1
|
Ahmed MA, Mahmoud SA, Mohamed AA. Unveiling the photocatalytic potential of graphitic carbon nitride (g-C 3N 4): a state-of-the-art review. RSC Adv 2024; 14:25629-25662. [PMID: 39148759 PMCID: PMC11325859 DOI: 10.1039/d4ra04234d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4)-based materials have emerged as promising photocatalysts due to their unique band structure, excellent stability, and environmental friendliness. This review provides a comprehensive and in-depth analysis of the current state of research on g-C3N4-based photocatalysts. The review summarizes several strategies to improve the photocatalytic performance of pristine g-C3N4, e.g., by creating heterojunctions, doping with non-metallic and metallic materials, co-catalyst loading, tuning catalyst morphology, metal deposition, and nitrogen-defect engineering. The review also highlights the various characterization techniques employed to elucidate the structural and physicochemical features of g-C3N4-based catalysts, as well as their applications of in photocatalytic degradation and hydrogen production, emphasizing their remarkable performance in pollutants' removal and clean energy generation. Furthermore, this review article investigates the effect of operational parameters on the catalytic activity and efficiency of g-C3N4-based catalysts, shedding light on the key factors that influence their performance. The review also provides insights into the photocatalytic pathways and reaction mechanisms involving g-C3N4 based photocatalysts. The review also identifies the research gaps and challenges in the field and presents prospects for the development and utilization of g-C3N4-based photocatalysts. Overall, this comprehensive review provides valuable insights into the synthesis, characterization, applications, and prospects of g-C3N4-based photocatalysts, offering guidance for future research and technological advancements in this rapidly growing field.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
2
|
Dahiya S, Shoran S, Sharma DN, Rao VS, Chaudhary S, Nehra SP, Sharma A. Bioengineered sustainable phytofabrication of anatase TiO 2 -adorned g-C 3N 4 nanocomposites and unveiling their photocatalytic potential towards advanced environmental remediation. CHEMOSPHERE 2024; 362:142456. [PMID: 38878982 DOI: 10.1016/j.chemosphere.2024.142456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/27/2024] [Accepted: 05/25/2024] [Indexed: 06/24/2024]
Abstract
The ecologically friendly properties, low-cost, and readily available titanium dioxide (TiO2) materials have made them a subject of considerable interest for numerous promising applications. Anatase TiO2 nanoparticles were synthesized in the current study through the utilization of a hibiscus leaf extract and the advent of TiO2-doped g-C3N4(TiCN) nanocomposites (varying 0.5 mM, 1.0 mM, 1.5 mM, and 2.0 mM) by thermal polymerization. Here, the proposed study utilized multiple analytical techniques, including UV-Vis spectroscopy, a diffraction pattern (XRD), SEM coupled with EDX analysis, TGA, and EPR, to characterize the as-prepared TiO2 nanoparticles and TiCN nanocomposites. BET analysis the adsorption-desorption isotherms of the TiCN(1.5 mM) nanocomposite, the surface area of the prepared nanocomposite is 112.287 m2/g, and the pore size is 7.056 nm. The XPS spectra support the development of the TiCN(1.5 mM) nanocomposite by demonstrating the presence of C and N elements in the nanocomposite in addition to TiO2. HRTEM images where the formation of stacked that indicates a planar, wrinkled graphitic-like structure is clearly visible. The TiCN (1.5 mM) specimen exhibited enhanced morphology, enhanced surface area, greater capacity to take in visible light, and lowered band gap when compared to g-C3N4 following z-scheme heterojunction. The sample denoted as TiCN (1.5 mM) exhibited superior performance in terms of adsorption and photocatalytic activity using rhodamine B and Bisphenol A. Furthermore, the TiCN (1.5 mM) composite exhibited satisfactory stability over four cyclic runs, indicating its potential application in minimizing the impact of organic wastewater contaminants when compared to g-C3N4.
Collapse
Affiliation(s)
- Sweety Dahiya
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sachin Shoran
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - D N Sharma
- Department of Chemical Engineering, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - V S Rao
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India
| | - Sudesh Chaudhary
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - S P Nehra
- Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, India.
| | - Anshu Sharma
- Department of Physics, School of Engineering & Technology, Central University of Haryana, Mahendergarh, 123031, India.
| |
Collapse
|
3
|
Zheng Y, Bao J, Sun Y. Novel Ni2+/Cu2+ doped Bi2WO6 nanosheets with enhanced photocatalytic performance under visible light. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02731-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Construction of Highly Active Zn3In2S6 (110)/g-C3N4 System by Low Temperature Solvothermal for Efficient Degradation of Tetracycline under Visible Light. Int J Mol Sci 2022; 23:ijms232113221. [DOI: 10.3390/ijms232113221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Herein, Zn3In2S6 photocatalyst with (110) exposed facet was prepared by low temperature solvothermal method. On this basis, a highly efficient binary Zn3In2S6/g-C3N4 was obtained by low temperature solvothermal method and applied to the degradation of tetracycline (TC). The samples of the preparation were characterized by X-ray diffraction, scanning electron microscope, transmission electron microscope, UV–vis diffuse reflection spectroscopy, and photoluminescence spectroscopy. Furthermore, the degradation performance of photocatalysts on TC was investigated under different experimental conditions. Finally, the mechanism of Zn3In2S6/g-C3N4 composite material degrading TC is discussed. The results show that Zn3In2S6 and Zn3In2S6/g-C3N4 photocatalysts with excellent performance could be successfully prepared at lower temperature. The Zn3In2S6/g-C3N4 heterojunction photocatalyst could significantly improve the photocatalytic activity compared with g-C3N4. After 150 min of illumination, the efficiency of 80%Zn3In2S6/g-C3N4 to degrade TC was 1.35 times that of g-C3N4. The improvement of photocatalytic activity was due to the formation of Zn3In2S6/g-C3N4 heterojunction, which promoted the transfer of photogenerated electron–holes. The cycle experiment test confirmed that Zn3In2S6/g-C3N4 composite material had excellent stability. The free radical capture experiment showed that ·O2− was the primary active material. This study provides a new strategy for the preparation of photocatalysts with excellent performance at low temperature.
Collapse
|
5
|
Bahadoran A, Ramakrishna S, Masudy-Panah S, De Lile JR, Gu J, Liu Q, Mishra YK. Rational Construction of a 0D/1D S-Scheme CeO 2/CdWO 4 Heterojunction for Photocatalytic CO 2 Reduction and H 2 Production. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ashkan Bahadoran
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Seeram Ramakrishna
- Faculty of Mechanical Engineering, National University of Singapore, 117574 Singapore
| | - Saeid Masudy-Panah
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART) Centre, 38602 Singapore
| | - Jeffrey Roshan De Lile
- Département de physique and Regroupement québécois sur les matériaux de pointe, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C3J7, Canada
| | - JiaJun Gu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglei Liu
- State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yogendra Kumar Mishra
- SDU NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, 6400, Sønderborg, Denmark
| |
Collapse
|
6
|
Jiang Y, Xing C, Chen Y, Shi J, Wang S. Preparation of BiFeO 3 and photodegradation of tetracycline pollutant in the UV-heterogeneous Fenton-like system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:57656-57668. [PMID: 35353309 DOI: 10.1007/s11356-022-19806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Surplus tetracycline in the water body causes damage to the ecology balance and human health. Therefore, this work established an efficient strategy, namely, the BFO-based UV-heterogeneous Fenton-like system, to eliminate TC pollution. The photocatalytic oxidation system has been integrated with the heterogeneous Fenton-like system, cooperated with the photolysis of H2O2. These synergistic effects could boost the generation of reactive species for the TC degradation and mineralization, due to the reduction of Fe(III) to Fe(II) by photogenerated electrons and the separation of photogenerated electron-hole pairs. The prepared BFO was stable with no secondary pollution, and could be recovered by an extra magnet to reuse. Compared with other single oxidation systems, this coupled system showed an outstanding performance in TC disposal, and TC and TOC removal efficiencies could reach 100% and 74.92%, respectively. Moreover, the mechanisms for TC degradation involved that TC was degraded by oxidation species, such as superoxide radicals, hydroxyl radicals, and positive holes, and intermediate products in the TC degradation process mainly were products at m/z = 459, m/z = 445, and m/z = 134. The promising TC disposal efficiency achieved by the integration between BFO-based photocatalytic and heterogeneous Fenton-like system sheds light on applying BFO to control water pollution.
Collapse
Affiliation(s)
- Yongwei Jiang
- Jiangsu Provincial Academy of Environmental Science Co., Ltd, Nanjing, 210036, People's Republic of China
| | - Chao Xing
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yue Chen
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| | - Jing Shi
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Sheng Wang
- School of Engineering, China Pharmaceutical University, No.639, Longmian Road, Nanjing, 211198, People's Republic of China
| |
Collapse
|
7
|
Co-Doped, Tri-Doped, and Rare-Earth-Doped g-C3N4 for Photocatalytic Applications: State-of-the-Art. Catalysts 2022. [DOI: 10.3390/catal12060586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Rapid industrialization and overpopulation have led to energy shortages and environmental pollution, accelerating research to solve the issues. Currently, metal-free photocatalysts have gained the intensive attention of scientists due to their environmental-friendly nature and ease of preparation. It was noticed that g-C3N4 (GCN) consists of a few outstanding properties that could be used for various applications such as water treatment and clean energy production. Nonetheless, bare GCN contains several drawbacks such as high charge recombination, limited surface area, and low light sensitivity. Several solutions have been applied to overcome GCN limitations. Co-doping, tri-doping, and rare-earth-doping can be effective solutions to modify the GCN structure and improve its performance toward photocatalysis. This review highlights the function of multi-elemental and rare-earth dopants in GCN structure, mechanisms, and performance for photocatalytic applications as well as the advantages of co-doping, tri-doping, and rare-earth-doping of GCN. This review summarizes the different roles of dopants in addressing the limitations of GCN. Therefore, this article critically reviewed how multi-elemental and rare-earth-doping affect GCN properties and enhanced photoactivity for various applications.
Collapse
|
8
|
In-Situ Fabricating V 2O 5/TiO 2-Carbon Heterojunction from Ti 3C 2 MXene as Highly Active Visible-Light Photocatalyst. NANOMATERIALS 2022; 12:nano12101776. [PMID: 35630998 PMCID: PMC9147991 DOI: 10.3390/nano12101776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023]
Abstract
Titanium dioxide is a mainstream photocatalyst, but it still confronts great obstacles of poor visible light absorption and rapid recombination rate of photogenerated carriers. Herein, we describe the design of a highly active visible-light photocatalytic system of graphited carbon layers anchored V2O5/TiO2 heterojunctions derived from Ti3C2 MXene, which demonstrates about 4.58 and 2.79 times higher degradation activity of MB under visible light (λ > 420 nm) than pure V2O5 and TiO2-carbon. Combined with the characterization results, the formed V2O5/TiO2 heterojunction promotes the separation of photogenerated carriers, while the graphitized carbon derived from MXene acts as an electronic reservoir to enhance the absorption of visible light. The ESR results show that superoxide radicals and hydroxyl radicals are the main active species in the reaction system. Therefore, we propose a possible mechanism model to provide a feasible idea for the subsequent design of high-efficiency photocatalysts for environmental treatment.
Collapse
|
9
|
Keerthana SP, Yuvakkumar R, Senthil Kumar P, Ravi G, Hong SI, Velauthapillai D. Investigation of pure and g-C 3N 4 loaded CdWO 4 photocatalytic activity on reducing toxic pollutants. CHEMOSPHERE 2022; 291:133090. [PMID: 34856234 DOI: 10.1016/j.chemosphere.2021.133090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 05/07/2023]
Abstract
A facile synthesis of pristine and g-C3N4 loaded CdWO4 (Cadmium Tungstate) were reported and analyzed the effect of pollutants removal in wastewater. The samples were characterized and the morphology of the pristine sample showed the nanostructures with high cluster of layer formed. While adding PEG (Polyethylene glycol), the surface has exhibited less agglomeration and in g-C3N4 added sample the agglomeration was intensely reduced and nanostructures have been clearly found. Photocatalytic performance on cationic dye was investigated under visible light. The efficiency calculated for g-C3N4- CdWO4 sample was 85% for MB. The C/C0 plot gives better degradation. The kinetic study revealed pseudo first order reaction. The g-C3N4-CdWO4 sample exhibited higher "k" value which proved best efficiency on removing the pollutant. g-C3N4-CdWO4 sample will make better reduction on toxic pollutants and be a good candidate in futuristic applications. By carbon based derivates inclusion with photo active materials, the morphology and surface area was greatly improved and it enhances activity of host material and it will be the promising material for industrial applications.
Collapse
Affiliation(s)
- S P Keerthana
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - R Yuvakkumar
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - G Ravi
- Department of Physics, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - S I Hong
- Department of Materials Science and Engineering, Chungnam National University, Daejeon, South Korea
| | - Dhayalan Velauthapillai
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, 5063, Norway
| |
Collapse
|
10
|
Qiu Y, Lu J, Yan Y, Niu J. Enhanced visible-light-driven photocatalytic degradation of tetracycline by 16% Er 3+-Bi 2WO 6 photocatalyst. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126920. [PMID: 34449331 DOI: 10.1016/j.jhazmat.2021.126920] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/28/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The widespread use of antibiotics in drug therapy and agriculture has seriously polluted the aquatic environment. Bismuth tungstate (Bi2WO6) is a new and efficient visible-light catalyst that is simple to prepare, non-toxic, stable, and corrosion resistant. Nonetheless, its efficiency has remained limited, and erbium (Er) mixing has been tested to address this. Here, a new Er3+-mixed Bi2WO6 photocatalyst was successfully prepared through the one-step hydrothermal method; pigments were characterized via XRD, SEM, BET, XPS, Uv-vis, PL and EIS. The results showed that the 16% Er3+-Bi2WO6 photocatalyst is a 250 nm flower-like nanosheet with a specific surface area of 67.1 m2/g and bandgap (Eg) of 2.35 eV, which provides the basis for superior performance. When the concentration of the catalyst was 0.4 g/L, 94.58% of the tetracycline (TC) solution (initial concentration of 10 mg/L) degraded within 60 min under visible light irradiation (λ ≥ 420 nm). ESR and LC-MS were used to identify the free radicals and intermediates for the degradation of TC pollutants; a photocatalytic degradation system and pathway were proposed. This solar-driven system will ultimately reduce resource consumption, providing a sustainable and energy-saving environmental decontamination strategy.
Collapse
Affiliation(s)
- Yijin Qiu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| | - Jianjiang Lu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China.
| | - Yujun Yan
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| | - Junfeng Niu
- School of Chemistry and Chemical Engineering, Shihezi University, Key Laboratory for environmental monitoring and pollutant control of Xinjiang Production and Construction Corps, Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
| |
Collapse
|
11
|
Madona J, Sridevi C. Surfactant assisted hydrothermal synthesis of MgO/g-C3N4 heterojunction nanocomposite for enhanced solar photocatalysis and antimicrobial activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109265] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Suyana P, Ganguly P, Nair BN, Pillai SC, Hareesh U. Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100148] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
13
|
Humayun M, Pi W, Yuan Y, Shu L, Cao J, Khan A, Zheng Z, Fu Q, Tian Y, Luo W. A rational design of g-C 3N 4-based ternary composite for highly efficient H 2 generation and 2,4-DCP degradation. J Colloid Interface Sci 2021; 599:484-496. [PMID: 33964694 DOI: 10.1016/j.jcis.2021.04.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/10/2021] [Accepted: 04/11/2021] [Indexed: 10/25/2022]
Abstract
In this work, g-C3N4 based ternary composite (CeO2/CN/NH2-MIL-101(Fe)) has been fabricated via hydrothermal and wet-chemical methods. The composite showed superior photoactivities for H2O reduction to produce H2 and 2,4-dichlorophenol (2,4-DCP) degradation. The amount of H2 evolved over the composite under visible and UV-visible irradiations is 147.4 µmol·g-1·h-1 and 556.2 µmol·g-1·h-1, respectively. Further, the photocatalyst degraded 87% of 2,4-DCP in 2 hrs under visible light irradiations. The improved photoactivities are accredited to the synergistic-effects caused by the proper band alignment with close interfacial contact of the three components that significantly promoted charge transfer and separation. The 2,4-DCP degradation over the composite is dominated by OH radical rather than h+ and O2- as investigated by scavenger trapping experiments. This is further supported by the electron para-magnetic resonance (EPR) study. This work provides new directions for the development of g-C3N4 based highly efficient ternary composite materials for clean energy generation and pollution control.
Collapse
Affiliation(s)
- Muhammad Humayun
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Wenbo Pi
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yang Yuan
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lang Shu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Junhao Cao
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Abbas Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Zhiping Zheng
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qiuyun Fu
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yahui Tian
- Institute of Acoustics, Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Wei Luo
- Engineering Research Center for Functional Ceramics of the Ministry of Education, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Shubha JP, Adil SF, Khan M, Hatshan MR, Khan A. Facile Fabrication of a ZnO/Eu 2O 3/NiO-Based Ternary Heterostructure Nanophotocatalyst and Its Application for the Degradation of Methylene Blue. ACS OMEGA 2021; 6:3866-3874. [PMID: 33585765 PMCID: PMC7876865 DOI: 10.1021/acsomega.0c05670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 05/13/2023]
Abstract
The ZnO-based ternary heterostructure ZnO/Eu2O3/NiO nanoparticles are synthesized using waste curd as fuel by a simple one-pot combustion method. The as-synthesized heterostructure is characterized by using various spectroscopic and microscopic techniques including X-ray diffraction, UV-vis, FTIR, SEM, and TEM analyses. The photocatalytic activity of the ternary nanocomposite was tested for the photodegradation of methylene blue (MB) under solar light irradiation. The results have revealed that the ternary ZnO/Eu2O3/NiO photocatalyst exhibits excellent performance toward the photocatalytic degradation of the studied dye. Optimization studies revealed that the synthesized heterostructure exhibited a pH-dependent photocatalytic activity, and better results are obtained for specific concentrations of dye and catalysts. Among the different light sources employed during the study, the catalyst was found to possess the best degradation efficiency in visible light.
Collapse
Affiliation(s)
- J. Pranesh Shubha
- Department
of Chemistry, Don Bosco Institute of Technology, Mysore Road, Bangalore 560 074, India
| | - Syed F. Adil
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mujeeb Khan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad R. Hatshan
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Aslam Khan
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4 heterojunction: Performance, mechanism and degradation pathways. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117985] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Hosseini SM, Karimi M, Safarifard V. Metal–organic framework/carbon nitride nanosheets composites (TMU-49/CNNSs): efficient photocatalyst for aerobic oxidation of alcohols under visible light. NEW J CHEM 2021. [DOI: 10.1039/d1nj02369a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The TMU-49/CNNSs composite was used as a photocatalyst for oxidation of alcohols.
Collapse
Affiliation(s)
- Seyed Mohammad Hosseini
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Meghdad Karimi
- Department of Chemistry, Tarbiat Modares University, Tehran, Iran
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
17
|
Sushma SPS, Swarupa G, Nagesh T, Pola S, Rajitha P, Vijaya Kumar B, Upender G. Enhanced photocatalytic activity of CdWO4/BaTiO3 heterostructure for dye degradation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel UV active photocatalysts of (1 − x)CdWO4–xBaTiO3 (where x = 10, 30, 50 and 70 wt%) heterostructures were synthesized using the hydrothermal technique.
Collapse
Affiliation(s)
- S. P. Sai Sushma
- Department of Physics, Nizam College, Osmania University, Hyderabad- 01, Telangana, India
| | - G. Swarupa
- Nanomaterials and Catalysis Research Laboratory, Department of Chemistry, Nizam College, Osmania University, Hyderabad-01, Telangana, India
| | - T. Nagesh
- Department of Physics, Nizam College, Osmania University, Hyderabad- 01, Telangana, India
| | - Someshwar Pola
- Department of Chemistry, Osmania University, Hyderabad-07, Telangana, India
| | - P. Rajitha
- Department of Catalysis and Fine Chemicals, CSIR-IICT, Hyderabad-07, India
| | - B. Vijaya Kumar
- Nanomaterials and Catalysis Research Laboratory, Department of Chemistry, Nizam College, Osmania University, Hyderabad-01, Telangana, India
| | - G. Upender
- Department of Physics, Nizam College, Osmania University, Hyderabad- 01, Telangana, India
| |
Collapse
|
18
|
Construction of g-C3N4/TiO2 nanotube arrays Z-scheme heterojunction to improve visible light catalytic activity. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125193] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Koutavarapu R, Babu B, Reddy CV, Reddy IN, Reddy KR, Rao MC, Aminabhavi TM, Cho M, Kim D, Shim J. ZnO nanosheets-decorated Bi 2WO 6 nanolayers as efficient photocatalysts for the removal of toxic environmental pollutants and photoelectrochemical solar water oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 265:110504. [PMID: 32275239 DOI: 10.1016/j.jenvman.2020.110504] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
Herein we report the fabrication of novel Bi2WO6/ZnO heterostructured hybrids for organic contaminant degradation from wastewater and photoelectrochemical (PEC) water splitting upon solar illumination. The Bi2WO6/ZnO photocatalysts were synthesized using a simple and eco-friendly hydrothermal process without the support of any surfactants. From the photocatalytic experiments, heterostructured Bi2WO6/ZnO nanohybrid catalysts exhibited considerably better photocatalytic performance for rhodamine B (RhB) degradation under solar illumination. The BWZ-20 nanocomposite demonstrated superior photodegradation of RhB dye up to 99% in about 50 min. Furthermore, BWZ-20 photoelectrode showeda lower charge-transfer resistance than other samples prepared, suggesting its suitability for PEC water splitting. The photocurrent densities of Bi2WO6/ZnO photoelectrodes were evaluated under the solar irradiation. The BWZ-20 photoelectrode exhibited a significant photocurrent density (0.45 × 10-3A/cm2) at +0.3 V vs. Ag/AgCl, which was~1036-times higher than that of pure Bi2WO6, and ~4.8-times greater than the pure ZnO. Such improved photocatalytic and PEC activities are mainly attributed to the formation of an interface between ZnO and Bi2WO6, superior light absorption ability, low charge-transfer resistance, remarkable production of charge carriers, easy migration of charges, and suppression of the recombination of photogenerated charge carriers.
Collapse
Affiliation(s)
| | - Bathula Babu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Ch Venkata Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - I Neelakanta Reddy
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Kakarla Raghava Reddy
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - M C Rao
- Department of Physics, Andhra Loyola College, Vijayawada, 520 008, Andhra Pradesh, India
| | - Tejraj M Aminabhavi
- Department of Pharmaceutics, SETs' College of Pharmacy, Dharwad, 580 007, Karnataka, India.
| | - Migyung Cho
- School of Information Engineering, Tongmyong University, Busan, 608-711, Republic of Korea
| | - Dongseob Kim
- Aircraft System Technology Group, Korea Institute of Industrial Technology, Gyeongbuk-do, 38822, Republic of Korea
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
20
|
Shi W, Liu C, Li M, Lin X, Guo F, Shi J. Fabrication of ternary Ag 3PO 4/Co 3(PO 4) 2/g-C 3N 4 heterostructure with following Type II and Z-Scheme dual pathways for enhanced visible-light photocatalytic activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121907. [PMID: 31879109 DOI: 10.1016/j.jhazmat.2019.121907] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/09/2019] [Accepted: 12/14/2019] [Indexed: 05/21/2023]
Abstract
A novel ternary Ag3PO4/Co3(PO4)2/g-C3N4 (APO/CPO/CN) heterostructure photocatalyst was successfully synthesized via a simple precipitation method for photocatalytic degradation of tetracycline (TC) under visible light irradiation. The experimental result reveals that the ternary APO/CPO/CN heterojunction showed enhanced photocatalytic performance compared with single semiconductor CPO and CN, binary composite CPO/CN. And APO/CPO/CN-15 % composite exhibits highest photocatalytic degradation efficiency, which can degrade TC around 88 % under visible light within 120 min. The enhanced photocatalytic performance is due to the synergy effects between CPO, CN and APO with the aid of following Z-scheme and Type II heterojunction dual pathways for effective separation of photogenerated charges. This work provides a new approach in the rational design of ternary heterojunction photocatalyst with multilevel electron transfer for environmental decontamination.
Collapse
Affiliation(s)
- Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Chang Liu
- School of Material Science and Engineering, Beihua University, Jilin, 132013, PR China
| | - Mingyang Li
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China
| | - Xue Lin
- School of Material Science and Engineering, Beihua University, Jilin, 132013, PR China.
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, PR China.
| | - Junyou Shi
- School of Material Science and Engineering, Beihua University, Jilin, 132013, PR China.
| |
Collapse
|
21
|
Paul D, Gautam S, Panchal P, Nehra SP, Choudhary P, Sharma A. ZnO-Modified g-C 3N 4: A Potential Photocatalyst for Environmental Application. ACS OMEGA 2020; 5:3828-3838. [PMID: 32149209 PMCID: PMC7057336 DOI: 10.1021/acsomega.9b02688] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/06/2020] [Indexed: 05/04/2023]
Abstract
Solar energy-driven practices using semiconducting materials is an ideal approach toward wastewater remediation. In order to attain a superior photocatalyst, a composite of g-C3N4 and ZnO (GCN-ZnO) has been prepared by one-step thermal polymerization of urea and zinc carbonate basic dihydrate [ZnNO3]2·[Zn(OH)2]3. The GCN-ZnO0.4 sample showed an evolved morphology, increased surface area (116 m2 g-1), better visible light absorption ability, and reduced band gap in comparison to GCN-pure. The GCN-ZnO0.4 sample also showed enhanced adsorption and photocatalytic activity performance, resulting in an increased reaction rate value up to 3 times that of GCN-pure, which was attributed to the phenomenon of better separation of photogenerated charge carriers resulting because of heterojunction development among interfaces of GCN-pure and ZnO. In addition, the GCN-ZnO0.4 sample showed a decent stability for four cyclic runs and established its potential use for abatement of organic wastewater pollutants in comparison to GCN-pure.
Collapse
Affiliation(s)
- Devina
Rattan Paul
- Center
of Excellence for Energy and Environmental Studies, Deenbandhu
Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Shubham Gautam
- Materials
Research Center, Malaviya National Institute
of Technology, Jaipur 302017, India
| | - Priyanka Panchal
- Center
of Excellence for Energy and Environmental Studies, Deenbandhu
Chhotu Ram University of Science and Technology, Murthal 131039, India
| | - Satya Pal Nehra
- Center
of Excellence for Energy and Environmental Studies, Deenbandhu
Chhotu Ram University of Science and Technology, Murthal 131039, India
| | | | - Anshu Sharma
- Department
of Physics, School of Engineering & Technology (SoET), Central University of Haryana, Mahendragarh 123031, India
| |
Collapse
|
22
|
Narsimha K, Babu MS, Anuradha N, Guda S, Kumar BK, Mallesh D, Upender G, Reddy PM, Kumar BV. Preparation and characterization of CdWO 4:Cu nanorods with enhanced photocatalytic performance under sunlight irradiation. NEW J CHEM 2020. [DOI: 10.1039/c9nj05763c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The objective of this work is to convert an ultraviolet active photocatalyst to a visible active photocatalyst and investigate the effect of copper (Cu2+) doping on the morphology and photocatalytic activity of CdWO4.
Collapse
Affiliation(s)
- Kura Narsimha
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - M. Shekar Babu
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - N. Anuradha
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - Swarupa Guda
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - B. Kranthi Kumar
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - D. Mallesh
- Indian Institute of Chemical Technology
- Hyderabad
- India
| | - G. Upender
- Department of Physics
- Nizam College
- Osmania University
- Hyderabad-01
- India
| | - P. Muralidhar Reddy
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| | - B. Vijaya Kumar
- Nanomaterials and Catalysis Research Laboratory
- Department of Chemistry
- Nizam College
- Osmania University
- Hyderabad-01
| |
Collapse
|
23
|
Construction of heterostructure CoWO4/g-C3N4 nanocomposite as an efficient visible-light photocatalyst for norfloxacin degradation. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.08.035] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
S. LP, K. S, Mamba G, V. M. 1D/2D MnWO4 nanorods anchored on g-C3N4 nanosheets for enhanced photocatalytic degradation ofloxacin under visible light irradiation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123845] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
S. LP, V. M. Superior visible light driven photocatalytic degradation of fluoroquinolone drug norfloxacin over novel NiWO4 nanorods anchored on g-C3N4 nanosheets. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.01.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Li C, Yu S, Zhang X, Wang Y, Liu C, Chen G, Dong H. Insight into photocatalytic activity, universality and mechanism of copper/chlorine surface dual-doped graphitic carbon nitride for degrading various organic pollutants in water. J Colloid Interface Sci 2019; 538:462-473. [DOI: 10.1016/j.jcis.2018.12.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/26/2018] [Accepted: 12/01/2018] [Indexed: 12/27/2022]
|
27
|
Luo J, Chen J, Guo R, Qiu Y, Li W, Zhou X, Ning X, Zhan L. Rational construction of direct Z-scheme LaMnO3/g-C3N4 hybrid for improved visible-light photocatalytic tetracycline degradation. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.062] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Dadigala R, Bandi R, Gangapuram BR, Guttena V. Construction of in situ self-assembled FeWO 4/g-C 3N 4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline. NANOSCALE ADVANCES 2019; 1:322-333. [PMID: 36132479 PMCID: PMC9473199 DOI: 10.1039/c8na00041g] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/03/2018] [Indexed: 05/08/2023]
Abstract
Although photocatalytic degradation is an ideal strategy for cleaning environmental pollution, it remains challenging to construct a highly efficient photocatalytic system by steering the charge flow in a precise manner. In this work, a novel, highly efficient, stable, and visible light active hybrid photocatalytic system consisting of FeWO4 and g-C3N4 nanosheets (CNNs) has been successfully prepared by an in situ self-assembly solvothermal approach. Several characterization techniques were employed to study the phase structures, morphologies, optical properties, surface composition and chemical state of the as-prepared samples. SEM and TEM results demonstrated that the FeWO4 nanoparticles are uniformly dispersed on the surface of CNNs with a diameter of about 10-20 nm, which could provide maximum interfacial contact and a synergistic coupling effect between FeWO4 and CNNs. XPS and FTIR results confirmed that there was strong electrostatic interaction between FeWO4 and CNNs, suggesting the formation of heterojunctions between them. In addition, UV-DRS and PL spectroscopy revealed that the FeWO4/CNN composites exhibited increased visible light absorption and improved charge generation/separation efficiency. As a result, the photocatalytic activity of the FeWO4/CNNs was enhanced in comparison with pure FeWO4 and CNNs for rhodamine B (RhB) and tetracycline (TC) degradation under natural sunlight irradiation. The photocatalytic efficiency of the optimal FeWO4/CNN composite (10 wt% FeWO4/CNNs) for the degradation of RhB (TC) was about 13.26 (4.95) and 86.2 (31.1) times higher than that of pure FeWO4 and CNNs, respectively. Meanwhile, the 10 wt% FeWO4/CNN sample exhibits good photocatalytic stability in recycling experiments. The enhanced photocatalytic activity may be attributed to the formation of the Z-scheme system between FeWO4 and CNNs, effectively prolonging the lifetime of the photoexcited electrons generated by CNNs and the photoexcited holes generated by FeWO4, which was subsequently confirmed by the active species trapping experiments and the calculation of relative band alignments. This work opens up a new feasible avenue to synthesize visible light active Z-scheme photocatalysts for application in energy production and environmental remediation.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Department of Chemistry, Osmania University Hyderabad Telangana State 500007 India
| | - RajKumar Bandi
- Department of Chemistry, Osmania University Hyderabad Telangana State 500007 India
| | - Bhagavanth Reddy Gangapuram
- Department of Chemistry, Osmania University Hyderabad Telangana State 500007 India
- Department of Chemistry, PG Center Wanaparthy, Palamuru University Mahabub Nagar Telangana State 509001 India
| | - Veerabhadram Guttena
- Department of Chemistry, Osmania University Hyderabad Telangana State 500007 India
| |
Collapse
|
29
|
Li C, Yu S, Dong H, Wang Y, Wu H, Zhang X, Chen G, Liu C. Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance. J Colloid Interface Sci 2018; 531:331-342. [DOI: 10.1016/j.jcis.2018.07.083] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/14/2018] [Accepted: 07/20/2018] [Indexed: 01/04/2023]
|
30
|
Ehrmaier J, Domcke W, Opalka D. Mechanism of Photocatalytic Water Oxidation by Graphitic Carbon Nitride. J Phys Chem Lett 2018; 9:4695-4699. [PMID: 30067374 DOI: 10.1021/acs.jpclett.8b02026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Carbon nitride materials are of great interest for photocatalytic water splitting. Herein, we report results from first-principles simulations of the specific electron- and proton-transfer processes that are involved in the photochemical oxidation of liquid water with heptazine-based molecular photocatalysts. The heptazine chromophore and the solvent molecules have been described strictly at the same level of electronic structure theory. We demonstrate the critical role of solvent molecules for the absorption properties of the chromophore and the overall photocatalytic cycle. A simple model is developed to describe the photochemical water oxidation mechanism. Our results reveal that heptazine possesses energy levels that are suitable for the water oxidation reaction. We suggest design principles for molecular photocatalysts which can be used as descriptors in future experimental and computational screening studies.
Collapse
Affiliation(s)
- Johannes Ehrmaier
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85748 Garching , Germany
| | - Wolfgang Domcke
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85748 Garching , Germany
| | - Daniel Opalka
- Department of Chemistry , Technical University of Munich , Lichtenbergstr. 4 , 85748 Garching , Germany
| |
Collapse
|
31
|
Zhang B, Wang Q, Zhuang J, Guan S, Li B. Molten salt assisted in-situ synthesis of TiO2/g-C3N4 composites with enhanced visible-light-driven photocatalytic activity and adsorption ability. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.05.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
32
|
Ehrmaier J, Janicki MJ, Sobolewski AL, Domcke W. Mechanism of photocatalytic water splitting with triazine-based carbon nitrides: insights from ab initio calculations for the triazine–water complex. Phys Chem Chem Phys 2018; 20:14420-14430. [DOI: 10.1039/c8cp01998c] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Valuable theoretical insights into the mechanism of photocatalytic water-splitting using triazine as a model system for carbon-nitride materials.
Collapse
Affiliation(s)
- Johannes Ehrmaier
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| | - Mikołaj J. Janicki
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| | | | - Wolfgang Domcke
- Department of Chemistry
- Technical University of Munich
- D-85747 Garching
- Germany
| |
Collapse
|