can reach up to 109.1 mg g-1 for enrofloxacin. The detailed characterization of the F-CTFs adsorbent involved the application of various techniques to examine its morphology and structure. Under optimized conditions, a method combining F-CTF-based PT-SPE with high-performance liquid chromatography (PT-SPE-HPLC) was established, which exhibited a broad linear range, excellent precision, and an impressively low limit of detection, and could be used for the determination of six FQs in milk, with LODs as low as 0.0010 μg mL-1. The recovery rates during extraction varied between 92.1% and 111.4%, exhibiting RSDs below 6.8% at different spiked concentrations.
Collapse
Affiliation(s)
- Furong Tang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ting Zou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ziyi Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; School of Chemical Engineering and Pharmacy, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
8
|
Zhou X, Wu Z, Chen B, Zhou Z, Liang Y, He M, Hu B. Quantification of trace heavy metals in environmental water, soil and atmospheric particulates with their bioaccessibility analysis. Talanta 2024; 276:126284. [PMID: 38781914 DOI: 10.1016/j.talanta.2024.126284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
In this work, sulfhydryl (SH) functionalized magnetic covalent organic framework (COF) was synthesized by using 4-aldehyde phenyl butadiyne (DEBD) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as the monomers and ethanedithiol as the modifier, with the aid of thiol-alkyne "click" reaction. The prepared Fe3O4@COFTAPB-DEBD@SH exhibited relatively strong magnetism (32.8 emu g-1), good stability and selectivity to target analytes with a high sulfhydryl content (0.24 mmol g-1). Based on Fe3O4@COFTAPB-DEBD@SH, a method combining magnetic solid phase extraction with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the quantitative analysis of trace metals. Under the optimal conditions, the method merited fast desorption kinetics (<2 min), adsorption kinetics (<20 min), fast phase separation (<1 min), high enrichment factor (100), and the detection limits for Cd, Hg, Pb and Bi were determined to be 1.18, 0.51, 4.91 and 0.39 ng L-1, respectively. A good resistance to complex matrices was demonstrated for the method in the analysis of soil, atmospheric particles and simulated pulmonary fluids samples. Certified reference materials (coal fly ash GBW08401 and soil GBW07427) were employed to validate the accuracy of the method. Four target metals in the range of 12.9-215 ng L-1, 0.06-24.6 μg g-1 and 0.52-33.1 ng m-3 were found in local water, soil and atmospheric particulates (PM), respectively. Additionally, artificial lysosome solution and gamble's solution were used to simulate human pulmonary fluid and the bioaccessibility of Cd, Hg, Pb and Bi in PM2.5 was evaluated to be 58.6-73.1 % and 1.3-7.1 %, respectively.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhekuan Wu
- Tobacco Research Institute of Hubei Province, Hubei Tobacco Company, Wuhan, 430040, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Zhang Q, Zhu N, Lu Z, He M, Chen B, Hu B. Magnetic covalent organic frameworks as sorbents in the chromatographic analysis of environmental organic pollutants. J Chromatogr A 2024; 1728:465034. [PMID: 38824842 DOI: 10.1016/j.chroma.2024.465034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/04/2024]
Abstract
Covalent organic frameworks (COFs) are featured with large specific surface areas, good thermal stability, and abundant pores. These properties are exactly what the sorbents used for extraction or adsorption of interest substances are desired with. While, the low density and hydrophobicity of COFs often makes them difficult to be dispersed evenly and recovered from the aqueous solution. Magnetic covalent organic frameworks (MCOFs) inherit magnetic property of the magnetic particles and porous structure of COFs. They have improved dispersity in aqueous solution and phase separation can be rapidly achieved via external magnetic fields. This review summarized the synthesis strategies for MCOFs, and their application in trace environmental organic pollutants analysis by chromatography techniques. The selection of COFs types and modification with active groups for a certain adsorption purpose is discussed, along with the exploration of adsorption mechanisms, which is beneficial for the design and synthesis of MCOFs.
Collapse
Affiliation(s)
- Qiulin Zhang
- Department of Chemistry, Wuhan University, China
| | - Ning Zhu
- Department of Chemistry, Wuhan University, China
| | - Ziyang Lu
- Department of Chemistry, Wuhan University, China
| | - Man He
- Department of Chemistry, Wuhan University, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, China.
| |
Collapse
|
10
|
Sargazi M, Kaykhaii M. Magnetic Covalent Organic Frameworks-Fundamentals and Applications in Analytical Chemistry. Crit Rev Anal Chem 2024; 54:1200-1226. [PMID: 35939351 DOI: 10.1080/10408347.2022.2107872] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Magnetic covalent organic frameworks are new emerging materials which, besides many other applications, have found unique applications in analytical chemistry as separating media and adsorbents. They have outstanding features such as special morphology, chemical and thermal stability, high adsorption capacity, good magnetic response, high specific surface area, uniform pore size distribution, strong π-π interactions with analytes and high reusability that makes reported studies on their properties and applications increased in the recent years. After discussing the methods of synthesis of MCOFs with different geometries that cause their special physic-chemical properties, this review focuses on their high potential which has been exhibited in various applications in extraction and pre-concentration of different analytes such as organic compounds, heavy metal ions and biological samples. The article also highlights the applications of magnetic covalent organic frameworks in other chemical analysis such as adsorbent and being used in sensors.
Collapse
Affiliation(s)
| | - Massoud Kaykhaii
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland
| |
Collapse
|
11
|
Yang C, Mo ZL, Zhang QF, Xu JJ, Shen XF, Pang YH. Membrane-protected magnetic covalent organic framework for efficient extraction of estrogens in dairy products. Food Chem 2024; 438:137984. [PMID: 37979275 DOI: 10.1016/j.foodchem.2023.137984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
The presence of estrogens residues in dairy products is a growing concern due to their potential health risk. Herein, in this study, we have developed a membrane-protected magnetic solid-phase extraction (MP-MSPE) method that utilized a magnetic adsorbent (Fe3O4@COF-LZU1) with in-situ growth for the efficient extraction of estrone (E1), 17β-estradiol (E2), and estriol (E3). When combined with HPLC-FLD, this method allows for the efficient detection of estrogens in dairy products. The stability of the MP-MSPE was improved by the presence of a dialysis membrane, which remained a high extraction efficiency (90 %) even after ten reuse cycles. The hydrogen bonding, π-π interactions and pore size effect contribute to the excellent adsorption of three estrogens onto Fe3O4@COF-LZU1. Under optimal conditions, the method exhibits a low detection limit (0.01-0.15 μg L-1), wide linear range (0.1-800 μg L-1), and favorable recoveries (77.3 %-109.4 %) at three concentration levels (10, 50 and 100 μg L-1). This proposed method is characterized by its simplicity, high efficiency and eco-friendliness, making it a promising approach for extracting estrogens from dairy products.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Zheng-Lian Mo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Qiu-Fang Zhang
- Zibo Institute of Inspection, Testing and Metrology, Zibo 255199, Shandong, China
| | - Jin-Jie Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
12
|
Llauradó-Capdevila G, Veciana A, Guarducci MA, Mayoral A, Pons R, Hertle L, Ye H, Mao M, Sevim S, Rodríguez-San-Miguel D, Sorrenti A, Jang B, Wang Z, Chen XZ, Nelson BJ, Matheu R, Franco C, Pané S, Puigmartí-Luis J. Tailored Design of a Water-Based Nanoreactor Technology for Producing Processable Sub-40 Nm 3D COF Nanoparticles at Atmospheric Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306345. [PMID: 38146105 DOI: 10.1002/adma.202306345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/24/2023] [Indexed: 12/27/2023]
Abstract
Covalent organic frameworks (COFs) are crystalline materials with intrinsic porosity that offer a wide range of potential applications spanning diverse fields. Yet, the main goal in the COF research area is to achieve the most stable thermodynamic product while simultaneously targeting the desired size and structure crucial for enabling specific functions. While significant progress is made in the synthesis and processing of 2D COFs, the development of processable 3D COF nanocrystals remains challenging. Here, a water-based nanoreactor technology for producing processable sub-40 nm 3D COF nanoparticles at ambient conditions is presented. Significantly, this technology not only improves the processability of the synthesized 3D COF, but also unveils exciting possibilities for their utilization in previously unexplored domains, such as nano/microrobotics and biomedicine, which are limited by larger crystallites.
Collapse
Affiliation(s)
- Gemma Llauradó-Capdevila
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Andrea Veciana
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Maria Aurora Guarducci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Roma, 00185, Italy
| | - Alvaro Mayoral
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Ramon Pons
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, 08034, Spain
| | - Lukas Hertle
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Hao Ye
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Minmin Mao
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Semih Sevim
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | | | - Alessandro Sorrenti
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica), Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Bumjin Jang
- Department of Robotics, Hanyang University ERICA Campus, Ansan-si, 15588, Republic of Korea
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan, 528437, China
| | - Xiang-Zhong Chen
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
- Institute of Optoelectronics, State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, P. R. China
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Roc Matheu
- Departament de Química Inorgànica i Orgànica, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Carlos Franco
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems ETH Zurich, Tannenstrasse 3, Zurich, CH 8092, Switzerland
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
13
|
Zhang X, Yang M, Zhang F, Wang X, Zhang F. Amino-functional magnetic covalent organic framework as an effective adsorbent for the determination of neonicotinoids in food samples. Mikrochim Acta 2024; 191:220. [PMID: 38532188 DOI: 10.1007/s00604-024-06277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
Recently, covalent organic frameworks have gained popularity in sample pretreatment. However, the application of covalent organic frameworks in the enrichment of hydrophilic compounds remains a challenge. Thus, a functionalized magnetic covalent organic framework equipped with amino groups was constructed using a bottom-up functionalization strategy. Considering the advantages of this novel adsorbent such as high porosity, large adsorption capacity, and hydrophilic surface, a sensitive magnetic solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry method was established for the effective determination of neonicotinoids. This method exhibited good linearities with correlation coefficients ranging from 0.9983 to 0.9995, low detection limits in the range 0.003-0.009 ng g-1 and 0.001-0.013 ng mL-1, and limits of quantification in the range 0.010-0.031 ng g-1 and 0.004-0.044 ng mL-1. Furthermore, satisfactory repeatability with relative standard deviations ≤ 6.7% and spiked recoveries between 82.3 and 99.8% were obtained. This work not only provided a promising adsorbent for the sensitive determination of trace-level neonicotinoids but also represented a unique insight for effective enrichment of super hydrophilic hazards.
Collapse
Affiliation(s)
- Xinyue Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Minli Yang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| | - Xiujuan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Feifang Zhang
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Li N, Liang M, Zhang H, Hua Z, Ma L, Qi Y, Wang K. Effective extraction and determination of 24 quinolones in water and egg samples using a novel magnetic covalent organic framework combined with UPLC-MS/MS. RSC Adv 2024; 14:8303-8312. [PMID: 38487520 PMCID: PMC10938296 DOI: 10.1039/d4ra00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
The excessive use of quinolones (QNs) has seriously threatened human health. In this study, a novel functionalized magnetic covalent organic framework Fe3O4@SiO2@Ah-COF was fabricated with biphenyl-3,3',5,5'-tetracarbaldehyde and hydrazine hydrate (85%) as monomers and was used as a magnetic solid-phase extraction (MSPE) absorbent for the determination of 24 QNs in water and egg samples through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The extraction parameters of MSPE were optimized, including pH, adsorbent dosage, adsorption time, and eluent type. An effective and rapid detection method was then established, which showed good linearity (R2 ≥ 0.9990), low limits of detection (0.003-0.036 μg L-1) and low limits of quantitation (0.008-0.110 μg L-1) for QNs. The good recoveries of 24 QNs in water and egg samples were in the range of 70.3-106.1% and 70.4-119.7%, respectively, with relative standard deviations lower than 10% (n = 5). As a result, Fe3O4@SiO2@Ah-COF is a promising magnetic adsorbent, and the established method was successfully applied for the determination of 24 QNs in water and egg samples.
Collapse
Affiliation(s)
- Na Li
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Mengnan Liang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Hao Zhang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Zhongxia Hua
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Ling Ma
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| | - Yanyu Qi
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
| | - Ke Wang
- College of Chemistry and Materials Science, Hebei Normal University Shijiazhuang 050023 China
- Shijiazhuang Center for Disease Control and Prevention Shijiazhuang 050011 China
- Shijiazhuang Technology Innovation Center for Chemical Poison Detection and Risk Early Warning Shijiazhuang 050011 China
| |
Collapse
|
15
|
Pilli P, Kommalapati HS, Golla VM, Khemchandani R, Ramachandran RK, Samanthula G. Covalent organic frameworks: spotlight on applications in the pharmaceutical arena. Bioanalysis 2024; 16:279-305. [PMID: 38445446 PMCID: PMC11235138 DOI: 10.4155/bio-2023-0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024] Open
Abstract
Covalent organic frameworks (COFs) have much potential in the field of analytical separation research due to their distinctive characteristics, including easy modification, low densities, large specific surface areas and permanent porosity. This article provides a historical overview of the synthesis and broad perspectives on the applications of COFs. The use of COF-based membranes in gas separation, water treatment (desalination, heavy metals and dye removal), membrane filtration, photoconduction, sensing and fuel cells is also covered. However, these COFs also demonstrate great promise as solid-phase extraction sorbents and solid-phase microextraction coatings. In addition to various separation applications, this work aims to highlight important advancements in the synthesis of COFs for chiral and isomeric compounds.
Collapse
Affiliation(s)
- Pushpa Pilli
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| | - Hema Sree Kommalapati
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| | - Vijaya Madhyanapu Golla
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| | - Roshitha Kunnath Ramachandran
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, Balanagar, Telangana, 500037, India
| |
Collapse
|
16
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
17
|
Jiao H, Bi R, Li F, Chao J, Zhang G, Zhai L, Hu L, Wang Z, Dai C, Li B. Rapid, easy and catalyst-free preparation of magnetic thiourea-based covalent organic frameworks at room temperature for enrichment and speciation of mercury with HPLC-ICP-MS. J Chromatogr A 2024; 1717:464683. [PMID: 38295741 DOI: 10.1016/j.chroma.2024.464683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 02/23/2024]
Abstract
The complex and cumbersome preparation of magnetic covalent organic frameworks (COFs) nanocomposites on a small scale limits their application. Herein, a rapid and easy route was employed for the preparation of magnetic thiourea-based COFs nanocomposites. COFs were coated on Fe3O4 nanoparticles at room temperature without a catalyst within approximately 30 min. This method is suitable for the large-scale preparation of magnetic adsorbent. Using the as-prepared magnetic adsorbent (Fe3O4@COF-TpTU), we developed a simple, efficient, and sensitive magnetic solid-phase extraction-high performance liquid chromatography-inductively coupled plasma-mass spectrometry (MSPE-HPLC-ICP-MS) for the enrichment and determination of mercury species, including Hg2+, methylmercury (MeHg), and ethylmercury (EtHg). The effects of the experimental parameters on the extraction efficiency, including solution pH, adsorption and desorption time, composition and volume of the elution solvent, salinity, coexisting ions, and dissolved organic matter, were comprehensively investigated. Under optimised conditions, the limits of detection in the developed method were 0.56, 0.34, and 0.47 ng L-1 with enrichment factors of 190, 195, and 180-fold for Hg2+, MeHg, and EtHg, respectively. The satisfactory spiked recoveries (97.0-103%) in real water samples and high consistency between the certified and determined values in a certified reference material demonstrate the high accuracy and reproducibility of the developed method. The as-proposed method with simple operation, high sensitivity, and excellent anti-matrix interference performance was successfully applied to the enrichment and determination of trace levels of mercury species in the natural samples with complicated matrices, such as underground water, surface water, seawater and biological samples.
Collapse
Affiliation(s)
- Heping Jiao
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Ruixiang Bi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Fangli Li
- Shandong Public Health Clinic Center, Jinan 266075, China
| | - Jingbo Chao
- Division of Chemical Metrology and Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Guimin Zhang
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Lihai Zhai
- National Engineering and Technology Research Centre of Chirality Pharmaceutical, Lunan Pharmaceutical Group Co., Ltd., Linyi 276005, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenhua Wang
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Caifeng Dai
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China.
| | - Bing Li
- Shandong Analysis and Tester Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Shandong Key Laboratory for Adhesive Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| |
Collapse
|
18
|
Chen Y, He Q, Liu Y, Wang Q, He C, Liu S. Size-controllable synthesis of large-size spherical 3D covalent organic frameworks as efficient on-line solid-phase extraction sorbents coupled to HPLC. Anal Chim Acta 2024; 1287:342061. [PMID: 38182368 DOI: 10.1016/j.aca.2023.342061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Covalent organic frameworks (COFs) have found promising applications in separation fields due to their large surface area and high adsorption capacity, but the exiting COFs can not be directly used as the packing materials of on-line solid-phase extraction (SPE) coupled to HPLC and HPLC because their nano/submicron size or irregular shapes might cause ultrahigh column back pressure and low column efficiency. To synthesize the large-size spherical COFs larger than 3 μm as sorbents might be able to address these problems, however it is still a great challenge till now. RESULTS In this work, two large-size spherical 3D COFs (COF-320 and COF-300) were size-controllably synthesized within 10-90 μm via a two-step strategy. These two spherical COFs showed large surface area, fine crystallinity, good chemical/mechanical stability, and good reproducibility. As an application case, when used as the on-line SPE sorbents coupled to HPLC, the large-size spherical COF-320 displayed high binding capacity for bisphenol F (Qmax of 452.49 mg/g), low column back pressure (6-8 psi at flow rate of 1 mL/min), and good reusability (at least 30 cycles). The developed on-line-SPE-HPLC-UV method presented good analytical performance with enrichment factor of 667 folds, linear range of 1.0-400 ng/mL, limit of detection (LOD, S/N = 3) of 0.3 ng/mL, limit of quantification (LOQ, S/N = 10) of 1.0 ng/mL, and recoveries of 100.3-103.2 % (RSDs of 2.0-3.5 %) and 95.2-97.0 % (RSDs of 4.3-5.6 %) for tap water and lake water samples, respectively. SIGNIFICANCE This is the first case to synthesize the large-size spherical COFs within 10-90 μm, and this work made it possible to directly use COFs as the filling materials of on-line SPE coupled to HPLC and HPLC. The developed analytical method can be potentially applied to the rapid and sensitive detection of trace bisphenol F in environmental water samples.
Collapse
Affiliation(s)
- Ying Chen
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiong He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Yuyang Liu
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China
| | - Chiyang He
- College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass and Eco-dyeing and Finishing, Wuhan Textile University, Wuhan, 430073, China.
| | - Shaorong Liu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, United States
| |
Collapse
|
19
|
Ajay Rakkesh R, Naveen TB, Durgalakshmi D, Balakumar S. Covalent organic frameworks: Pioneering remediation solutions for organic pollutants. CHEMOSPHERE 2024; 346:140655. [PMID: 37949178 DOI: 10.1016/j.chemosphere.2023.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Covalent Organic Frameworks (COFs) have emerged as a promising class of crystalline porous materials with customizable structures, high surface areas, and tunable functionalities. Their unique properties make them attractive candidates for addressing environmental contamination caused by pharmaceuticals, pesticides, industrial chemicals, persistent organic pollutants (POPs), and endocrine disruptors (EDCs). This review article provides a comprehensive overview of recent advancements and applications of COFs in removing and remedying various environmental contaminants. We delve into the synthesis, properties, and performance of COFs and their potential limitations and future prospects.
Collapse
Affiliation(s)
- R Ajay Rakkesh
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India.
| | - T B Naveen
- Functional Nano-Materials (FuN) Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, TN, India
| | - D Durgalakshmi
- Department of Medical Physics, Anna University, Chennai, 600 025, TN, India
| | - S Balakumar
- National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 600 025, TN, India
| |
Collapse
|
20
|
Fu Q, Sun X, Zhang T, Pei J, Li Y, Li Q, Zhang S, Waterhouse GIN, Li H, Ai S. Porphyrin-based covalent organic polymers with customizable photoresponses for photodynamic inactivation of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167475. [PMID: 37797764 DOI: 10.1016/j.scitotenv.2023.167475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Porphyrin-linked covalent organic polymers (COPs) provide a reliable photocatalytic platform, while photodynamic inactivation (PDI) induced by reliable porphyrin-based COPs is considered to be an effective method to resist microbial contamination. Herein, three tunable porphyrin-based covalent organic polymers (H2-Por-COPs, OH-Por-COPs, and Zn-Por-COPs) are designed and employed for the PDI of Staphylococcus aureus and Escherichia coli under visible light illumination. Interestingly, singlet oxygen (1O2) generation by the Por-COPs can be manipulated via intramolecular regulation with the order Zn-Por-COP > OH-Por-COP > H2-Por-COP. With rationally tune, the Zn-Por-COP demonstrated remarkable antibacterial activity against Staphylococcus aureus (kill percentage 99.65 % ± 0.24 %) and Escherichia coli (kill percentage 97.25 % ± 1.78 %) in only 15 min under visible-light irradiation. Density functional theory (DFT) calculations and photophysical tests showed that the presence of electron-donating -OH groups on the aromatic linkers and Zn2+ ions in porphyrin units narrowed the HOMO-LUMO gap, enhancing both light absorption, intersystem crossing (ISC) and 1O2 generation for more efficient bacteria inactivation. This work can be applied to efficiently screen suitable photosensitizers and provides a rational regulatory strategy for PDI of pathogenic bacteria.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China
| | - Tingting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271018, PR China
| | - Jian Pei
- College of Life Sciences, Shandong Agricultural University, Taian 271018, PR China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271018, PR China
| | - Qingbo Li
- Center for Optics Research and Engineering, Key Laboratory of Laser & Infrared System, Ministry of Education, Shandong University, Qingdao 266237, PR China
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China
| | | | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271018, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271018, PR China.
| |
Collapse
|
21
|
Li XH, Cui YY, Wu X, Abdukayum A, Yang CX. Fabrication of zwitterionic magnetic microporous organic network for efficient extraction of fluoroquinolone antibiotics from meat samples. Food Chem 2023; 429:136808. [PMID: 37459710 DOI: 10.1016/j.foodchem.2023.136808] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
A zwitterionic magnetic microporous organic network (MMON-SO3H-NH2) with numerous amino and sulfonic acid ion-pare binding sites was designed and synthesized for efficient magnetic solid-phase extraction (MSPE) of fluoroquinolones (FQs) from meat samples. The core-shell MMON-SO3H-NH2 offered large specific surface area, rapid magnetic responsiveness, good stability, and multiple binding sites for FQs. The density functional theory and independent gradient model evaluations confirmed hydrogen bonding, π-π and ion-pair interactions between MMON-SO3H-NH2 and FQs. Under the optimal conditions, the established MMON-SO3H-NH2-MSPE-HPLC-UV method gave wide linear range (0.15-1000 μg L-1), low limits of detection (0.05-4.5 μg L-1) and limits of quantitation (0.15-13 μg L-1), and high enrichment factors (82.1-99.6) using 3 mg of adsorbent. This work demonstrates that the preparation of zwitterionic MONs is an efficient way to promote the extraction performance of MONs for zwitterionic targets and provides an effective sample pretreatment method for enriching and monitoring FQs in complex food matrices.
Collapse
Affiliation(s)
- Xu-Hui Li
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xun Wu
- Hangzhou Institute for Food and Drug Control, Hangzhou, Zhejiang 310000, China
| | - Abdukader Abdukayum
- Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
22
|
Haghighi Shishavan Y, Amjadi M, Manzoori JL. A fluorescent magnetic nanosensor for imidacloprid based on the incorporation of polymer dots and Fe 3 O 4 nanoparticles into the covalent organic framework. LUMINESCENCE 2023; 38:2056-2064. [PMID: 37721052 DOI: 10.1002/bio.4595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
A magnetic nanoprobe was designed for imidacloprid by encapsulating nonconjugated polymer dots (NCPDs) and Fe3 O4 nanoparticles in the covalent organic framework (COF). The fluorescence intensity of the COF-based nanocomposite is markedly suppressed by imidacloprid. As the absorption spectrum of imidacloprid was close to the band-gap of the NCPDs, and due to the presence of a nitro group (as an electron acceptor), the electrons can be easily transferred from the conduction band of NCPDs to the LUMO of imidacloprid, so fluorescence quenching was more likely to have been caused by the electron transfer process. The COF-based nanosensor was used for the determination of imidacloprid in the linear range 1.3-130 nM with a detection limit of 1.2 nM. The high sensitivity of the nanoprobe for imidacloprid is due to the combination of COF benefits (accumulation of the imidacloprid into the COF cavities) and the high adsorption ability of the Fe3 O4 nanoparticles, which leads to further enrichment of imidacloprid. The magnetic nature of the nanocomposite enables the preconcentration and easy separation of the analyte, and so reduces matrix interference and lowers the detection limits. The practicality of this nanoprobe was confirmed by quantification of imidacloprid in the wastewater and fruit juice samples.
Collapse
Affiliation(s)
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Jamshid L Manzoori
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
23
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
24
|
Wang Z, Zou T, Feng S, Wu F, Zhang J. Boronic acid-functionalized magnetic porphyrin-based covalent organic framework for selective enrichment of cis-diol-containing nucleosides. Anal Chim Acta 2023; 1278:341691. [PMID: 37709444 DOI: 10.1016/j.aca.2023.341691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
In this study, a novel boronic acid-functionalized magnetic porphyrin-based covalent organic framework (COF) with a core-shell structure was designed and synthesized for the selective enrichment and detection of nucleosides. Firstly, brominated porphyrin-based COF was in situ grown on Fe3O4-NH2 nanospheres (denoted as Fe3O4@Br-COF), then a post-synthetic modification strategy was used to introduce boronic acid into the framework via Suzuki-Miyaura cross-coupling reaction to obtain boronic acid functionalized magnetic COF (denoted as Fe3O4@BA-COF). Suzuki-Miyaura cross-coupling possesses the advantages of mild synthesis conditions, high tolerance to functionalities, and ease of handling and separation, which is considered as a promising candidate for functionalizing COF. It is worth mentioning that the porphyrin-based COF possesses a unique nitrogen-rich skeleton and "trap" structure formed by four pyrrole rings, which can provide hydrogen bond and make it more suitable for trapping analytes than other types of COF. The boronic acid group provides boronate affinity, which enables better selective enrichment of cis-diol-containing nucleoside. The morphology and structure of the prepared Fe3O4@BA-COF was characterized by various methods. Based on the Fe3O4@BA-COF, a facile magnetic solid phase extraction coupled with high performance liquid chromatography method (MSPE-HPLC) was used to extract and detect adenosine, guanosine, uridine, and cytidine in urine samples. This work not only provides a mild and feasible post-synthetic modification method for fabrication of boronic acid-functionalized magnetic COF, but also provides an efficient and rapid method to selectively enrich and detect hydrophilic nucleosides.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ting Zou
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shitao Feng
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Fengshou Wu
- School of Chemical Engineering and Pharmacy, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Juan Zhang
- School of Chemistry and Environmental Engineering, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430205, China.
| |
Collapse
|
25
|
Fu Q, Li J, Wang X, Sun-Waterhouse D, Sun X, Waterhouse GIN, Wu P. Covalent organic framework-based magnetic solid-phase extraction coupled with gas chromatography-tandem mass spectrometry for the determination of trace phthalate esters in liquid foods. Mikrochim Acta 2023; 190:383. [PMID: 37697171 DOI: 10.1007/s00604-023-05958-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023]
Abstract
Covalent organic framework-coated magnetite particles (Fe3O4@COF) were synthesized and applied as the adsorbent to the selective capture of phthalate esters (PAEs) in liquid foods. Combined with the magnetic solid-phase extraction (MSPE) technology, a gas chromatography-tandem mass spectrometry (GC-MS/MS) method was employed for the separation and quantification of PAEs. Following optimization of the magnetic extraction and elution parameters, the developed analytical method offered a satisfactory linear range (0.1-5 μg L-1) with determination coefficients ranging from 0.9934 to 0.9975 for the five different PAEs studied. The limits of detection (LOD) were in the range 1.9-12.8 ng L-1. The recoveries ranged from 70.0 to 119.8% with a relative standard deviation (RSD) less than 9.7%. Density functional theory (DFT) calculations established that the dominant adsorption mechanism used by the COF to bind PAEs involved π-π stacking interactions. Results encourage the wider use of COF-based adsorbents and MSPE methods in the analytical determination of PAEs in foods.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Jingkun Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, People's Republic of China
| | - Xin Wang
- Weifang Inspection and Testing Center, Weifang, 261000, People's Republic of China
| | | | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| | | | - Peng Wu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
26
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
27
|
Li P, Liu CH, Zhao YY, Cao DD, Chen BZ, Guo XD, Zhang W. Multifunctional Covalent Organic Framework-Based Microneedle Patch for Melanoma Treatment. Biomacromolecules 2023; 24:3846-3857. [PMID: 37475132 DOI: 10.1021/acs.biomac.3c00488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Melanoma is resistant to conventional chemotherapy and radiotherapy. Therefore, it is essential to develop a targeted, low-toxic, and minimally invasive treatment. Here, DTIC/ICG-Fe3O4@TpBD BSP/HA microneedles (MNs) were designed and fabricated, which can enhance targeting to melanoma and perform photothermal therapy (PTT) and chemotherapy simultaneously to synergistically exert anticancer effects. The system consisted of magnetic nanoparticles (DTIC/ICG-Fe3O4@TpBD), dissoluble matrix (Bletilla polysaccharide (BSP)/hyaluronic acid (HA)), and a polyvinyl alcohol backing layer. Due to the good magnetic responsiveness of Fe3O4@TpBD, dacarbazine (DTIC) and indocyanine green (ICG) can be better targeted to the tumor tissue and improve the therapeutic effect. BSP and HA have good biocompatibility and transdermal ability, so that the MNs can completely penetrate the tumor tissue, be dissolved by the interstitial fluid, and release DTIC and ICG. Under near-infrared (NIR) light irradiation, ICG converts light energy into thermal energy and induces ablation of B16-OVA melanoma cells. In vivo results showed that DTIC/ICG-Fe3O4@TpBD BSP/HA MNs combined with chemotherapy and PTT could effectively inhibit the growth of melanoma without tumor recurrence or significant weight loss in mice. Therefore, DTIC/ICG-Fe3O4@TpBD BSP/HA MNs are expected to provide new ideas and therapeutic approaches for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Pan Li
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Chun Hui Liu
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Yan Yan Zhao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Da Dong Cao
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| | - Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Institute for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang 261053, Shandong, P.R. China
| |
Collapse
|
28
|
Soni V, Patial S, Kumar A, Singh P, Thakur VK, Ahamad T, Van Le Q, Luque R, Raizada P, Nguyen VH. Covalent organic frameworks (COFs) core@shell nanohybrids: Novel nanomaterial support towards environmental sustainability applications. ENVIRONMENTAL RESEARCH 2023; 232:116353. [PMID: 37295591 DOI: 10.1016/j.envres.2023.116353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Covalent organic frameworks (COFs) based on core@shell nanohybrids have recently received significant attention and have become one of the most promising strategies for improving the stability and catalytic activity of COFs. Compared with traditional core@shell, COF-based core@shell hybrids own remarkable advantages, including size-selective reactions, bifunctional catalysis, and integration of multiple functions. These properties could enhance the stability and recyclability, resistance to sintering, and maximize the electronic interaction between the core and the shell. The activity and selectivity of COF-based core@shell could be simultaneously improved by taking benefit of the existing synergy between the functional encapsulating shell and the covered core material. Considering that, we have highlighted various topological diagrams and the role of COFs in COF-based core@shell hybrid for activity and selectivity enhancement. This concept article provides all-inclusive advances in the design and catalytic applications of COF-based core@shell hybrids. Various synthetic techniques have been developed for the facile tailoring of functional core@shell hybrids, including novel seed growth, in-situ, layer-by-layer, and one-pot method. Importantly, charge dynamics and structure-performance relationships are investigated through different characterization techniques. Different COF-based core@shell hybrids with established synergistic interactions have been detailed, and their influence on stability and catalytic efficiency for various applications is explained and discussed in this contribution. A comprehensive discussion on the remaining challenges associated with COF-based core@shell nanoparticles and research directions has also been provided to deliver insightful ideas for additional future developments.
Collapse
Affiliation(s)
- Vatika Soni
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Abhinandan Kumar
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Centre Scotland's Rural College (SRUC), Edinburgh, United Kingdom
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu, Seoul, 02841, South Korea
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., Moscow, 117198, Russian Federation; Universidad ECOTEC, Km. 13.5 Samborondón, Samborondón, EC092302, Ecuador
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, HP, 173229, India.
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
29
|
Tian L, Zhao B, Zhang J, Luo X, Wu F. Magnetic covalent organic framework nanospheres with enhanced peroxidase-like activity for colorimetric detection of H2O2 and glucose. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
30
|
Lin Z, Jin Y, Chen Y, Li Y, Chen J, Zhuang X, Mo P, Liu H, Chen P, Lv W, Liu G. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights. J Colloid Interface Sci 2023; 645:943-955. [PMID: 37182326 DOI: 10.1016/j.jcis.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
In recent years, ionic covalent organic frameworks (iCOFs) have become popular for the removal of contaminants from water. Herein, we employed 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 1,3-diaminoguanidine monohydrochloride (DgCl) to develop a novel leaf-like iCOF (TFP-DgCl) for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs (NSAIDs). The uniformly distributed adsorption sites, suitable pore sizes, and functional groups (hydroxyl groups, guanidinium groups, and aromatic groups) of the TFP-DgCl endowed it with powerful and selective adsorption capacities for NSAIDs. Remarkably, the optimal leaf-like TFP-DgCl demonstrated an excellent maximum adsorption capacity (1100.08 mg/g) for diclofenac sodium (DCF), to the best of our knowledge, the largest adsorption capacity ever achieved for DCF. Further testing under varying environmental conditions such as pH, different types of anions, and multi-component systems confirmed the practical suitability of the TFP-DgCl. Moreover, the prepared TFP-DgCl exhibited exceptional reusability and stability through six adsorption-desorption cycles. Finally, the adsorption mechanisms of NSAIDs on leaf-like TFP-DgCl were confirmed as electrostatic interactions, hydrogen bonding, and π-π interactions. This work significantly supplements to our understanding of iCOFs and provides new insights into the removal of NSAIDs from wastewater.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhan Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxian Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yulin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqin Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiying Mo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
31
|
Guo H, Li Y, Li Y, He X, Chen L, Zhang Y. Construction of Stable Magnetic Vinylene-Linked Covalent Organic Frameworks for Efficient Extraction of Benzimidazole Fungicides. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36897016 DOI: 10.1021/acsami.2c22386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) have attracted impressive interest in separation on aqueous media. Herein, we integrated the stable vinylene-linked COFs with magnetic nanosphere via the monomer-mediated in situ growth strategy to construct a crystalline Fe3O4@v-COF composite for enrichment and determination of benzimidazole fungicides (BZDs) from complex sample matrices. The Fe3O4@v-COF has a crystalline assembly, high surface area, porous character together with a well-defined core-shell structure, and serves as progressive pretreatment materials for magnetic solid phase extraction (MSPE) of BZDs. Adsorption mechanism studies revealed that the extended conjugated system and numerous polar cyan groups on v-COF provides abundant π-π and multiple hydrogen bonding sites, which are conducive to interact with BZDs collaboratively. Fe3O4@v-COF also displayed enrichment effects to various polar pollutions with conjugated structures and hydrogen-bonding sites. Fe3O4@v-COF-based MSPE-high-performance liquid chromatography exhibited the low limit of detection, wide linearity, and good precision. Moreover, Fe3O4@v-COF showed better stability, enhanced extraction performance, and more sustainable reusability in comparison with its imine-linked counterpart. This work proposes a feasible strategy on constructing the crystalline stable magnetic vinylene-linked COF composite for the determination of trace contaminants in complex food matrices.
Collapse
Affiliation(s)
- Hongying Guo
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yijun Li
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education, Nankai University, Tianjin 300071, China
| | - Xiwen He
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Langxing Chen
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
| | - Yukui Zhang
- College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
32
|
Wang YX, Zhang W, Shen XF, Qiao JY, Pang YH. Magnetic covalent organic frameworks for rapid solid-phase extraction of phthalate esters and bisphenol A in beverage samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1135-1144. [PMID: 36779345 DOI: 10.1039/d2ay01989b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) and bisphenol A (BPA) are endocrine-disrupting chemicals (EDCs), which are widely used in the production of food plastic packaging and easily migrate to food. Continuous exposure to EDCs may cause harm to human health. Herein, magnetic covalent organic framework TFP-NDA/Fe3O4 was synthesized by magnetizing covalent organic framework TFP-NDA through a facile coprecipitation method, and used as an adsorbent for rapid solid-phase extraction of PAEs (diethyl phthalate (DEP), diisobutyl phthalate (DIBP) and dibutyl phthalate (DBP)) and BPA. The extraction equilibrium can be reached within 12 min. By combination with a gas chromatography-flame ionization detector, the limits of detection were 0.7-2.3 μg L-1 and the linear ranges were 10-500 μg L-1 for diethyl phthalate (DEP) and 10-1000 μg L-1 for diisobutyl phthalate (DIBP), dibutyl phthalate (DBP) and BPA with R2 > 0.9916. In beverage samples (plastic bottled drinking water, juice and carbonated drink), the developed method was successfully applied to extract and quantify PAEs and BPA with recoveries ranging from 81.7% to 114.2%.
Collapse
Affiliation(s)
- Yu-Xin Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Wang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Jin-Yu Qiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
33
|
Fan YF, Jiang HL, Chen XF, Li N, Wang XL, Lin JM, Zhao RS. Room-temperature synthesis of nitrogen-rich conjugated microporous polymers for solid-phase extraction of trace synthetic musks. Food Chem 2023; 404:134681. [DOI: 10.1016/j.foodchem.2022.134681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/29/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
|
34
|
El-Mahdy AFM, Omr HAE, ALOthman ZA, Lee H. Design and synthesis of metal-free ethene-based covalent organic framework photocatalysts for efficient, selective, and long-term stable CO 2 conversion into methane. J Colloid Interface Sci 2023; 633:775-785. [PMID: 36493742 DOI: 10.1016/j.jcis.2022.11.098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
The efficient and selective photocatalytic CO2 conversion into higher-valued hydrocarbon products (e.g., methane and ethane) over covalent organic frameworks (COFs) remains a challenge, with all previously reported attempts producing carbon monoxide as the dominant product. Herein, we report a new ethene-based COF, through polycondensation of electron-rich (E)-1,2‑diphenylethene and 1,3,6,8‑tetraphenylpyrene units. The synthesized ethene-based COF functioned as an efficient metal-free photocatalyst for the conversion of CO2 into methane under visible light irradiation, with a selectivity of 100 %, a production rate of 14.7 µmol g-1h-1, and an apparent quantum yield of c.a. 0.99 % at 489.5 nm, which are the most promising values reported for CO2 conversion by a metal-free COF photocatalyst, without any support from a co-catalyst. The carbon origin of CH4 product is confirmed by isotope tracer 13CO2 experiment. Moreover, the photocatalytic system consistently produces methane for > 14 h with recyclability.
Collapse
Affiliation(s)
- Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Hossam A E Omr
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA) and International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
35
|
Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023; 253:123919. [PMID: 36126523 DOI: 10.1016/j.talanta.2022.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, proteins separation has attracted great attention in proteomics research. Because the proteins separation is helpful for making an early diagnosis of many diseases. Magnetic nanoparticles are an interesting and useful functional material, and have attracted extensive research interest during the past decades. Because of the excellent properties such as easy surface functionalization, tunable biocompatibility, high saturation magnetization etc, magnetic microspheres have been widely used in isolation of proteins/peptides. Notably, with the rapid development of surface decoration strategies, more and more functional magnetic adsorbents have been designed and fabricated to meet the growing demands of biological separation. In this review, we have collected recent information about magnetic adsorbents applications in selective separation of proteins/peptides. Furthermore, we present a comprehensive prospects and challenges in the field of protein separation relying on magnetic nanoparticles.
Collapse
|
36
|
Construction of magnetic COF composites for lead removal with fast dynamics and superior capacity. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
37
|
Ning T, Di S, Li Z, Zhang H, Peng Z, Yang H, Chen P, Bao Y, Zhai Y, Zhu S. Fabrication of a core-shell porphyrin-based magnetic covalent organic framework for effective extraction of PCPs in a wide polarity range. Anal Chim Acta 2023; 1239:340615. [PMID: 36628698 DOI: 10.1016/j.aca.2022.340615] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/20/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022]
Abstract
A novel porphyrin-based magnetic covalent organic framework (PCOF) was first reported by using a facile synthetic procedure. The Fe3O4@NH2@PCOF nanospheres were utilized to effectively extract personal care products in a wide polarity range (log Kow values from 1.96 to 7.60). The successful magnetic solid-phase extraction (MSPE) of target analytes could be ascribed to the sufficient oxygen-, nitrogen- and phenyl-containing functional groups of the COF layer, which are demonstrated to be of good compatibility with pollutants exhibiting different polarities by using molecular dynamics simulations, independent gradient model analysis and various characterizations. The MSPE extraction efficiency was enhanced by optimizing key parameters. The findings indicated that the method had a wide linearity range (1-500 ng mL-1 for parabens and UV filters) and low detection limits (0.4-0.9 ng mL-1 for parabens and 0.2-0.6 ng mL-1 for UV filters). The accuracy was reflected by recoveries ranging from 74% to 114%. Satisfactory intra- and inter-day precisions from 3.0% to 9.8% and 0.5%-9.1% were obtained. Overall, the proposed MSPE-HPLC method is accurate and reliable for identifying parabens as well as UV filters in wastewater and swimming pool water. The potential of the method for evaluating human exposure risk was unfolded.
Collapse
Affiliation(s)
- Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Zihan Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Haokun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Zhangdi Peng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yue Bao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yixin Zhai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| |
Collapse
|
38
|
Wang N, Zhou X, Cui B. Recent advances and applications of magnetic covalent organic frameworks in food analysis. J Chromatogr A 2023; 1687:463702. [PMID: 36508770 DOI: 10.1016/j.chroma.2022.463702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022]
Abstract
Recently, covalent organic frameworks (COFs) have been widely used to prepare magnetic adsorbents for food analysis due to their highly tunable porosity, large specific surface area, excellent chemical and thermal stability and large delocalised π-electron system. This review summarises the main types and preparation methods of magnetic COFs and their applications in food analysis for the detection of pesticide residues, veterinary drugs, endocrine-disrupting phenols and estrogens, plasticisers and other food contaminants. Furthermore, challenges and future outlook in the development of magnetic COFs for food analysis are discussed.
Collapse
Affiliation(s)
- Na Wang
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuesheng Zhou
- School of automotive engineering, ShanDong JiaoTong University, Jinan 250357, China.
| | - Bo Cui
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
39
|
Bukhari SNA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers (Basel) 2023; 15:267. [PMID: 36679148 PMCID: PMC9866219 DOI: 10.3390/polym15020267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Covalent organic frameworks (COFs), synthesized from organic monomers, are porous crystalline polymers. Monomers get attached through strong covalent bonds to form 2D and 3D structures. The adjustable pore size, high stability (chemical and thermal), and metal-free nature of COFs make their applications wider. This review article briefly elaborates the synthesis, types, and applications (catalysis, environmental Remediation, sensors) of COFs. Furthermore, the applications of COFs as biomaterials are comprehensively discussed. There are several reported COFs having good results in anti-cancer and anti-bacterial treatments. At the end, some newly reported COFs having anti-viral and wound healing properties are also discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
40
|
Luan J, Zhu X, Yu L, Li Y, He X, Chen L, Zhang Y. Construction of magnetic covalent organic frameworks functionalized by benzoboroxole for efficient enrichment of glycoproteins in the physiological environment. Talanta 2023; 251:123772. [DOI: 10.1016/j.talanta.2022.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
|
41
|
Zhang Y, Liu D, Guo W, Ding Y. Less-precious nitrogen-rich covalent organic frameworks capable of effective rare earth recovery from water. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
Covalent organic framework in situ grown on Fe 3O 4 hollow microspheres for stir bar sorptive-dispersive microextraction of triazole pesticides. Mikrochim Acta 2022; 190:34. [PMID: 36538150 DOI: 10.1007/s00604-022-05613-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/03/2022] [Indexed: 01/07/2023]
Abstract
Based on covalent organic framework (COF) 1,3,5-tris-(4-formylphenyl)benzene-benzidine (TFPB-BD) in situ grown on Fe3O4 hollow microspheres and combined with gas chromatography-flame thermionic detector, a rapid and simple stir bar sorptive-dispersive microextraction method was developed for the determination of five triazole pesticides (paclobutrazol, hexaconazole, flusilazole, propiconazole, and tebuconazole). The synthesized TFPB-BD/Fe3O4 microspheres were characterized by transmission electron microscope, vibrating sample magnetometer, and thermogravimetric analysis, which showed that the material has strong magnetism and higher load capacity of COF. Under optimal conditions, the extraction equilibrium could be achieved within 9 min with detection limits of 0.17-1.48 μg L-1 (S/N = 3) and a linear range of 5-1000 μg L-1. The developed method was applied to the determination of trace triazole pesticides in apples, pears, and cabbages with recoveries from 81 to 117%.
Collapse
|
43
|
Yang X, Zhang X, Chen X, Gao X, Liu Y, Weng J, Yang S, Gui T, Chen X, Zhao R, Liu J. Nitrogen-rich triazine-based porous polymers for efficient removal of bisphenol micropollutants. CHEMOSPHERE 2022; 307:135919. [PMID: 35952784 DOI: 10.1016/j.chemosphere.2022.135919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Achieving both rapid adsorption rate and high adsorption capacity for bisphenol micropollutants from aquatic systems is critical for efficient adsorbents in water remediation. Here, we elaborately prepared three nitrogen-rich triazine-based porous polymers (NTPs) with similar geometric configurations and nitrogen contents (41.70-44.18 wt%) while tunable BET surface areas and micropore volumes in the range of 454.7-536.3 m2 g-1 and 0.20-0.84 cm3 g-1, respectively. It was systematically revealed that the synergy of hydrogen bonding, π-π electron-donor-acceptor interaction, and micropore preservation promoted the rapid (within 5 min) and high capacity adsorption of bisphenols by NTPs. Particularly, microporous-dominated NTPs-3 with the highest micro-pore volume (0.84 cm3 g-1) displays remarkable adsorption capacity towards bisphenol A as evidenced by the adsorption capacity of 182.23 mg g-1. A simple column filter constructed by NTPs-3 also expressed good dynamic adsorption and regeneration capacity. This work provided new insight into the rational design and engineering of nitrogen-rich porous polymers for the remediation of micropollutant wastewater.
Collapse
Affiliation(s)
- Xuechun Yang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoyi Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xinwei Chen
- The Attached Middle School to Jiangxi Normal University, Nanchang, 330006, China
| | - Xiaoying Gao
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinlan Weng
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Shenghong Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Tian Gui
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiangshu Chen
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Rusong Zhao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
44
|
Qi P, Wang J, Li H, Wu Y, Liu Z, Zheng B, Wang X. Fluffy ball-like magnetic covalent organic frameworks for adsorption and removal of organothiophosphate pesticides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156529. [PMID: 35688246 DOI: 10.1016/j.scitotenv.2022.156529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/17/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Organothiophosphate pesticides (OPPs) are the most commonly used pesticides, and their environmental migration brings serious water pollution and significant danger to human health, and thus it is urgent to develop effective technologies for removal of OPPs from water. Herein, magnetic covalent organic framework (COF) with a triazine skeleton was fabricated for enhanced adsorption and removal of OPPs from water. Magnetic COF has a fluffy ball-like structure, high crystallinity, large BET surface area (1543 m2 g-1), and regular mesopores (~3.1 nm). Therefore, it displayed high adsorption rates and large adsorption capacities for four typical OPPs, pyridafenthion, phoxim, pyrimitate, and phorate. Based on adsorption kinetic and isotherms investigations, the batch experimental data of magnetic COF was effectively modeled by pseudo-second-order kinetics and the Freundlich isothermal model. The equilibrium adsorption capacities of magnetic COF composite for OPPs ranged from 163.9 to 178.6 mg g-1, which were about 10 times higher than the amorphous magnetic composite. The adsorption mechanism was further explored to verify the contributions of π-π, CH⋯π, and CH⋯S interactions to the adsorption of OPPs on the crystalline magnetic COF. Furthermore, the high removal rate of OPPs from the environmental water and reusability further indicated its potential in real applications as an effective adsorption material.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jiao Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Yangli Wu
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China
| | - Zhenzhen Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products & Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China.
| |
Collapse
|
45
|
Hexagonal boron nitride nanosheets based magnetic solid phase extraction for the extraction of phenoxy carboxylic acid herbicides from water samples followed by high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2022; 1682:463519. [PMID: 36162251 DOI: 10.1016/j.chroma.2022.463519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022]
Abstract
High-efficiency caption of pesticide residue is of vital significance for environmental safety monitoring. Herein, a hexagonal boron nitride nanosheets-based magnetic composite (Fe3O4@h-BNNSs) was synthesized and applied for the magnetic solid phase extraction (MSPE) of five phenoxy carboxylic acid (PCA) herbicides from water samples. Based on the π-π interaction, hydrogen bond and halogen bond, the Fe3O4@h-BNNSs composite showed excellent adsorption ability towards PCA herbicides. Several main variables that influenced the extraction efficiencies of PCA herbicides were investigated and optimized via single-factor experiment. Combining this Fe3O4@h-BNNSs composite-based MSPE with high-performance liquid chromatography-tandem mass spectrometry, a novel sensitive method for the analysis of PCA herbicides was developed. Under the most favorable conditions, the proposed method displayed good linear ranges (20.0-10000.0 ng L-1), low limits of detection (5.6-10.3 ng L-1), satisfactory precisions (1.1-6.8%) and recoveries (76.6-107.2%). Overall, the present work can be a versatile and worthy utility for the determination of PCA herbicides from different water samples.
Collapse
|
46
|
Preparation and application of nano petal-shaped covalent organic frameworks modified polystyrene-divinylbenzene- glycidylmethacrylate microspheres for the extraction of illicit drugs from wastewater. J Chromatogr A 2022; 1682:463505. [PMID: 36152484 DOI: 10.1016/j.chroma.2022.463505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022]
Abstract
A novel nano petal-shaped covalent organic frameworks modified magnetic polystyrene-divinylbenzene-glycidylmethacrylate (NP-COF@Mag-PS/DVB/GMA) microsphere has been synthesized. It is a perfect combination of high productivity of PS/DVB/GMA microspheres and excellent enrichment efficiency of COF particles, and the excellent properties of NP-COF@Mag-PS/DVB/GMA microspheres are characterized by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS). The sorbent can extract illicit drugs via the reverse-phase interactions provided by benzene ring on the polymer backbone and the hydrogen bonding interactions provided by functional group (-NH-) on the COF particles. Based on using NP-COF@Mag-PS/DVB/GMA as sorbents, an easiness-to-handle of magnetic dispersive solid phase extraction (Mag-dSPE) procedure is proposed for the simultaneous preconcentration of 12 illicit drugs from wastewater. The obtained results show high extraction efficiency of NP-COF@Mag-PS/DVB/GMA to illicit drugs with recoveries between 81.6 and 116%. Furthermore, a liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) method for the determination of 12 illicit drugs from wastewater at sub-ppt levels has been proposed and validated with the pretreatment of samples by Mag-dSPE. The limits of quantification (LOQs) for the 12 illicit drugs are between 0.40 and 4.90 ng/L. Validation results on linearity, specificity, trueness and precision, as well as on application to the analysis of 12 illicit drugs in ten real samples demonstrate the applicability to environment monitoring analysis.
Collapse
|
47
|
Zhou F, Fang Y, Deng C, Zhang Q, Wu M, Shen HH, Tang Y, Wang Y. Templated Assembly of pH-Labile Covalent Organic Framework Hierarchical Particles for Intracellular Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3055. [PMID: 36080091 PMCID: PMC9457862 DOI: 10.3390/nano12173055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Covalent organic frameworks (COF), a class of emerging microporous polymers, have been restrained for drug delivery applications due to their limited controllability over particle sizes and degradability. Herein, a dendritic mesoporous silica nanosphere (DMSN)-mediated growth strategy is proposed to fabricate hierarchical DMSN@COF hybrids through in situ growing of 1,3,5-tris(4-aminophenyl)benzene and 2,5-dimethoxyterephthaldehyde connected COF with acid cleavable C=N bonds. After the removal of the DMSN template, COF hierarchical particles (COF HP) with tailored particle sizes and degradability were obtained. Notably, the COF HP could be degraded by 55% after 24 h of incubation at pH 5.5, whereas the counterpart bulk COF only showed 15% of degradation in the same conditions. Due to the improved porosity and surface area, the COF HP can be utilized to load the chemotherapeutic drug, doxorubicin (DOX), with a high loading (46.8 wt%), outperforming the bulk COF (32.1 wt%). Moreover, around 90% of the loaded DOX can be discharged from the COF HP within 8 h of incubation at pH 5.5, whereas, only ~55% of the loaded DOX was released from the bulk COF. Cell experiments demonstrated that the IC50 value of the DOX loaded in COF HP was 2-3 times lower than that of the DOX loaded in the bulk COF and the hybrid DMSN@COF. Attributed to the high loading capacity and more pH-labile particle deconstruction properties, COF HP shows great potential in the application as vehicles for drug delivery.
Collapse
Affiliation(s)
- Fangzhou Zhou
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yuanyuan Fang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Chao Deng
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qian Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Minying Wu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Yi Tang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
48
|
Zhang C, Li S, Wu J, Ping T, Ma L, Wang K, Lian K. Developing a hydroxyl-functionalized magnetic porous organic polymer combined with HPLC-MS/MS for determining 31 amide herbicides in fruit wine. Food Chem 2022; 403:134442. [DOI: 10.1016/j.foodchem.2022.134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 10/14/2022]
|
49
|
Fabrication of magnetic covalent organic framework for effective and selective solid-phase extraction of propylparaben from food samples. Food Chem 2022; 386:132843. [PMID: 35381536 DOI: 10.1016/j.foodchem.2022.132843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/26/2022] [Accepted: 03/26/2022] [Indexed: 11/21/2022]
Abstract
Efficient magnetic solid phase extraction using crystalline porous polymers can find important applications in food safety. Herein, the core-shell Fe3O4@COFs nanospheres were synthesized by one-pot method and characterized in detail. The porous COF shell with large surface area had fast and selective adsorption for propylparaben via π-π, hydrogen bonding and hydrophobic interactions. The extraction and desorption parameters were evaluated in detail. Under the optimized conditions, the extraction equilibrium was reached only in 5 min, the maximum adsorption capacity for propylparaben was 500 mg g-1 and the proposed Fe3O4@DhaTab-based-MSPE-HPLC-UV method afforded good linearity (4-20000 μg mL-1) with R2 (0.997), low limits of detection (0.55 μg L-1) and limits of quantification (1.5 μg L-1). Furthermore, the developed method was applied to determine propylparaben in soft drinks with the recoveries (97.0-98.3%) and relative standard deviations (0.61 to 3.75%). These results revealed the potential of Fe3O4@DhaTab as efficient adsorbents for parabens in food samples.
Collapse
|
50
|
Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155279. [PMID: 35429563 DOI: 10.1016/j.scitotenv.2022.155279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of new porous crystalline polymers materials having robust framework, outstanding structural regularity, highly ordered aperture size, inherent porosity, and chemical stability with designer properties, making them an ideal material for adsorbing a variety of contaminants from water bodies. Presented study focusses on the current advances and progress of pristine COFs as well as COFs based composites as an emerging substitute for the adsorption and removal of a variety of pollutants including water desalination technique, heavy metals, pharmaceuticals, dyes and organic pollutants. The absorption capabilities of COFs-derived architecture are evaluated and equated with those of other commonly used adsorbents. The interaction between sorption ability and structural property as well as some regularly utilized ways to improve the adsorption performance of COFs-based materials are also reviewed. Finally, perspective and a summary about the challenges and opportunities of COFs and COFs-derived materials are discussed to deliver some exciting data for fabricating and designing of COFs and COFs-derived materials for remediation of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|