1
|
Abalymov AA, Anisimov RA, Demina PA, Kildisheva VA, Kalinova AE, Serdobintsev AA, Novikova NG, Petrenko DB, Sadovnikov AV, Voronin DV, Lomova MV. Time-Delayed Anticancer Effect of an Extremely Low Frequency Alternating Magnetic Field and Multimodal Protein-Tannin-Mitoxantrone Carriers with Brillouin Microspectroscopy Visualization In Vitro. Biomedicines 2024; 12:443. [PMID: 38398045 PMCID: PMC10887239 DOI: 10.3390/biomedicines12020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The effect of an extremely low frequency alternating magnetic field (ELF AMF) at frequencies of 17, 48, and 95 Hz at 100 mT on free and internalized 4T1 breast cancer cell submicron magnetic mineral carriers with an anticancer drug, mitoxantrone, was shown. The alternating magnetic field (100 mT; 17, 48, 95 Hz; time of treatment-10.5 min with a 30 s delay) does not lead to the significant destruction of carrier shells and release of mitoxantrone or bovine serum albumin from them according to the data of spectrophotometry, or the heating of carriers in the process of exposure to magnetic fields. The most optimal set of factors that would lead to the suppression of proliferation and survival of cells with anticancer drug carriers on the third day (in comparison with the control and first day) is exposure to an alternating magnetic field of 100 mT in a pulsed mode with a frequency of 95 Hz. The presence of magnetic nanocarriers in cell lines was carried out by a direct label-free method, space-resolved Brillouin light scattering (BLS) spectrometry, which was realized for the first time. The analysis of the series of integrated BLS spectra showed an increase in the magnetic phase in cells with a growth in the number of particles per cell (from 10 to 100) after their internalization. The safety of magnetic carriers in the release of their constituent ions has been evaluated using atomic absorption spectrometry.
Collapse
Affiliation(s)
- Anatolii A. Abalymov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Roman A. Anisimov
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Polina A. Demina
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
- Institute of Chemistry, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Veronika A. Kildisheva
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexandra E. Kalinova
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Alexey A. Serdobintsev
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Nadezhda G. Novikova
- Institute of Comprehensive Exploitation, Mineral Resources Russian Academy of Sciences, Moscow 111020, Russia
- The Core Shared Research Facility “Industrial Biotechnologies”, Aleksei Nikolayevich Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Dmitry B. Petrenko
- Geological Institute, Russian Academy of Sciences, Moscow 119017, Russia
- Faculty of Natural Sciences, Department of Theoretical and Applied Chemistry, Federal State University of Education, Mytischi 141014, Russia
| | - Alexandr V. Sadovnikov
- Institute of Physics, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| | - Denis V. Voronin
- Department of Physical and Colloid Chemistry, National University of Oil and Gas “Gubkin University”, Moscow 119991, Russia
| | - Maria V. Lomova
- Science Medical Centre, Saratov State University, 83 Astrakhanskayast, Saratov 410012, Russia
| |
Collapse
|
2
|
Kolmanovich DD, Chukavin NN, Savintseva IV, Mysina EA, Popova NR, Baranchikov AE, Sozarukova MM, Ivanov VK, Popov AL. Hybrid Polyelectrolyte Capsules Loaded with Gadolinium-Doped Cerium Oxide Nanoparticles as a Biocompatible MRI Agent for Theranostic Applications. Polymers (Basel) 2023; 15:3840. [PMID: 37765694 PMCID: PMC10536467 DOI: 10.3390/polym15183840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Layer-by-layer (LbL) self-assembled polyelectrolyte capsules have demonstrated their unique advantages and capability in drug delivery applications. These ordered micro/nanostructures are also promising candidates as imaging contrast agents for diagnostic and theranostic applications. Magnetic resonance imaging (MRI), one of the most powerful clinical imaging modalities, is moving forward to the molecular imaging field and requires advanced imaging probes. This paper reports on a new design of MRI-visible LbL capsules, loaded with redox-active gadolinium-doped cerium oxide nanoparticles (CeGdO2-x NPs). CeGdO2-x NPs possess an ultrasmall size, high colloidal stability, and pronounced antioxidant properties. A comprehensive analysis of LbL capsules by TEM, SEM, LCSM, and EDX techniques was carried out. The research demonstrated a high level of biocompatibility and cellular uptake efficiency of CeGdO2-x-loaded capsules by cancer (human osteosarcoma and adenocarcinoma) cells and normal (human mesenchymal stem) cells. The LbL-based delivery platform can also be used for other imaging modalities and theranostic applications.
Collapse
Affiliation(s)
- Danil D. Kolmanovich
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Irina V. Savintseva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Elena A. Mysina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nelli R. Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
3
|
Exploiting the layer-by-layer nanoarchitectonics for the fabrication of polymer capsules: A toolbox to provide multifunctional properties to target complex pathologies. Adv Colloid Interface Sci 2022; 304:102680. [PMID: 35468354 DOI: 10.1016/j.cis.2022.102680] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/12/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have attracted a great deal of attention for biomedical applications thanks to their tunable architecture. Compared to alternative methods, in which the precise control over the final properties of the systems is usually limited, the intrinsic versatility of the LbL approach allows the functionalization of all the constituents of the polymeric capsules following relatively simple protocols. In fact, the final properties of the capsules can be adjusted from the inner cavity to the outer layer through the polymeric shell, resulting in therapeutic, diagnostic, or theranostic (i.e., combination of therapeutic and diagnostic) agents that can be adapted to the particular characteristics of the patient and face the challenges encountered in complex pathologies. The biomedical industry demands novel biomaterials capable of targeting several mechanisms and/or cellular pathways simultaneously while being tracked by minimally invasive techniques, thus highlighting the need to shift from monofunctional to multifunctional polymer capsules. In the present review, those strategies that permit the advanced functionalization of polymer capsules are accordingly introduced. Each of the constituents of the capsule (i.e., cavity, multilayer membrane and outer layer) is thoroughly analyzed and a final overview of the combination of all the strategies toward the fabrication of multifunctional capsules is presented. Special emphasis is given to the potential biomedical applications of these multifunctional capsules, including particular examples of the performed in vitro and in vivo validation studies. Finally, the challenges in the fabrication process and the future perspective for their safe translation into the clinic are summarized.
Collapse
|
4
|
Novoselova M, Chernyshev VS, Schulga A, Konovalova EV, Chuprov-Netochin RN, Abakumova TO, German S, Shipunova VO, Mokrousov MD, Prikhozhdenko E, Bratashov DN, Nozdriukhin DV, Bogorodskiy A, Grishin O, Kosolobov SS, Khlebtsov BN, Inozemtseva O, Zatsepin TS, Deyev SM, Gorin DA. Effect of Surface Modification of Multifunctional Nanocomposite Drug Delivery Carriers with DARPin on Their Biodistribution In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2022; 5:2976-2989. [PMID: 35616387 DOI: 10.1021/acsabm.2c00289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a targeted drug delivery system for therapy and diagnostics that is based on a combination of contrasting, cytotoxic, and cancer-cell-targeting properties of multifunctional carriers. The system uses multilayered polymer microcapsules loaded with magnetite and doxorubicin. Loading of magnetite nanoparticles into the polymer shell by freezing-induced loading (FIL) allowed the loading efficiency to be increased 5-fold, compared with the widely used layer-by-layer (LBL) assembly. FIL also improved the photoacoustic signal and particle mobility in a magnetic field gradient, a result unachievable by the LBL alone. For targeted delivery of the carriers to cancer cells, the carrier surface was modified with a designed ankyrin repeat protein (DARPin) directed toward the epithelial cell adhesion molecule (EpCAM). Flow cytometry measurements showed that the DARPin-coated capsules specifically interacted with the surface of EpCAM-overexpressing human cancer cells such as MCF7. In vivo and ex vivo biodistribution studies in FvB mice showed that the carrier surface modification with DARPin changed the biodistribution of the capsules toward epithelial cells. In particular, the capsules accumulated substantially in the lungs─a result that can be effectively used in targeted lung cancer therapy. The results of this work may aid in the further development of the "magic bullet" concept and may bring the quality of personalized medicine to another level.
Collapse
Affiliation(s)
- Marina Novoselova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Alexey Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Elena V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Roman N Chuprov-Netochin
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Sergei German
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Institute of Spectroscopy of the Russian Academy of Sciences, Moscow 108840, Russia
| | - Victoria O Shipunova
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Maksim D Mokrousov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | | | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Daniil V Nozdriukhin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Andrey Bogorodskiy
- School of Biological and Medical Physics, Moscow Institute of Physics & Technology, Dolgoprudnyi, Moscow Region 141700, Russia
| | - Oleg Grishin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sergey S Kosolobov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| | - Boris N Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, Saratov 410049, Russia
| | - Olga Inozemtseva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia.,Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, Building 1, Moscow 121205, Russia
| |
Collapse
|
5
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
6
|
Degradation of Hybrid Drug Delivery Carriers with a Mineral Core and a Protein–Tannin Shell under Proteolytic Hydrolases. Biomimetics (Basel) 2022; 7:biomimetics7020061. [PMID: 35645188 PMCID: PMC9149959 DOI: 10.3390/biomimetics7020061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Hybrid carriers with the mineral CaCO3/Fe3O4 core and the protein–tannin shell are attractive for drug delivery applications due to reliable coupling of anticancer drugs with protein–tannin complex and the possibility of remote control over drug localization and delivery by the external magnetic field. This study aims to elucidate the mechanisms of drug release via enzymatic degradation of a protein–tannin carrier shell triggered by proteolytic hydrolases trypsin and pepsin under physiological conditions. To do this, the carriers were incubated with the enzyme solutions in special buffers to maintain the enzyme activity. The time-lapse spectrophotometric and electron microscopy measurements were carried out to evaluate the degradation of the carriers. It was established that the protein–tannin complex demonstrates the different degradation behavior depending on the enzyme type and buffer medium. The incubation in trypsin solution mostly resulted in the protein shell degradation. The incubation in pepsin solution did not affect the protein component; however, the citric buffer stimulates the degradation of the mineral core. The presented results allow for predicting the degradation pathways of the carriers including the release profile of the loaded cargo under physiological conditions. The viability of 4T1 breast cancer cells with mineral magnetic carriers with protein–tannin shells was investigated, and their movement in the fields of action of the permanent magnet was shown.
Collapse
|
7
|
Cvjetinovic J, Merdalimova AA, Kirsanova MA, Somov PA, Nozdriukhin DV, Salimon AI, Korsunsky AM, Gorin DA. A SERS platform based on diatomite modified by gold nanoparticles using a combination of layer-by-layer assembly and a freezing-induced loading method. Phys Chem Chem Phys 2022; 24:8901-8912. [PMID: 35363241 DOI: 10.1039/d2cp00647b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Siliceous diatom frustules represent an up-and-coming platform for a range of bio-assisted nanofabrication processes able to overcome the complexity and high cost of current engineering technology solutions in terms of negligibly small power consumption and environmentally friendly processing combined with unique highly porous structures and properties. Herein, the modification of diatomite - a soft, loose, and fine-grained siliceous sedimentary rock composed of the remains of fossilized diatoms - with gold nanoparticles using layer-by-layer technology in combination with a freezing-induced loading approach is demonstrated. The obtained composite structures are characterized by dynamic light scattering, extinction spectroscopy, scanning (SEM) and transmission electron microscopy (TEM), and photoacoustic imaging techniques, and tested as a platform for surface-enhanced Raman scattering (SERS) using Rhodamine 6G. SEM, TEM, and energy dispersive X-ray spectroscopy (EDX) confirmed a dense coating of gold nanoparticles with an average size of 19 nm on the surface of the diatomite and within the pores. The photoacoustic signal excited at a wavelength of 532 nm increases with increasing loading cycles of up to three polyelectrolyte-gold nanoparticle bilayers. The hybrid materials based on diatomite modified with gold nanoparticles can be used as SERS substrates, but also as biosensors, catalysts, and platforms for advanced bioimaging.
Collapse
Affiliation(s)
- Julijana Cvjetinovic
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Anastasiia A Merdalimova
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Maria A Kirsanova
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Pavel A Somov
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | - Daniil V Nozdriukhin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| | - Alexey I Salimon
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia
| | | | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, 3 Nobel Str., Moscow, 121205, Russia.
| |
Collapse
|
8
|
Kurochkin MA, German SV, Abalymov A, Vorontsov DА, Gorin DA, Novoselova MV. Sentinel lymph node detection by combining nonradioactive techniques with contrast agents: State of the art and prospects. JOURNAL OF BIOPHOTONICS 2022; 15:e202100149. [PMID: 34514735 DOI: 10.1002/jbio.202100149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/21/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The status of sentinel lymph nodes (SLNs) has a substantial prognostic value because these nodes are the first place where cancer cells accumulate along their spreading route. Routine SLN biopsy ("gold standard") involves peritumoral injections of radiopharmaceuticals, such as technetium-99m, which has obvious disadvantages. This review examines the methods used as "gold standard" analogs to diagnose SLNs. Nonradioactive preoperative and intraoperative methods of SLN detection are analyzed. Promising photonic tools for SLNs detection are reviewed, including NIR-I/NIR-II fluorescence imaging, photoswitching dyes for SLN detection, in vivo photoacoustic detection, imaging and biopsy of SLNs. Also are discussed methods of SLN detection by magnetic resonance imaging, ultrasonic imaging systems including as combined with photoacoustic imaging, and methods based on the magnetometer-aided detection of superparamagnetic nanoparticles. The advantages and disadvantages of nonradioactive SLN-detection methods are shown. The review concludes with prospects for the use of conservative diagnostic methods in combination with photonic tools.
Collapse
Affiliation(s)
| | - Sergey V German
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute of Spectroscopy of the Russian Academy of Sciences, Moscow, Russia
| | | | - Dmitry А Vorontsov
- State Budgetary Institution of Health Care of Nizhny Novgorod "Nizhny Novgorod Regional Clinical Oncological Dispensary", Nizhny Novgorod, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | | |
Collapse
|
9
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
10
|
Marin E, Tiwari N, Calderón M, Sarasua JR, Larrañaga A. Smart Layer-by-Layer Polymeric Microreactors: pH-Triggered Drug Release and Attenuation of Cellular Oxidative Stress as Prospective Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18511-18524. [PMID: 33861060 PMCID: PMC9161222 DOI: 10.1021/acsami.1c01450] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/02/2021] [Indexed: 05/06/2023]
Abstract
Polymer capsules fabricated via the layer-by-layer (LbL) approach have emerged as promising biomedical systems for the release of a wide variety of therapeutic agents, owing to their tunable and controllable structure and the possibility to include several functionalities in the polymeric membrane during the fabrication process. However, the limitation of the capsules with a single functionality to overcome the challenges involved in the treatment of complex pathologies denotes the need to develop multifunctional capsules capable of targeting several mediators and/or mechanisms. Oxidative stress is caused by the accumulation of reactive oxygen species [e.g., hydrogen peroxide (H2O2), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-)] in the cellular microenvironment and is a key modulator in the pathology of a broad range of inflammatory diseases. The disease microenvironment is also characterized by the presence of proinflammatory cytokines, increased levels of matrix metalloproteinases, and acidic pH, all of which could be exploited to trigger the release of therapeutic agents. In the present work, multifunctional capsules were fabricated via the LbL approach. Capsules were loaded with an antioxidant enzyme (catalase) and functionalized with a model drug (doxorubicin), which was conjugated to an amine-containing dendritic polyglycerol through a pH-responsive linker. These capsules efficiently scavenge H2O2 from solution, protecting cells from oxidative stress, and release the model drug in acidic microenvironments. Accordingly, in this work, a polymeric microplatform is presented as an unexplored combinatorial approach applicable for multiple targets of inflammatory diseases, in order to perform controlled spatiotemporal enzymatic reactions and drug release in response to biologically relevant stimuli.
Collapse
Affiliation(s)
- Edurne Marin
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Neha Tiwari
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
| | - Marcelo Calderón
- POLYMAT,
Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jose-Ramon Sarasua
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| | - Aitor Larrañaga
- Department
of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Faculty
of Engineering in Bilbao, University of
the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
11
|
Svenskaya Y, Garello F, Lengert E, Kozlova A, Verkhovskii R, Bitonto V, Ruggiero MR, German S, Gorin D, Terreno E. Biodegradable polyelectrolyte/magnetite capsules for MR imaging and magnetic targeting of tumors. Nanotheranostics 2021; 5:362-377. [PMID: 33850694 PMCID: PMC8040826 DOI: 10.7150/ntno.59458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Rationale: The tireless research for effective drug delivery approaches is prompted by poor target tissue penetration and limited selectivity against diseased cells. To overcome these issues, various nano- and micro-carriers have been developed so far, but some of them are characterized by slow degradation time, thus hampering repeated drug administrations. The aim of this study was to pursue a selective delivery of magnetic biodegradable polyelectrolyte capsules in a mouse breast cancer model, using an external magnetic field. Methods: Four different kinds of magnetic polyelectrolyte capsules were fabricated via layer-by-layer assembly of biodegradable polymers on calcium carbonate templates. Magnetite nanoparticles were embedded either into the capsules' shell (sample S) or both into the shell and the inner volume of the capsules (samples CnS, where n is the number of nanoparticle loading cycles). Samples were first characterized in terms of their relaxometric and photosedimentometric properties. In vitro magnetic resonance imaging (MRI) experiments, carried out on RAW 264.7 cells, allowed the selection of two lead samples that proceeded for the in vivo testing on a mouse breast cancer model. In the set of in vivo experiments, an external magnet was applied for 1 hour following the intravenous injection of the capsules to improve their delivery to tumor, and MRI scans were acquired at different time points post administration. Results: All samples were considered non-cytotoxic as they provided more than 76% viability of RAW 264.7 cells upon 2 h incubation. Sample S appeared to be the most efficient in terms of T2-MRI contrast, but the less sensitive to external magnet navigation, since no difference in MRI signal with and without the magnet was observed. On the other side, sample C6S was efficiently delivered to the tumor tissue, with a three-fold T2-MRI contrast enhancement upon the external magnet application. The effective magnetic targeting of C6S capsules was also confirmed by the reduction in T2-MRI contrast in spleen if compared with the untreated with magnet mice values, and the presence of dense and clustered iron aggregates in tumor histology sections even 48 h after the magnetic targeting. Conclusion: The highlighted strategy of magnetic biodegradable polyelectrolyte capsules' design allows for the development of an efficient drug delivery system, which through an MRI-guided externally controlled navigation may lead to a significant improvement of the anticancer chemotherapy performance.
Collapse
Affiliation(s)
- Yulia Svenskaya
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Francesca Garello
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Ekaterina Lengert
- Remote Controlled Systems for Theranostics laboratory, Research and Educational Institute of Nanostructures and Biosystems, Saratov State University, 410012 Saratov, Russia
| | - Anastasiia Kozlova
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Roman Verkhovskii
- Biomedical Photoacoustics Laboratory, Saratov State University, 410012 Saratov, Russia
| | - Valeria Bitonto
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Maria Rosaria Ruggiero
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sergey German
- Laboratory of Optics and Spectroscopy of Nanoobjects, Institute of Spectroscopy of the RAS, Troitsk 108840, Russia.,Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Dmitry Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Enzo Terreno
- Molecular and Preclinical Imaging Centres, Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
12
|
Borbora A, Manna U. Impact of chemistry on the preparation and post-modification of multilayered hollow microcapsules. Chem Commun (Camb) 2021; 57:2110-2123. [PMID: 33587065 DOI: 10.1039/d0cc06917e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few years, various chemical bondings and interactions were rationally adopted to develop different multilayered microcapsules, where the empty interior accommodated various important cargoes, including bioactive molecules, nanoparticles, antibodies, enzymes, etc., and the thin membrane protected/controlled the release of the loaded cargo. Eventually, such materials are with immense potential for a wide range of prospective applications related to targeted drug delivery, sensing, bio-imaging, developing biomimetic microreactors, and so on. The emphasis on the use of various chemistries for the development of functional and useful microcapsules is rarely illustrated in the literature in the past. In this feature article, the rational uses of different chemistries for (a) preparing and (b) post-modifying various functional microcapsules are accounted. The appropriate selection of chemical bondings/interactions, including electrostatic interaction, host-guest interaction, hydrogen bonding, and covalent bonding, allowed the integration of essential constituents during the layer-by-layer deposition process for 'in situ' tailoring of the relevant and diverse properties of the hollow microcapsules. Recently, different chemically reactive hollow microcapsules were also introduced through the strategic association of 'click chemistry', ring-opening azlactone reaction, thiol-ene reaction, and 1,4-conjugate addition reaction for facile and desired post covalent modifications of the multilayer membrane. The strategic selection of chemistry remained as the key basis to synthesize smart and useful microcapsules.
Collapse
Affiliation(s)
- Angana Borbora
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India and Centre for Nanotechnology, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
13
|
Novoselova MV, German SV, Abakumova TO, Perevoschikov SV, Sergeeva OV, Nesterchuk MV, Efimova OI, Petrov KS, Chernyshev VS, Zatsepin TS, Gorin DA. Multifunctional nanostructured drug delivery carriers for cancer therapy: Multimodal imaging and ultrasound-induced drug release. Colloids Surf B Biointerfaces 2021; 200:111576. [PMID: 33508660 DOI: 10.1016/j.colsurfb.2021.111576] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 12/21/2022]
Abstract
Development of multimodal systems for therapy and diagnosis of neoplastic diseases is an unmet need in oncology. The possibility of simultaneous diagnostics, monitoring, and therapy of various diseases allows expanding the applicability of modern systems for drug delivery. We have developed hybrid particles based on biocompatible polymers containing magnetic nanoparticles (MNPs), photoacoustic (MNPs), fluorescent (Cy5 or Cy7 dyes), and therapeutic components (doxorubicin). To achieve high loading efficiency of MNP and Dox to nanostructured carriers, we utilized a novel freezing-induced loading technique. To reduce the systemic toxicity of antitumor drugs and increase their therapeutic efficacy, we can use targeted delivery followed by the remote control of drug release using high intensity-focused ultrasound (HIFU). Loading of MNPs allowed performing magnetic targeting of the carriers and enhanced optoacoustic signal after controlled destruction of the shell and release of therapeutics as well as MRI imaging. The raster scanning optoacoustic mesoscopy (PA, RSOM), MRI, and fluorescent tomography (FT) confirmed the ultrasound-induced release of doxorubicin from capsules: in vitro (in tubes and pieces of meat) and in vivo (after delivery to the liver). Disruption of capsules results in a significant increase of doxorubicin and Cy7 fluorescence initially quenched by magnetite nanoparticles that can be used for real-time monitoring of drug release in vivo. In addition, we explicitly studied cytotoxicity, intracellular localization, and biodistribution of these particles. Elaborated drug delivery carriers have a good perspective for simultaneous imaging and focal therapy of different cancer types, including liver cancer.
Collapse
Affiliation(s)
- Marina V Novoselova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia.
| | - Sergei V German
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia; Institute of Spectroscopy of the Russian Academy of Sciences, 5 Fizicheskaya Street, 108840, Moscow, Russia
| | - Tatiana O Abakumova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | | | - Olga V Sergeeva
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Mikhail V Nesterchuk
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Olga I Efimova
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Kirill S Petrov
- Hadassah Medical Center, 46 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Vasiliy S Chernyshev
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia; Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 30b1 Bolshoy Boulevard, Moscow, 121205, Russia
| |
Collapse
|
14
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S. Nano-soldiers Ameliorate Silibinin Delivery: A Review Study. Curr Drug Deliv 2020; 17:15-22. [PMID: 31721702 DOI: 10.2174/1567201816666191112113031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 12/14/2022]
Abstract
Flavonoids are a large group of naturally occurring compounds, which are of interest due to their great pharmacological effects and health-promoting impacts. These properties have led to their extensive application in a variety of pathological conditions, particularly cancer. Flavonoids are used in large quantities in a human's daily diet and a high amount of flavonoids are found in the intestine after oral usage. However, flavonoid concentrations in tissue/plasma are low because of their low bioavailability, the leading to the low efficacy of flavonoids in different clinical disorders. For this reason, nanotechnology application for delivering flavonoids to tumor sites has recently received significant attention. Silibinin is a key member of flavonoids and a bioactive component of silymarin, which is widely isolated from Silybum marianum. This plant-derived chemical has a number of valuable biological and therapeutic activities such as antioxidant, anti-inflammatory, neuroprotective, anti-tumor, hepatoprotective, cardioprotective and anti-diabetic. These beneficial effects have been demonstrated in in vivo and in vitro experiments. However, it seems that silibinin has a variety of limitations and poor bioavailability is the most important factor restricting its wide application. Hence, there have been attempts to improve the bioavailability of silibinin and it has been suggested that nano-soldiers are potential candidates for this aim. In the present review, we describe the different drug delivery systems for improving the bioavailability of silibinin.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Veterinary Medicine Faculty, Tabriz University, Tabriz, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
15
|
Encapsulation of manganese dioxide nanoparticles into layer-by-layer polymer capsules for the fabrication of antioxidant microreactors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111349. [DOI: 10.1016/j.msec.2020.111349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/24/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
|
16
|
Smart Tools for Smart Applications: New Insights into Inorganic Magnetic Systems and Materials. INORGANICS 2020. [DOI: 10.3390/inorganics8100056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This Special Issue, consisting of four reviews and three research articles, presents some of the recent advances and future perspectives in the field of magnetic materials and systems, which are designed to meet some of our current challenges.
Collapse
|
17
|
Abstract
Magnetic contrast agents are widely used in magnetic resonance imaging in order to significantly change the signals from the regions of interest in comparison with the surrounding tissue. Despite a high variety of single-mode T1 or T2 contrast agents, there is a need for dual-mode contrast from the one agent. Here, we report on the synthesis of magnetic submicron carriers, containing Fe3O4 nanoparticles in their structure. We show the ability to control magnetic resonance contrast by changing not only the number of magnetite nanoparticles in one carrier or the concentration of magnetite in the suspension but also the structure of the core–shell itself. The obtained data open up the prospects for dual-mode T1/T2 magnetic contrast formation, as well as provides the basis for future investigations in this direction.
Collapse
|
18
|
Sindeeva OA, Verkhovskii RA, Abdurashitov AS, Voronin DV, Gusliakova OI, Kozlova AA, Mayorova OA, Ermakov AV, Lengert EV, Navolokin NA, Tuchin VV, Gorin DA, Sukhorukov GB, Bratashov DN. Effect of Systemic Polyelectrolyte Microcapsule Administration on the Blood Flow Dynamics of Vital Organs. ACS Biomater Sci Eng 2019; 6:389-397. [PMID: 33463221 DOI: 10.1021/acsbiomaterials.9b01669] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polyelectrolyte microcapsules and other targeted drug delivery systems could substantially reduce the side effects of drug and overall toxicity. At the same time, the cardiovascular system is a unique transport avenue that can deliver drug carriers to any tissue and organ. However, one of the most important potential problems of drug carrier systemic administration in clinical practice is that the carriers might cause circulatory disorders, the development of pulmonary embolism, ischemia, and tissue necrosis due to the blockage of small capillaries. Thus, the presented work aims to find out the processes occurring in the bloodstream after the systemic injection of polyelectrolyte capsules that are 5 μm in size. It was shown that 1 min after injection, the number of circulating capsules decreases several times, and after 15 min less than 1% of the injected dose is registered in the blood. By this time, most capsules accumulate in the lungs, liver, and kidneys. However, magnetic field action could slightly increase the accumulation of capsules in the region-of-interest. For the first time, we have investigated the real-time blood flow changes in vital organs in vivo after intravenous injection of microcapsules using a laser speckle contrast imaging system. We have demonstrated that the organism can adapt to the emergence of drug carriers in the blood and their accumulation in the vessels of vital organs. Additionally, we have evaluated the safety of the intravenous administration of various doses of microcapsules.
Collapse
Affiliation(s)
- Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia
| | - Roman A Verkhovskii
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Yuri Gagarin State Technical University of Saratov, 77 Politekhnicheskaya st., Saratov 410054, Russia
| | - Arkady S Abdurashitov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Denis V Voronin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia
| | - Olga I Gusliakova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | | | - Oksana A Mayorova
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Aleksey V Ermakov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia
| | - Ekaterina V Lengert
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Ghent University, 653 Coupure Links, Ghent 9000, Belgium
| | - Nikita A Navolokin
- Saratov State Medical University, 112 Bolshaya Kazachia st., Saratov 410012, Russia
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,National University of Oil and Gas (Gubkin University), 65 Leninsky Prospekt, Moscow 119991, Russia.,Institute of Precision Mechanics and Control, Russian Academy of Sciences, 24 Rabochaya St., Saratov 410028, Russia
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia
| | - Gleb B Sukhorukov
- Peoples' Friendship University of Russia, 6 Mikluho-Maklaya St., Moscow 117198, Russia.,Skolkovo Institute of Science and Technology, 3 Nobelya st., Moscow 121205, Russia.,Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya st., Saratov 410012, Russia.,Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow 141701, Russia
| |
Collapse
|
19
|
Submicron-Sized Nanocomposite Magnetic-Sensitive Carriers: Controllable Organ Distribution and Biological Effects. Polymers (Basel) 2019; 11:polym11061082. [PMID: 31242626 PMCID: PMC6630964 DOI: 10.3390/polym11061082] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/17/2019] [Accepted: 06/21/2019] [Indexed: 12/16/2022] Open
Abstract
Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn’t cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.
Collapse
|
20
|
Novel type of hollow hydrogel microspheres with magnetite and silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1114-1121. [DOI: 10.1016/j.msec.2019.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/29/2018] [Accepted: 01/08/2019] [Indexed: 01/06/2023]
|
21
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|
22
|
German SV, Novoselova MV, Bratashov DN, Demina PA, Atkin VS, Voronin DV, Khlebtsov BN, Parakhonskiy BV, Sukhorukov GB, Gorin DA. High-efficiency freezing-induced loading of inorganic nanoparticles and proteins into micron- and submicron-sized porous particles. Sci Rep 2018; 8:17763. [PMID: 30531926 PMCID: PMC6288109 DOI: 10.1038/s41598-018-35846-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/12/2018] [Indexed: 12/20/2022] Open
Abstract
We demonstrate a novel approach to the controlled loading of inorganic nanoparticles and proteins into submicron- and micron-sized porous particles. The approach is based on freezing/thawing cycles, which lead to high loading densities. The process was tested for the inclusion of Au, magnetite nanoparticles, and bovine serum albumin in biocompatible vaterite carriers of micron and submicron sizes. The amounts of loaded nanoparticles or substances were adjusted by the number of freezing/thawing cycles. Our method afforded at least a three times higher loading of magnetite nanoparticles and a four times higher loading of protein for micron vaterite particles, in comparison with conventional methods such as adsorption and coprecipitation. The capsules loaded with magnetite nanoparticles by the freezing-induced loading method moved faster in a magnetic field gradient than did the capsules loaded by adsorption or coprecipitation. Our approach allows the preparation of multicomponent nanocomposite materials with designed properties such as remote control (e.g. via the application of an electromagnetic or acoustic field) and cargo unloading. Such materials could be used as multimodal contrast agents, drug delivery systems, and sensors.
Collapse
Affiliation(s)
- Sergei V German
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia.,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Marina V Novoselova
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia.,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Daniil N Bratashov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Region, 141701, Russia
| | - Polina A Demina
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Shubnikov Institute of Crystallography of the Federal Scientific Research Centre "Crystallography and Photonics" of the Russian Academy of Sciences, Moscow, 119333, Russia
| | - Vsevolod S Atkin
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Denis V Voronin
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia
| | - Boris N Khlebtsov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov, 410049, Russia
| | - Bogdan V Parakhonskiy
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,University of Ghent, 9000, Ghent, Belgium
| | - Gleb B Sukhorukov
- Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.,School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Dmitry A Gorin
- Skolkovo Institute of Science and Technology, Moscow, 143026, Russia. .,Saratov State University, 83 Astrakhanskaya Str., Saratov, 410012, Russia.
| |
Collapse
|
23
|
Navolokin NA, German SV, Bucharskaya AB, Godage OS, Zuev VV, Maslyakova GN, Pyataev NA, Zamyshliaev PS, Zharkov MN, Terentyuk GS, Gorin DA, Sukhorukov GB. Systemic Administration of Polyelectrolyte Microcapsules: Where Do They Accumulate and When? In Vivo and Ex Vivo Study. NANOMATERIALS 2018; 8:nano8100812. [PMID: 30308931 PMCID: PMC6215302 DOI: 10.3390/nano8100812] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/06/2018] [Accepted: 10/07/2018] [Indexed: 01/07/2023]
Abstract
Multilayer capsules of 4 microns in size made of biodegradable polymers and iron oxide magnetite nanoparticles have been injected intravenously into rats. The time-dependent microcapsule distribution in organs was investigated in vivo by magnetic resonance imaging (MRI) and ex vivo by histological examination (HE), atomic absorption spectroscopy (AAS) and electron spin resonance (ESR), as these methods provide information at different stages of microcapsule degradation. The following organs were collected: Kidney, liver, lung, and spleen through 15 min, 1 h, 4 h, 24 h, 14 days, and 30 days after intravenous injections (IVIs) of microcapsules in a saline buffer at a dosage of 2.5 × 10⁸ capsule per kg. The IVI of microcapsules resulted in reversible morphological changes in most of the examined inner organs (kidney, heart, liver, and spleen). The capsules lost their integrity due to degradation over 24 h, and some traces of iron oxide nanoparticles were seen at 7 days in spleen and liver structure. The morphological structure of the tissues was completely restored one month after IVI of microcapsules. Comprehensive analysis of the biodistribution and degradation of entire capsules and magnetite nanoparticles as their components gave us grounds to recommend these composite microcapsules as useful and safe tools for drug delivery applications.
Collapse
Affiliation(s)
- Nikita A Navolokin
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Sergei V German
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Biophotonics Laboratory, Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Alla B Bucharskaya
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Olga S Godage
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Viktor V Zuev
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Galina N Maslyakova
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Nikolaiy A Pyataev
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Pavel S Zamyshliaev
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Mikhail N Zharkov
- Laboratory of Pharmacokinetics and Targeted Drug Delivery, Medicine Institute, National Research Ogarev Mordovia State University, Saransk 430005, Russia.
| | - Georgy S Terentyuk
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Scientific Research Institute of Fundamental and Clinical Uronephrology, Saratov Medical State University, Saratov 410000, Russia.
| | - Dmitry A Gorin
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- Biophotonics Laboratory, Skoltech Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Gleb B Sukhorukov
- Remote Controlled Theranostic Systems Lab, Saratov State University, Saratov 410012, Russia.
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
24
|
Alford A, Rich M, Kozlovskaya V, Chen J, Sherwood J, Bolding M, Warram J, Bao Y, Kharlampieva E. Ultrasound‐Triggered Delivery of Anticancer Therapeutics from MRI‐Visible Multilayer Microcapsules. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800051] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Aaron Alford
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Megan Rich
- Department of Neurobiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Veronika Kozlovskaya
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jun Chen
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jennifer Sherwood
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Mark Bolding
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Jason Warram
- Department of Radiology University of Alabama at Birmingham Birmingham AL 35294 USA
| | - Yuping Bao
- Department of Chemical and Biological Engineering University of Alabama Tuscaloosa AL 35487 USA
| | - Eugenia Kharlampieva
- Department of Chemistry University of Alabama at Birmingham Birmingham AL 35294 USA
| |
Collapse
|