1
|
Gibbons AM, Boadu M, Ohno PE. Aerosol Fluorescent Labeling via Probe Molecule Volatilization. Anal Chem 2024; 96:19947-19954. [PMID: 39630955 DOI: 10.1021/acs.analchem.4c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The physicochemical properties of aerosols, including hygroscopicity, phase state, pH, and viscosity, influence important processes ranging from virus transmission and pulmonary drug delivery to atmospheric light scattering and chemical reactivity. Despite their importance, measurements of these key properties in aerosols remain experimentally challenging due to small particle sizes and low mass densities in air. Fluorescence probe spectroscopy is one of the only analytical techniques that is capable of experimentally determining these properties in situ in a nondestructive and minimally perturbative manner. However, the application of fluorescence probe spectroscopy to important classes of aerosols including exhaled respiratory and ambient atmospheric aerosols has been limited due to a typical reliance on premixing the probe molecule with particle constituents prior to particle generation, which is not always possible. Here, a method for aerosol fluorescent labeling based on probe molecule volatilization is developed. The method is first applied to label model polyethylene glycol (PEG) aerosols with two different polarity-sensitive probes, Nile red and Prodan. The similarity of the relative humidity-dependent fluorescent emission of each probe between prelabeled and volatilized-probe PEG particles validated the methodology. A preliminary application of the technique to indicate the hygroscopicity of artificial saliva respiratory particles and model atmospheric secondary organic aerosol particles is demonstrated. The methodology developed here paves the way for future studies applying powerful fluorescent probe-based analytical techniques to study exhaled or natural aerosols for which fluorescent prelabeling is not possible.
Collapse
Affiliation(s)
- Angel M Gibbons
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Michael Boadu
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Paul E Ohno
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
2
|
Paez‐Perez M, Kuimova MK. Molecular Rotors: Fluorescent Sensors for Microviscosity and Conformation of Biomolecules. Angew Chem Int Ed Engl 2024; 63:e202311233. [PMID: 37856157 PMCID: PMC10952837 DOI: 10.1002/anie.202311233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
The viscosity and crowding of biological environment are considered vital for the correct cellular function, and alterations in these parameters are known to underly a number of pathologies including diabetes, malaria, cancer and neurodegenerative diseases, to name a few. Over the last decades, fluorescent molecular probes termed molecular rotors proved extremely useful for exploring viscosity, crowding, and underlying molecular interactions in biologically relevant settings. In this review, we will discuss the basic principles underpinning the functionality of these probes and will review advances in their use as sensors for lipid order, protein crowding and conformation, temperature and non-canonical nucleic acid structures in live cells and other relevant biological settings.
Collapse
Affiliation(s)
- Miguel Paez‐Perez
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| | - Marina K. Kuimova
- Department of Chemistry, Imperial College London, MSRHImperial College LondonWood LaneLondonW12 0BZUK
| |
Collapse
|
3
|
Zembrzycki K, Pawłowska S, Pierini F, Kowalewski TA. Brownian Motion in Optical Tweezers, a Comparison between MD Simulations and Experimental Data in the Ballistic Regime. Polymers (Basel) 2023; 15:polym15030787. [PMID: 36772088 PMCID: PMC9920121 DOI: 10.3390/polym15030787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The four most popular water models in molecular dynamics were studied in large-scale simulations of Brownian motion of colloidal particles in optical tweezers and then compared with experimental measurements in the same time scale. We present the most direct comparison of colloidal polystyrene particle diffusion in molecular dynamics simulations and experimental data on the same time scales in the ballistic regime. The four most popular water models, all of which take into account electrostatic interactions, are tested and compared based on yielded results and resources required. Three different conditions were simulated: a freely moving particle and one in a potential force field with two different strengths based on 1 pN/nm and 10 pN/nm. In all cases, the diameter of the colloidal particle was 50 nm. The acquired data were compared with experimental measurements performed using optical tweezers with position capture rates as high as 125 MHz. The experiments were performed in pure water on polystyrene particles with a 1 μm diameter in special microchannel cells.
Collapse
Affiliation(s)
- Krzysztof Zembrzycki
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
- Correspondence: (K.Z.); (F.P.)
| | - Sylwia Pawłowska
- Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, ul. G. Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Filippo Pierini
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
- Correspondence: (K.Z.); (F.P.)
| | - Tomasz Aleksander Kowalewski
- Department of Biosystem and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawinskiego 5B, 02-106 Warsaw, Poland
| |
Collapse
|
4
|
Tong YK, Liu Y, Meng X, Wang J, Zhao D, Wu Z, Ye A. The relative humidity-dependent viscosity of single quasi aerosol particles and possible implications for atmospheric aerosol chemistry. Phys Chem Chem Phys 2022; 24:10514-10523. [PMID: 35441631 DOI: 10.1039/d2cp00740a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viscosity is a fundamental physicochemical property of aerosol particles that influences chemical evolution, mass transfer rates, particle formation, etc. and also changes with ambient relative humidity (RH). However, the viscosity of real individual aerosol particles still remains less understood. Here, we developed a novel optical system based on dual optical tweezers to measure the viscosity of single suspending aerosol droplets under different RH conditions. In our experiment, a pair of quasi atmospheric aerosol droplets composed of organic and inorganic chemical substances were trapped and levitated by dual laser beams, respectively, and then collided and coalesced. The backscattering light signals and bright-field images of the dynamic coalescence process were recorded to infer the morphological relaxation time and the diameter of the composited droplet. Then, the viscosity of the droplet was calculated based on these measured values. The ambient RH of the aerosol droplets was controlled by varying the relative flow rates of dry and humidified nitrogen gas in a self-developed aerosol chamber. The viscosities of single aqueous droplets nebulized with solutes of sucrose, various sulfates and nitrates, and organic/inorganic mixtures were measured over the atmospheric RH range. Besides, the viscosities of the proxies of actual ambient aerosols in Beijing were investigated, which reasonably interpreted the aerosol chemistry transforming from sulfate dominating to nitrate dominating at the PM10 (particulate matter with an aerodynamic diameter of less than 10 μm) level in the last decade in Beijing. Furthermore, the hygroscopicity of droplets with a solute of organic/inorganic mixtures was researched to obtain a deep insight into the relationship between the viscosity and mass transfer process. Hence, we provide a robust approach for investigating the viscosity and hygroscopicity of the actual individual liquid PM10 aerosols.
Collapse
Affiliation(s)
- Yu-Kai Tong
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Yaoyao Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Xiangxinyue Meng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jie Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Dongping Zhao
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Anpei Ye
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Chang YP, Devi Y, Chen CH. Micro-droplet Trapping and Manipulation: Understanding Aerosol Better for a Healthier Environment. Chem Asian J 2021; 16:1644-1660. [PMID: 33999498 DOI: 10.1002/asia.202100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Indexed: 11/09/2022]
Abstract
Understanding the physicochemical properties and heterogeneous processes of aerosols is key not only to elucidate the impacts of aerosols on the atmosphere and humans but also to exploit their further applications, especially for a healthier environment. Experiments that allow for spatially control of single aerosol particles and investigations on the fundamental properties and heterogeneous chemistry at the single-particle level have flourished during the last few decades, and significant breakthroughs in recent years promise better control and novel applications aimed at resolving key issues in aerosol science. Here we propose graphene oxide (GO) aerosols as prototype aerosols containing polycyclic aromatic hydrocarbons, and GO can behave as two-dimensional surfactants which could modify the interfacial properties of aerosols. We describe the techniques of trapping single particles and furthermore the current status of the optical spectroscopy and chemistry of GO. The current applications of these single-particle trapping techniques are summarized and interesting future applications of GO aerosols are discussed.
Collapse
Affiliation(s)
- Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan.,Aerosol Science Research Center, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Yanita Devi
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| | - Chun-Hu Chen
- Department of Chemistry, National Sun Yat-sen University, No. 70 Lien-hai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
6
|
Chang YP, Wu SJ, Lin MS, Chiang CY, Huang GG. Ionic-strength and pH dependent reactivities of ascorbic acid toward ozone in aqueous micro-droplets studied using aerosol optical tweezers. Phys Chem Chem Phys 2021; 23:10108-10117. [PMID: 33876156 DOI: 10.1039/d0cp06493a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The heterogeneous oxidation reaction of single aqueous ascorbic acid (AH2) aerosol particles with gas-phase ozone was investigated in this study utilizing aerosol optical tweezers with Raman spectroscopy. The measured liquid-phase bimolecular rate coefficients of the AH2 + O3 reaction exhibit a significant pH dependence, and the corresponding values at ionic strength 0.2 M are (3.1 ± 2.0) × 105 M-1 s-1 and (1.2 ± 0.6) × 107 M-1 s-1 for pH ≈ 2 and 6, respectively. These results measured in micron-sized droplets are in agreement with those from previous bulk measurements, indicating that the observed aerosol reaction kinetics can be solely explained by liquid phase diffusion and AH2 + O3 reaction. Furthermore, the results indicate that high ionic strengths could enhance the liquid-phase rate coefficients of the AH2 + O3 reaction. The results also exhibit a negative ozone pressure dependence that can be rationalized in terms of a Langmuir-Hinshelwood type mechanism for the heterogeneous oxidation of AH2 aerosol particles by gas-phase ozone. The results of the present work imply that in acidified airway-lining fluids the antioxidant ability of AH2 against atmospheric ozone will be significantly suppressed.
Collapse
Affiliation(s)
- Yuan-Pin Chang
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | | | | | | | | |
Collapse
|
7
|
Nakajima R, Miura A, Abe S, Kitamura N. Optical Trapping-Polarized Raman Microspectroscopy of Single Ethanol Aerosol Microdroplets: Droplet Size Effects on Rotational Relaxation Time and Viscosity. Anal Chem 2021; 93:5218-5224. [PMID: 33724784 DOI: 10.1021/acs.analchem.0c05406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Optical trapping-polarized Raman microspectroscopy of single ethanol (EtOH) microdroplets with a diameter (d) of 6.1-16.5 μm levitated in an EtOH vapor-saturated air/N2 gas atmosphere has been explored to elucidate the vibrational and rotational motions of EtOH in the droplets at 22.0 °C. The Raman spectral bandwidth of the C-C stretching vibrational mode observed for an aerosol EtOH microdroplet was narrower than that of bulk EtOH, suggesting that the vibrational/rotational motions of EtOH in the aerosol system were restricted compared to those in the bulk system. In practice, polarized Raman microspectroscopy demonstrated that the rotational relaxation time (τrot) of EtOH in an aerosol microdroplet with d = 16. 5 μm was slower (2.33 ps) than that in a bulk EtOH (1.65 ps), while the vibrational relaxation times (τvib) in the aerosol and bulk EtOH systems were almost comparable with one another: 0.86-0.98 ps. Furthermore, although the τvib value of an aerosol EtOH microdroplet was almost unchanged irrespective of d as described above, the τrot value increased from 2.33 to 3.57 ps with a decrease in d from 16.5 to 6.1 μm, which corresponded to the increase in EtOH viscosity (η) from 1.33 to 2.04 cP with the decrease in d. The droplet size dependences of τrot and η in an aerosol EtOH microdroplet were discussed in terms of the gas/droplet interfacial molecular arrangements of EtOH and Laplace pressure experienced by a spherical EtOH microdroplet in the gas phase.
Collapse
Affiliation(s)
- Ryosuke Nakajima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Miura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Department of Chemical Sciences and Engineering, Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Sayaka Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noboru Kitamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
8
|
Martin-Fernandez ML. A brief history of the octopus imaging facility to celebrate its 10th anniversary. J Microsc 2020; 281:3-15. [PMID: 33111321 DOI: 10.1111/jmi.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/27/2022]
Abstract
Octopus (Optics Clustered to OutPut Unique Solutions) celebrated in June 2020 its 10th birthday. Based at Harwell, near Oxford, Octopus is an open access, peer reviewed, national imaging facility that offers successful U.K. applicants supported access to single molecule imaging, confocal microscopy, several flavours of superresolution imaging, light sheet microscopy, optical trapping and cryoscanning electron microscopy. Managed by a multidisciplinary team, Octopus has so far assisted >100 groups of U.K. and international researchers. Cross-fertilisation across fields proved to be a strong propeller of success underpinned by combining access to top-end instrumentation with a strong programme of imaging hardware and software developments. How Octopus was born, and highlights of the multidisciplinary output produced during its 10-year journey are reviewed below, with the aim of celebrating a myriad of collaborations with the U.K. scientific community, and reflecting on their scientific and societal impact.
Collapse
Affiliation(s)
- M L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, U.K
| |
Collapse
|
9
|
Miura A, Nakajima R, Abe S, Kitamura N. Optical Trapping–Microspectroscopy of Single Aerosol Microdroplets in Air: Supercooling of Dimethylsulfoxide Microdroplets. J Phys Chem A 2020; 124:9035-9043. [DOI: 10.1021/acs.jpca.0c06179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Atsushi Miura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Ryosuke Nakajima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Sayaka Abe
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Noboru Kitamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Toyota Physical and Chemical Research Institute, Nagakute 480-1192, Aichi, Japan
| |
Collapse
|
10
|
Petters M, Kasparoglu S. Predicting the influence of particle size on the glass transition temperature and viscosity of secondary organic material. Sci Rep 2020; 10:15170. [PMID: 32938963 PMCID: PMC7495436 DOI: 10.1038/s41598-020-71490-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/10/2020] [Indexed: 11/15/2022] Open
Abstract
Atmospheric aerosols can assume liquid, amorphous semi-solid or glassy, and crystalline phase states. Particle phase state plays a critical role in understanding and predicting aerosol impacts on human health, visibility, cloud formation, and climate. Melting point depression increases with decreasing particle diameter and is predicted by the Gibbs-Thompson relationship. This work reviews existing data on the melting point depression to constrain a simple parameterization of the process. The parameter [Formula: see text] describes the degree to which particle size lowers the melting point and is found to vary between 300 and 1800 K nm for a wide range of particle compositions. The parameterization is used together with existing frameworks for modeling the temperature and RH dependence of viscosity to predict the influence of particle size on the glass transition temperature and viscosity of secondary organic aerosol formed from the oxidation of [Formula: see text]-pinene. Literature data are broadly consistent with the predictions. The model predicts a sharp decrease in viscosity for particles less than 100 nm in diameter. It is computationally efficient and suitable for inclusion in models to evaluate the potential influence of the phase change on atmospheric processes. New experimental data of the size-dependence of particle viscosity for atmospheric aerosol mimics are needed to thoroughly validate the predictions.
Collapse
Affiliation(s)
- Markus Petters
- Department of Marine, Earth, and Atmospheric Sciences, NC State University, Raleigh, 27695-8208, USA.
| | - Sabin Kasparoglu
- Department of Marine, Earth, and Atmospheric Sciences, NC State University, Raleigh, 27695-8208, USA
| |
Collapse
|
11
|
Davidson NM, Gallimore PJ, Bateman B, Ward AD, Botchway SW, Kalberer M, Kuimova MK, Pope FD. Measurement of the fluorescence lifetime of GFP in high refractive index levitated droplets using FLIM. Phys Chem Chem Phys 2020; 22:14704-14711. [PMID: 32573569 DOI: 10.1039/c9cp06395a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Green fluorescent protein (GFP) is a widely used fluorescent probe in the life sciences and biosciences due to its high quantum yield and extinction coefficient, and its ability to bind to biological systems of interest. This study measures the fluorescence lifetime of GFP in sucrose/water solutions of known molarity in order to determine the refractive index dependent lifetime of GFP. A range of refractive indices from 1.43-1.53 were probed by levitating micron sized droplets composed of water/sucrose/GFP in an optical trap under well-constrained conditions of relative humidity. This setup allows for the first reported measurements of the fluorescence lifetime of GFP at refractive indices greater than 1.46. The results obtained at refractive indices less than 1.46 show good agreement with previous studies. Further experiments that trapped droplets of deionised water containing GFP allowed the hygroscopic properties of GFP to be measured. GFP is found to be mildly hygroscopic by mass, but the high ratio of molecular masses of GFP to water (ca. 1500 : 1) signifies that water uptake is large on a per-mole basis. Hygroscopic properties are verified using brightfield microscope imaging, of GFP droplets at low and high relative humidity, by measuring the humidity dependent droplet size. In addition, this experiment allowed the refractive index of pure GFP to be estimated for the first time (1.72 ± 0.07). This work provides reference data for future experiments involving GFP, especially for those conducted in high refractive index media. The work also demonstrates that GFP can be used as a probe for aerosol studies, which require determination of the refractive index of the aerosol of any shape.
Collapse
Affiliation(s)
- N M Davidson
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Enhancing Double-Beam Laser Tweezers Raman Spectroscopy (LTRS) for the Photochemical Study of Individual Airborne Microdroplets. Molecules 2019; 24:molecules24183325. [PMID: 31547361 PMCID: PMC6766935 DOI: 10.3390/molecules24183325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/23/2022] Open
Abstract
A new device and methodology for vertically coupling confocal Raman microscopy with optical tweezers for the in situ physico- and photochemical studies of individual microdroplets (Ø ≤ 10 µm) levitated in air is presented. The coupling expands the spectrum of studies performed with individual particles using laser tweezers Raman spectroscopy (LTRS) to photochemical processes and spatially resolved Raman microspectroscopy on airborne aerosols. This is the first study to demonstrate photochemical studies and Raman mapping on optically levitated droplets. By using this configuration, photochemical reactions in aerosols of atmospheric interest can be studied on a laboratory scale under realistic conditions of gas-phase composition and relative humidity. Likewise, the distribution of photoproducts within the drop can also be observed with this setup. The applicability of the coupling system was tested by studying the photochemical behavior of microdroplets (5 µm < Ø < 8 µm) containing an aqueous solution of sodium nitrate levitated in air and exposed to narrowed UV radiation (254 ± 25 nm). Photolysis of the levitated NaNO3 microdroplets presented photochemical kinetic differences in comparison with larger NaNO3 droplets (40 µm < Ø < 80 µm), previously photolyzed using acoustic traps, and heterogeneity in the distribution of the photoproducts within the drop.
Collapse
|
13
|
Wu W, Guan R, Liao X, Yan X, Rees TW, Ji L, Chao H. Bimodal Visualization of Endogenous Nitric Oxide in Lysosomes with a Two-Photon Iridium(III) Phosphorescent Probe. Anal Chem 2019; 91:10266-10272. [PMID: 31291720 DOI: 10.1021/acs.analchem.9b02415] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is a fundamental signaling molecule that shows complex effects on the catabolic autophagy process, which is closely linked with lysosomal function. In this study, a new lysosome-targeted, pH-independent, and two-photon phosphorescent iridium(III) complex, Ir-BPDA, has been investigated for endogenous NO detection and imaging. The rational design of the probe, as the addition of the morpholine moieties and the substitution of a benzyl group in the amino group in Ir-BPDA, facilitates its accumulation in lysosomes and makes the reaction product with NO, Ir-BPDA-NO, insusceptible in its phosphorescence intensity and lifetime against pH changes (pH 4-10), well suited for lysosomal NO detection (pH 4-6). Furthermore, Ir-BPDA exhibits a fast and 50-fold response to NO in phosphorescence intensity and a two-photon cross-section as high as 60 GM after the reaction, as well as a notably increased phosphorescence lifetime from 200.1 to 619.6 ns. Thus, accompanied by its photostability, Ir-BPDA enabled the detection of NO in the lipopolysaccharide-stimulated macrophages and zebrafish model, revealing the endogenous lysosomal NO distribution during inflammation in vivo by means of both TPM and PLIM imaging techniques.
Collapse
Affiliation(s)
- Weijun Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Xu Yan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
14
|
Huang Z, Huang Y, Ma C, Ma X, Zhang X, Lin L, Zhao Z, Pan X, Wu C. Endotracheal Aerosolization Device for Laboratory Investigation of Pulmonary Delivery of Nanoparticle Suspensions: In Vitro and in Vivo Validation. Mol Pharm 2018; 15:5521-5533. [PMID: 30252486 DOI: 10.1021/acs.molpharmaceut.8b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The objective of this study was to perform the in vitro and in vivo validation of an endotracheal aerosolization (ETA) device (HRH MAG-4, HM). Solid lipid nanoparticle suspension (SLNS) formulations with particle sizes of approximately 120, 240, 360, and 480 nm were selected as model nanoparticle suspensions for the validation. The emission rate (ER) of the in vitro aerosolization and the influence of aerosolization on the physicochemical properties were investigated. A high ER of up to 90% was obtained, and no significant alterations in physicochemical properties were observed after the aerosolization. The pulmonary deposition of model drug budesonide in Sprague-Dawley rats was determined to be approximately 80%, which was satisfactory for pulmonary delivery. Additionally, a fluorescent probe with aggregation-caused quenching property was encapsulated in SLNS formulations for in vivo bioimaging, after excluding the effect of aerosolization on its fluorescence spectrum. It was verified that SLNS formulations were deposited in the lung region. The results demonstrated the feasibility and reliability of the HM device for ETA in laboratory investigation.
Collapse
Affiliation(s)
- Zhengwei Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ying Huang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Cheng Ma
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xiangyu Ma
- College of Pharmacy , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Xuejuan Zhang
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China.,Institute for Biomedical and Pharmaceutical Sciences , Guangdong University of Technology , Guangzhou 510006 , P.R. China
| | - Ling Lin
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Ziyu Zhao
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Xin Pan
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| | - Chuanbin Wu
- School of Pharmaceutical Sciences , Sun Yat-Sen University , Guangzhou , 510006 Guangdong , P. R. China
| |
Collapse
|
15
|
Gallimore PJ, Davidson NM, Kalberer M, Pope FD, Ward AD. 1064 nm Dispersive Raman Microspectroscopy and Optical Trapping of Pharmaceutical Aerosols. Anal Chem 2018; 90:8838-8844. [PMID: 29956916 DOI: 10.1021/acs.analchem.8b00817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy is a powerful tool for investigating chemical composition. Coupling Raman spectroscopy with optical microscopy (Raman microspectroscopy) and optical trapping (Raman tweezers) allows microscopic length scales and, hence, femtolitre volumes to be probed. Raman microspectroscopy typically uses UV/visible excitation lasers, but many samples, including organic molecules and complex tissue samples, fluoresce strongly at these wavelengths. Here we report the development and application of dispersive Raman microspectroscopy designed around a near-infrared continuous wave 1064 nm excitation light source. We analyze microparticles (1-5 μm diameter) composed of polystyrene latex and from three real-world pressurized metered dose inhalers (pMDIs) used in the treatment of asthma: salmeterol xinafoate (Serevent), salbutamol sulfate (Salamol), and ciclesonide (Alvesco). For the first time, single particles are captured, optically levitated, and analyzed using the same 1064 nm laser, which permits a convenient nondestructive chemical analysis of the true aerosol phase. We show that particles exhibiting overwhelming fluorescence using a visible laser (514.5 nm) can be successfully analyzed with 1064 nm excitation, irrespective of sample composition and irradiation time. Spectra are acquired rapidly (1-5 min) with a wavelength resolution of 2 nm over a wide wavenumber range (500-3100 cm-1). This is despite the microscopic sample size and low Raman scattering efficiency at 1064 nm. Spectra of individual pMDI particles compare well to bulk samples, and the Serevent pMDI delivers the thermodynamically preferred crystal form of salmeterol xinafoate. 1064 nm dispersive Raman microspectroscopy is a promising technique that could see diverse applications for samples where fluorescence-free characterization is required with high spatial resolution.
Collapse
Affiliation(s)
- Peter J Gallimore
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , United Kingdom
| | - Nick M Davidson
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , B15 2TT , United Kingdom
| | - Markus Kalberer
- Department of Chemistry , University of Cambridge , Cambridge , CB2 1EW , United Kingdom
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences , University of Birmingham , Birmingham , B15 2TT , United Kingdom
| | - Andrew D Ward
- Central Laser Facility, Research Complex at Harwell , Rutherford Appleton Laboratory , Didcot , OX11 0FA , United Kingdom
| |
Collapse
|
16
|
Reid JP, Bertram AK, Topping DO, Laskin A, Martin ST, Petters MD, Pope FD, Rovelli G. The viscosity of atmospherically relevant organic particles. Nat Commun 2018; 9:956. [PMID: 29511168 PMCID: PMC5840428 DOI: 10.1038/s41467-018-03027-z] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
The importance of organic aerosol particles in the environment has been long established, influencing cloud formation and lifetime, absorbing and scattering sunlight, affecting atmospheric composition and impacting on human health. Conventionally, ambient organic particles were considered to exist as liquids. Recent observations in field measurements and studies in the laboratory suggest that they may instead exist as highly viscous semi-solids or amorphous glassy solids under certain conditions, with important implications for atmospheric chemistry, climate and air quality. This review explores our understanding of aerosol particle phase, particularly as identified by measurements of the viscosity of organic particles, and the atmospheric implications of phase state.
Collapse
Affiliation(s)
- Jonathan P Reid
- School of Chemistry, University of Bristol, Manchester, BS8 1TS, UK.
| | - Allan K Bertram
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - David O Topping
- School of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, UK
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Markus D Petters
- Department of Marine Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis D Pope
- School of Geography, Earth and Environmental Sciences, University of Birmingham Edgbaston, Birmingham, B15 2TT, UK
| | - Grazia Rovelli
- School of Chemistry, University of Bristol, Manchester, BS8 1TS, UK
| |
Collapse
|
17
|
Marsh A, Petters SS, Rothfuss NE, Rovelli G, Song YC, Reid JP, Petters MD. Amorphous phase state diagrams and viscosity of ternary aqueous organic/organic and inorganic/organic mixtures. Phys Chem Chem Phys 2018; 20:15086-15097. [PMID: 29796502 DOI: 10.1039/c8cp00760h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Dimer Coagulation, Isolation and Coalescence (DCIC) technique is used to probe the phase behaviour and glass transition temperatures of ternary aerosol mixtures.
Collapse
Affiliation(s)
| | - Sarah Suda Petters
- Department of Atmospheric Science
- Colorado State University
- Fort Collins
- USA
| | | | | | | | | | - Markus Dirk Petters
- Department of Marine
- Earth, and Atmospheric Sciences
- North Carolina State University
- Raleigh
- USA
| |
Collapse
|
18
|
Song YC, Haddrell AE, Bzdek BR, Reid JP, Bannan T, Topping DO, Percival C, Cai C. Measurements and Predictions of Binary Component Aerosol Particle Viscosity. J Phys Chem A 2016; 120:8123-8137. [DOI: 10.1021/acs.jpca.6b07835] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young Chul Song
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Allen E. Haddrell
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Bryan R. Bzdek
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Jonathan P. Reid
- School
of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Thomas Bannan
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - David O. Topping
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
- National
Centre for Atmospheric Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Carl Percival
- School
of Earth, Atmospheric and Environmental Science, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Chen Cai
- The
Institute of Chemical Physics, Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
| |
Collapse
|
19
|
Athanasiadis A, Fitzgerald C, Davidson NM, Giorio C, Botchway SW, Ward AD, Kalberer M, Pope FD, Kuimova MK. Dynamic viscosity mapping of the oxidation of squalene aerosol particles. Phys Chem Chem Phys 2016; 18:30385-30393. [DOI: 10.1039/c6cp05674a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The microscopic viscosity of squalene-based organic aerosol undergoing atmospherically relevant oxidation is investigated.
Collapse
Affiliation(s)
| | | | - Nicholas M. Davidson
- School of Geography
- Earth and Environmental Science
- University of Birmingham
- Edgbaston
- UK
| | - Chiara Giorio
- Department of Chemistry
- University of Cambridge
- Cambridge
- UK
| | - Stanley W. Botchway
- Central Laser Facility
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Oxon OX11 0QX
- UK
| | - Andrew D. Ward
- Central Laser Facility
- Research Complex at Harwell
- Rutherford Appleton Laboratory
- Oxon OX11 0QX
- UK
| | | | - Francis D. Pope
- School of Geography
- Earth and Environmental Science
- University of Birmingham
- Edgbaston
- UK
| | | |
Collapse
|