1
|
Cen M, Ma X, Yang X, Zhang S, Liu L, Szostak M, Chen T. Site-selective decarbonylative [4 + 2] annulation of carboxylic acids with terminal alkynes by C-C/C-H activation strategy and cluster catalysis. Chem Sci 2024; 15:20346-20354. [PMID: 39574531 PMCID: PMC11577269 DOI: 10.1039/d4sc05429f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
Cycloaddition and annulation strategies are among the most powerful methods for creating molecular complexity in organic molecules. In this manuscript, we report a highly site-selective palladium-catalyzed decarbonylative [4 + 2] cyclization of carboxylic acids with terminal alkynes by a sequential C-C/C-H bond activation. Most notably, this method represents the first use of carboxylic acids as the ubiquitous and underdeveloped synthons for intramolecular cycloadditions by decarbonylative C-C bond cleavage. The method provides a solution to the long-standing challenge of the regioselective synthesis of substituted naphthalenes by cycloaddition. Mechanistic studies show that this reaction occurs through a sequential process involving the formation of key palladacycle by a sequential C-C/C-H bond activation and highly regioselective alkyne insertion enabled by cluster catalysis. Wide substrate scope for both carboxylic acids and terminal alkynes is demonstrated with high functional group tolerance. Moreover, this reaction is scalable and applicable to the synthesis of functionalized molecules featuring bioactive fragments. This reaction advances the toolbox of redox-neutral carboxylic acid interconversion to cycloaddition processes. We anticipate that this approach will find broad application in organic synthesis, drug discovery and functionalized material research fields.
Collapse
Affiliation(s)
- Mengjie Cen
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
- Hainan Research Academy of Environmental Sciences Haikou 571127 PR China
| | - Xinyue Ma
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| | - Xi Yang
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| | - Shangshang Zhang
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| | - Long Liu
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| | - Michal Szostak
- Department of Chemistry, Rutgers University 73 Warren Street Newark NJ 07102 USA
| | - Tieqiao Chen
- School of Chemistry and Chemical Engineering, Hainan University Haikou 570228 China
| |
Collapse
|
2
|
Zhang M, Gao Y, Xie C, Duan X, Lu X, Luo K, Ye J, Wang X, Gao X, Niu Q, Zhang P, Dai S. Designing water resistant high entropy oxide materials. Nat Commun 2024; 15:8306. [PMID: 39333127 PMCID: PMC11436891 DOI: 10.1038/s41467-024-52531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/11/2024] [Indexed: 09/29/2024] Open
Abstract
The ubiquitous presence of moisture usually shows adverse effects on industrial catalysis. Herein, a concept of engineering entropy to design water-resistant oxide catalysts is proposed. The C3H6 oxidation by spinel ACr2O4 (A=Ni, Mg, Cu, Zn, Co) catalysts is selected as a model. Through DFT calculation, the adsorption energy of C3H6, the dissociation energy of molecular H2O on the oxide surface, and the formation energy of oxygen vacancy all suggest better performance induced by higher configurational entropy. Indeed, (Ni0.2Mg0.2Cu0.2Zn0.2Co0.2)Cr2O4 experimentally show excellent water resistance (>100 h) in C3H6 oxidation, while in sharp contrast binary oxides (e.g., NiCr2O4, CoCr2O4) are deactivated in 20 h. H2O-TPD, in-situ Raman, and in-situ FTIR all confirm the low H2O adsorption energy and strong hydrothermal stability of high entropy oxide, which is attributed to their lower Gibbs free energy. This work may inspire the rational design of water-resistant catalysts.
Collapse
Affiliation(s)
- Mengyuan Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Gao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chengmin Xie
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Lu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Kongliang Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Jian Ye
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Xiaopeng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Xinhua Gao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China
| | - Qiang Niu
- National enterprise technology center, Inner Mongolia Erdos Power and Metallurgy, Group Co., Ltd.Ordos, Inner Mongolia, China
| | - Pengfei Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge, US
| |
Collapse
|
3
|
Romero Reyes MA, Dutta S, Odagi M, Min C, Seidel D. Catalytic enantioselective synthesis of 2-pyrazolines via one-pot condensation/6π-electrocyclization: 3,5-bis(pentafluorosulfanyl)-phenylthioureas as powerful hydrogen bond donors. Chem Sci 2024; 15:d4sc04760e. [PMID: 39239480 PMCID: PMC11369865 DOI: 10.1039/d4sc04760e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024] Open
Abstract
A new conjugate-base-stabilized carboxylic acid (CBSCA) containing a 3,5-bis(pentafluorosulfanyl)phenylthiourea functionality catalyses challenging one-pot condensations/6π-electrocyclizations of hydrazines and α,β-unsaturated ketones under mild conditions. Structurally diverse N-aryl 2-pyrazolines are obtained in good yields and enantioselectivities. The superior performance of 3,5-bis(SF5)phenylthioureas over the widely used 3,5-bis(CF3)phenylthioureas is further demonstrated in the Michael addition of dimethyl malonate to nitrostyrene, using a new Takemoto-type catalyst.
Collapse
Affiliation(s)
- Moises A Romero Reyes
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Subhradeep Dutta
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| | - Chang Min
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey Piscataway New Jersey 08854 USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida Gainesville Florida 32611 USA
| |
Collapse
|
4
|
Chen XW, Li C, Gui YY, Yue JP, Zhou Q, Liao LL, Yang JW, Ye JH, Yu DG. Atropisomeric Carboxylic Acids Synthesis via Nickel-Catalyzed Enantioconvergent Carboxylation of Aza-Biaryl Triflates with CO 2. Angew Chem Int Ed Engl 2024; 63:e202403401. [PMID: 38527960 DOI: 10.1002/anie.202403401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Upgrading CO2 to value-added chiral molecules via catalytic asymmetric C-C bond formation is a highly important yet challenging task. Although great progress on the formation of centrally chiral carboxylic acids has been achieved, catalytic construction of axially chiral carboxylic acids with CO2 has never been reported to date. Herein, we report the first catalytic asymmetric synthesis of axially chiral carboxylic acids with CO2, which is enabled by nickel-catalyzed dynamic kinetic asymmetric reductive carboxylation of racemic aza-biaryl triflates. A variety of important axially chiral carboxylic acids, which are valuable but difficult to obtain via catalysis, are generated in an enantioconvergent version. This new methodology features good functional group tolerance, easy to scale-up, facile transformation and avoids cumbersome steps, handling organometallic reagents and using stoichiometric chiral materials. Mechanistic investigations indicate a dynamic kinetic asymmetric transformation process induced by chiral nickel catalysis.
Collapse
Affiliation(s)
- Xiao-Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Chao Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, P. R. China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Qi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Li-Li Liao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jing-Wei Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| |
Collapse
|
5
|
Yang R, Xu S, Wang X, Xiao Y, Li J, Hu C. Selective Stereoretention of Carbohydrates upon C-C Cleavage Enabling D-Glyceric Acid Production with High Optical Purity over a Ag/γ-Al 2O 3 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202403547. [PMID: 38485666 DOI: 10.1002/anie.202403547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Indexed: 04/06/2024]
Abstract
Chiral carboxylic acid production from renewable biomass by chemocatalysis is vitally important for reducing our carbon footprint, but remains underdeveloped. We herein establish a strategy that make use of a stereogenic center of biomass to achieve a rare example of D-glyceric acid production with the highest yield (86.8 %) reported to date as well as an excellent ee value (>99 %). Unlike traditional asymmetric catalysis, chiral catalysts/additives are not required. Ample experiments combined with quantum chemical calculations established the origins of the stereogenic center and catalyst performance. The chirality at C4 in D-xylose was proved to be retained and successfully delivered to C2 in D-glyceric acid during C-C cleavage. The remarkable cooperative-roles of Ag+ and Ag0 in the constructed Ag/γ-Al2O3 catalyst are disclosed as the crucial contributors. Ag+ was responsible for low-temperature activation of D-xylose, while Ag0 facilitated the generation of active O* from O2. Ag+ and active O* cooperatively promoted the precise cleavage of the C2-C3 bond, and more importantly O* allowed the immediate fast oxidization of the D-glyceraldehyde intermediate to stabilize D-glyceric acid, thereby inhibiting the side reaction that induced racemization. This strategy makes a significant breakthrough in overcoming the limitation of poor enantioselectivity in current chemocatalytic conversion of biomass.
Collapse
Affiliation(s)
- Ruofeng Yang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Shuguang Xu
- College of Chemical Engineering, Sichuan University No.24 South Section 1, Yihuan Road, Chengdu, Sichuan, 610065, PR China
| | - Xiaoyan Wang
- Analysis and Test Center, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Yuan Xiao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Jianmei Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu, Sichuan, 610064, PR China
| |
Collapse
|
6
|
Li L, Ti W, Miao T, Ma J, Lin A, Chu Q, Gao S. Atroposelective Synthesis of Axially Chiral Diaryl Ethers by N-Heterocyclic-Carbene-Catalyzed Sequentially Desymmetric/Kinetic Resolution Process. J Org Chem 2024; 89:4067-4073. [PMID: 38391391 DOI: 10.1021/acs.joc.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Libo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianshu Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Chu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
7
|
Gutman KL, Quintanilla CD, Zhang L. Catalytic Enantioselective Protonation of Gold Enolates Enabled by Cooperative Gold(I) Catalysis. J Am Chem Soc 2024; 146:3598-3602. [PMID: 38295275 PMCID: PMC11572475 DOI: 10.1021/jacs.3c11919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Enantioselective protonation is a versatile approach to the construction of tertiary α-stereocenters, which are common structural motifs in various natural products and biologically relevant compounds. Herein we report a mild access to these chiral centers using cooperative gold(I) catalysis. From cyclic ketone enol carbonates, this asymmetric catalysis provides highly enantioselective access to cyclic ketones featuring an α tertiary chiral center, including challenging 2-methylsuberone. In combination with the gold-catalyzed formation of cyclopentadienyl carbonates in a one-pot, two-step process, this chemistry enables expedient access to synthetically versatile α'-chiral cyclopentenones with excellent enantiomeric excesses from easily accessible enynyl carbonate substrates.
Collapse
Affiliation(s)
- Kaylaa L Gutman
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Carlos D Quintanilla
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Liming Zhang
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Hu X, Zhu Z, Li Z, Adili A, Odagi M, Abboud KA, Seidel D. Catalytic Enantioselective [4+2] Cycloadditions of Salicylaldehyde Acetals with Enol Ethers. Angew Chem Int Ed Engl 2024; 63:e202315759. [PMID: 38055210 DOI: 10.1002/anie.202315759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
A readily accessible conjugate-base-stabilized carboxylic acid (CBSCA) catalyst facilitates highly enantioselective [4+2] cycloaddition reactions of salicylaldehyde-derived acetals and cyclic enol ethers, resulting in the formation of polycyclic chromanes with oxygenation in the 2- and 4-positions. Stereochemically more complex products can be obtained from racemic enol ethers. Spirocyclic products are also accessible.
Collapse
Affiliation(s)
- Xiaojun Hu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhengbo Zhu
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongzheng Li
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Alafate Adili
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Minami Odagi
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei city, 184-8588, Tokyo, Japan
| | - Khalil A Abboud
- Center for X-ray Crystallography, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Daniel Seidel
- Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
9
|
Cai Y, Lv Y, Shu L, Jin Z, Chi YR, Li T. Access to Axially Chiral Aryl Aldehydes via Carbene-Catalyzed Nitrile Formation and Desymmetrization Reaction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0293. [PMID: 38628355 PMCID: PMC11020146 DOI: 10.34133/research.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 04/19/2024]
Abstract
An approach utilizing N-heterocyclic carbene for nitrile formation and desymmetrization reaction is developed. The process involves kinetic resolution, with the axially chiral aryl monoaldehydes obtained in moderate yields with excellent optical purities. These axially chiral aryl monoaldehydes can be conveniently transformed into functionalized molecules, showing great potential as catalysts in organic chemistry.
Collapse
Affiliation(s)
- Yuanlin Cai
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Ya Lv
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Liangzhen Shu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Zhichao Jin
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| | - Yonggui Robin Chi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
- School of Chemistry, Chemical Engineering, and Biotechnology,
Nanyang Technological University, Singapore 637371, Singapore
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education,
Guizhou University, Guiyang 550025, China
| |
Collapse
|
10
|
Zheng WF, Chen J, Qi X, Huang Z. Modular and diverse synthesis of amino acids via asymmetric decarboxylative protonation of aminomalonic acids. Nat Chem 2023; 15:1672-1682. [PMID: 37973941 DOI: 10.1038/s41557-023-01362-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/06/2023] [Indexed: 11/19/2023]
Abstract
Stereoselective protonation is a challenge in asymmetric catalysis. The small size and high rate of transfer of protons mean that face-selective delivery to planar intermediates is hard to control, but it can unlock previously obscure asymmetric transformations. Particularly, when coupled with a preceding decarboxylation, enantioselective protonation can convert the abundant acid feedstocks into structurally diverse chiral molecules. Here an anchoring group strategy is demonstrated as a potential alternative and supplement to the conventional structural modification of catalysts by creating additional catalyst-substrate interactions. We show that a tailored benzamide group in aminomalonic acids can help build a coordinated network of non-covalent interactions, including hydrogen bonds, π-π interactions and dispersion forces, with a chiral acid catalyst. This allows enantioselective decarboxylative protonation to give α-amino acids. The malonate-based synthesis introduces side chains via a facile substitution of aminomalonic esters and thus can access structurally and functionally diverse amino acids.
Collapse
Affiliation(s)
- Wei-Feng Zheng
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Jingdan Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China.
| | - Zhongxing Huang
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Gambhir D, Singh S, Singh RP. Enamine/Iminium-based Dual Organocatalytic Systems for Asymmetric Catalysis and Synthesis. Chem Asian J 2023:e202300627. [PMID: 37910066 DOI: 10.1002/asia.202300627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
The rational combination of two catalysts to expedite the construction of chiral complex biologically and pharmacologically relevant chiral compounds has widely gained momentum over the past decade. In particular, enamine or iminium catalysis ensuing from the activation of aldehyde or ketone by chiral amine catalysts in conjugation with other organocatalytic cycles has facilitated several asymmetric transformations to yield the enantioenriched products. Regardless of the considerable discussion on the various dual catalytic approaches, literature lacks a comprehensive review focusing on the enamine and iminium-based dual organocatalytic systems. Thus, this review article has discussed the noteworthy achievements in the field of asymmetric catalysis and synthesis catalyzed by the enamine and iminium-based dual organocatalytic systems.
Collapse
Affiliation(s)
- Diksha Gambhir
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Sanjay Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| | - Ravi P Singh
- Prof. Ravi P. Singh, Department of Chemistry, Institute of Technology Delhi, Hauz Khas, New Delhi, 110-016, India
| |
Collapse
|
12
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
13
|
Zhou WJ, Yu X, Chen C, Lan W, Zhan G, Zhou J, Liu Q, Huang W, Yang QQ. Organocatalytic Asymmetric [4 + 2] Cyclization of Azadienes with Azlactones: Access to Chiral 3-Amino-δ-Lactams Derivatives. J Org Chem 2023; 88:13427-13439. [PMID: 37750476 DOI: 10.1021/acs.joc.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Herein, a series of chiral δ-lactam frameworks have been synthesized and catalyzed by chiral phosphoric acid (CPA) utilizing two kinds of open-chain aza-dienes and azlactones derived from amino acids. This powerful [4 + 2] annulation produces a broad substrate scope with functional group tolerance in yield up to 97% with up to 98:2 er. Moreover, a facile scale-up and straightforward conversion to diversely substituted products verify the synthetic utility of this method featuring good compatibility and high efficiency.
Collapse
Affiliation(s)
- Wu-Jingyun Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xiaoning Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Chen Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wei Lan
- College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, People's Republic of China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Basic Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| |
Collapse
|
14
|
Harden I, Neese F, Bistoni G. Dimerization of confined Brønsted acids in enantioselective organocatalytic reactions. Chem Sci 2023; 14:10580-10590. [PMID: 37799993 PMCID: PMC10548523 DOI: 10.1039/d3sc03769j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The formation of Brønsted acid aggregates in the course of asymmetric organocatalytic reactions is often overlooked in mechanistic studies, even though it might have a deep impact on the stereo-controlling factors of the transformations. In this work, we shed light on the influence of the catalyst structure and reaction conditions on the spontaneity of the aggregation process for popular chiral organocatalysts derived from phosphoric acids using high-level quantum mechanical calculations. Our study encompasses small and sterically unhindered chiral phosphoric acids as well as large and "confined" imidodiphosphates and imidodiphosphorimidates. These systems have recently proven particularly effective in promoting a large number of highly relevant asymmetric transformations. While cooperative catalytic effects of sterically less hindered chiral phosphoric acid catalysts are well appreciated in literature, it is found that the formation of catalyst dimers in solution is possible for both standard and confined catalysts. The spontaneity of the aggregation process depends on reaction conditions like solvent polarity, polarizability, temperature, the nature of the interaction with the substrate, as well as the catalyst architecture. Finally, it is shown that, at low temperatures (153 K), the aggregation process can profoundly influence the reaction kinetics and selectivity.
Collapse
Affiliation(s)
- Ingolf Harden
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung Kaiser-Wilhelm Platz 1 45470 Mülheim an der Ruhr Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto, 8 06123 Perugia Italy
| |
Collapse
|
15
|
Rodríguez-Franco C, Ros A, Merino P, Fernández R, Lassaletta JM, Hornillos V. Dynamic Kinetic Resolution of Indole-Based Sulfenylated Heterobiaryls by Rhodium-Catalyzed Atroposelective Reductive Aldol Reaction. ACS Catal 2023; 13:12134-12141. [PMID: 37745194 PMCID: PMC10513111 DOI: 10.1021/acscatal.3c03422] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/26/2023] [Indexed: 09/26/2023]
Abstract
A highly enantio- and diastereoselective dynamic kinetic resolution (DKR) of configurationally labile 3-aryl indole-2-carbaldehydes is described. The DKR proceeds via a Rh-catalyzed intermolecular asymmetric reductive aldol reaction with acrylate esters, with simultaneous generation of three stereogenic elements. The strategy relies on the labilization of the stereogenic axis that takes place thanks to a transient Lewis acid-base interaction (LABI) between the formyl group and a thioether moiety strategically located at the ortho' position. The atropisomeric indole products present a high degree of functionalization and can be further converted to a series of axially chiral derivatives, thereby expanding their potential application in drug discovery and asymmetric catalysis.
Collapse
Affiliation(s)
- Carlos Rodríguez-Franco
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Abel Ros
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Pedro Merino
- Instituto
de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Rosario Fernández
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto
de Investigaciones Químicas (CSIC-US) and Centro de Innovación
en Química Avanzada (ORFEO−CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento
de Química Orgánica, Universidad
de Sevilla and Centro de Innovación en Química Avanzada
(ORFEO−CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
16
|
Tomanová M, Vaňková I, Toman D, Přibylka A, Nemec I, Cankař P. Axially Chiral Sulfonic Acids for Brønsted Acid Catalysis: 8-Benzoimidazolylnaphthalene-1-sulfonic Acids and Their Derivatives. J Org Chem 2023. [PMID: 37354120 DOI: 10.1021/acs.joc.3c00818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
A new type of axially chiral sulfonic acid was developed. The synthesis is based on cheap commercially available materials and a practical method for optical resolution via diastereomeric salt formation, which can provide both enantiomers. Eleven benzoimidazolylnaphthalenesulfonic acids were prepared and four of them were isolated as pure and stable atropisomers. Moreover, several of these sulfonic acids were transformed into triflyl imides to further expand the range of dissociation constants.
Collapse
Affiliation(s)
- Monika Tomanová
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Iva Vaňková
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Daniel Toman
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Adam Přibylka
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Cankař
- Department of Organic Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
17
|
Gan L, Xu T, Tan Q, Cen M, Wang L, Zhao J, Liu K, Liu L, Chen WH, Han LB, Nycz JE, Chen T. Metal-free highly chemo-selective bisphosphorylation and deoxyphosphorylation of carboxylic acids. Chem Sci 2023; 14:5519-5526. [PMID: 37234892 PMCID: PMC10207878 DOI: 10.1039/d3sc01148h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxylic acids are readily available in both the natural and synthetic world. Their direct utilization for preparing organophosphorus compounds would greatly benefit the development of organophosphorus chemistry. In this manuscript, we describe a novel and practical phosphorylating reaction under transition metal-free reaction conditions that can selectively convert carboxylic acids into the P-C-O-P motif-containing compounds through bisphosphorylation, and the benzyl phosphorus compounds through deoxyphosphorylation. This strategy provides a new route for carboxylic acid conversion as the alkyl source, enabling highly efficient and practical synthesis of the corresponding value-added organophosphorus compounds with high chemo-selectivity and wide substrate scope, including the late modification of complex APIs (active pharmaceutical ingredients). Moreover, this reaction also indicates a new strategy for converting carboxylic acids into alkenes by coupling this work and the subsequent WHE reaction with ketones and aldehydes. We anticipate that this new mode of transforming carboxylic acids will find wide application in chemical synthesis.
Collapse
Affiliation(s)
- Liguang Gan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Tianhao Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Qihang Tan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Mengjie Cen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Lingling Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Jingwei Zhao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Kuang Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University Haikou 571158 China
| | - Li-Biao Han
- Zhejiang Yangfan New Materials Co. Ltd Shangyu 312369 Zhejiang China
| | - Jacek E Nycz
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice ul. Szkolna 9 PL-40007 Katowice Poland
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University Haikou 570228 China
| |
Collapse
|
18
|
Sun C, Li T. Chiral Carboxylic Acids as Organic Catalysts for Asymmetric Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Cuiyun Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang 550025 China
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
19
|
Reyes E, Prieto L, Milelli A. Asymmetric Organocatalysis: A Survival Guide to Medicinal Chemists. Molecules 2022; 28:271. [PMID: 36615465 PMCID: PMC9822454 DOI: 10.3390/molecules28010271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/30/2022] Open
Abstract
Majority of drugs act by interacting with chiral counterparts, e.g., proteins, and we are, unfortunately, well-aware of how chirality can negatively impact the outcome of a therapeutic regime. The number of chiral, non-racemic drugs on the market is increasing, and it is becoming ever more important to prepare these compounds in a safe, economic, and environmentally sustainable fashion. Asymmetric organocatalysis has a long history, but it began its renaissance era only during the first years of the millennium. Since then, this field has reached an extraordinary level, as confirmed by the awarding of the 2021 Chemistry Nobel Prize. In the present review, we wish to highlight the application of organocatalysis in the synthesis of enantio-enriched molecules that may be of interest to the pharmaceutical industry and the medicinal chemistry community. We aim to discuss the different activation modes observed for organocatalysts, examining, for each of them, the generally accepted mechanisms and the most important and developed reactions, that may be useful to medicinal chemists. For each of these types of organocatalytic activations, select examples from academic and industrial applications will be disclosed during the synthesis of drugs and natural products.
Collapse
Affiliation(s)
- Efraim Reyes
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Liher Prieto
- Department of Organic and Inorganic Chemistry, University of the Basque Country (UPV/EHU), 48080 Bilbao, Spain
| | - Andrea Milelli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
20
|
Li Y, Liou Y, Oliveira JCA, Ackermann L. Ruthenium(II)/Imidazolidine Carboxylic Acid-Catalyzed C-H Alkylation for Central and Axial Double Enantio-Induction. Angew Chem Int Ed Engl 2022; 61:e202212595. [PMID: 36108175 PMCID: PMC9828380 DOI: 10.1002/anie.202212595] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Indexed: 01/12/2023]
Abstract
Enantioselective C-H activation has surfaced as a transformative toolbox for the efficient assembly of chiral molecules. However, despite of major advances in rhodium and palladium catalysis, ruthenium(II)-catalyzed enantioselective C-H activation has thus far largely proven elusive. In contrast, we herein report on a ruthenium(II)-catalyzed highly regio-, diastereo- and enantioselective C-H alkylation. The key to success was represented by the identification of novel C2-symmetric chiral imidazolidine carboxylic acids (CICAs), which are easily accessible in a one-pot fashion, as highly effective chiral ligands. This ruthenium/CICA system enabled the efficient installation of central and axial chirality, and featured excellent branched to linear ratios with generally >20 : 1 dr and up to 98 : 2 er. Mechanistic studies by experiment and computation were carried out to understand the catalyst mode of action.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Yan‐Cheng Liou
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammanstraße 237077GöttingenGermany
| |
Collapse
|
21
|
Affiliation(s)
- Nilanjana Majumdar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, Uttar Pradesh, India
- Academy of Scientific and Innovative Research, New Delhi 110001, India
| |
Collapse
|
22
|
Fazl F, Torabi M, Yarie M, Zolfigol MA. Synthesis and application of novel urea-benzoic acid functionalized magnetic nanoparticles for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines. RSC Adv 2022; 12:16342-16353. [PMID: 35747527 PMCID: PMC9158513 DOI: 10.1039/d2ra02205b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
In this work, we reported the synthesis and application of a new urea-benzoic acid containing ligand [(OEt)3Si(CH2)3-urea-benzoic acid] for the functionalization of silica coated magnetic nanoparticles. The resulting structure, namely Fe3O4@SiO2@(CH2)3-urea-benzoic acid, was characterized through different techniques including FT-IR, SEM, EDX-Mapping, VSM and TGA/DTG analysis. Then, Fe3O4@SiO2@(CH2)3-urea-benzoic acid was applied as a heterogeneous dual acidic and hydrogen bonding catalyst for the synthesis of 2,3-disubstituted thiazolidin-4-ones and hexahydroquinolines under mild and green reaction conditions. More importantly, all of the desired products were obtained with relatively good yields. Also, the catalyst was recovered and reused for four successive runs without significant reduction in yield of the model reaction.
Collapse
Affiliation(s)
- Fazlulhaq Fazl
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
23
|
Cera G, Maestri G. Palladium/Brønsted Acid Catalysis for Hydrofunctionalizations of Alkynes: from Tsuji‐Trost Allylations to Stereoselective Methodologies. ChemCatChem 2022. [DOI: 10.1002/cctc.202200295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gianpiero Cera
- Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| | - Giovanni Maestri
- University of Parma: Universita degli Studi di Parma Dipartimento delle Scienze Chimiche, della Vita e della Sostenibilità Ambientale Parco Area delle Scienze, 17/A 43124 Parma ITALY
| |
Collapse
|
24
|
Gao Y, Wang LY, Zhang T, Yang BM, Zhao Y. Atroposelective Synthesis of 1,1'-Bipyrroles Bearing a Chiral N-N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angew Chem Int Ed Engl 2022; 61:e202200371. [PMID: 35174596 DOI: 10.1002/anie.202200371] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 12/26/2022]
Abstract
We present herein a highly efficient atroposelective synthesis of axially chiral 1,1'-bipyrroles bearing an N-N linkage from simple hydrazine and 1,4-diones. Further product derivatizations led to axially chiral bifunctional compounds with high potential in asymmetric catalysis. For this chrial phosphoric acid (CPA)-catalyzed double Paal-Knorr reaction, an intriguing Fe(OTf)3 -induced enantiodivergence was also observed.
Collapse
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Luo-Yu Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Tao Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| | - Bin-Miao Yang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Republic of Singapore
| |
Collapse
|
25
|
Li Y, Liou YC, Chen X, Ackermann L. Thioether-enabled palladium-catalyzed atroposelective C-H olefination for N-C and C-C axial chirality. Chem Sci 2022; 13:4088-4094. [PMID: 35440980 PMCID: PMC8985512 DOI: 10.1039/d2sc00748g] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/10/2022] [Indexed: 12/05/2022] Open
Abstract
Thioethers allowed for highly atroposelective C-H olefinations by a palladium/chiral phosphoric acid catalytic system under ambient air. Both N-C and C-C axial chiral (hetero)biaryls were successfully constructed, leading to a broad range of axially chiral N-aryl indoles and biaryls with excellent enantioselectivities up to 99% ee. Experimental and computational studies were conducted to unravel the walking mode for the atroposelective C-H olefination. A plausible chiral induction model for the enantioselectivity-determining step was established by detailed DFT calculations.
Collapse
Affiliation(s)
- Yanjun Li
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Yan-Cheng Liou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Xinran Chen
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
26
|
Zhang X, Liu M, Zhan D, Kaur M, Jasinski JP, Zhang W. Three-Component [3+2] Cycloaddition for Regio- and Diastereoselective Synthesis of Spirooxindole-Pyrrolidines. NEW J CHEM 2022; 46:3866-3870. [PMID: 36157552 PMCID: PMC9496578 DOI: 10.1039/d1nj05538k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1,3-Dipolar cycloaddition of nonstabilized azomethine ylides derived from α-C-H functionalization of tetrahydroisoquinoline for regio- and diastereoselective synthesis of spirooxindole-pyrrolidines is developed. A three-component reaction of readily available cyclic amine, aryl aldehydes, and olefinic oxindoles provides a pot, atom and step economy (PASE) approach for making spiro-heterocyclic compounds with biological interest.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
- Department of Cancer Biology Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Miao Liu
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Desheng Zhan
- Department of Chemistry, Changchun Normal University, Changchun 130032, P. R. China
| | - Manpreet Kaur
- Department of Chemistry, Keene State College, Keene, NH 03435, USA
| | - Jerry P Jasinski
- Department of Chemistry, Keene State College, Keene, NH 03435, USA
| | - Wei Zhang
- Department of Chemistry and Centre for Green Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
27
|
Gao Y, Wang L, Zhang T, Yang B, Zhao Y. Atroposelective Synthesis of 1,1′‐Bipyrroles Bearing a Chiral N−N Axis: Chiral Phosphoric Acid Catalysis with Lewis Acid Induced Enantiodivergence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yaru Gao
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Luo‐Yu Wang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Tao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| | - Bin‐Miao Yang
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
| | - Yu Zhao
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou 350207 China
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Republic of Singapore
| |
Collapse
|
28
|
Peng B, Ma J, Guo J, Gong Y, Wang R, Zhang Y, Zeng J, Chen WW, Ding K, Zhao B. A Powerful Chiral Super Brønsted C-H Acid for Asymmetric Catalysis. J Am Chem Soc 2022; 144:2853-2860. [PMID: 35143204 DOI: 10.1021/jacs.1c12723] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new type of chiral super Brønsted C-H acids, BINOL-derived phosphoryl bis((trifluoromethyl)sulfonyl) methanes (BPTMs), were developed. As compared to widely utilized BINOL-derived chiral phosphoric acids (BPAs) and N-triflyl phosphoramides (NTPAs), BPTMs displayed much higher Brønsted acidity, resulting in dramatically improved activity and excellent enantioselectivity as demonstrated in catalytic asymmetric Mukaiyama-Mannich reaction, allylic amination, three-component coupling of allyltrimethylsilane with 9-fluorenylmethyl carbamate and aldehydes, and protonation of silyl enol ether. These new strong Brønsted C-H acids have provided a platform for expanding the chemistry of asymmetric Brønsted acid catalysis.
Collapse
Affiliation(s)
- Bingfei Peng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jiguo Ma
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jianhua Guo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yating Gong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Ronghao Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China.,State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jinlong Zeng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Wen Chen
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Baoguo Zhao
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
29
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
30
|
Smajlagic I, White B, Azeez O, Pilkington M, Dudding T. Organocatalysis Linked to Charge-Enhanced Acidity with Superelectrophilic Traits. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivor Smajlagic
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Brandon White
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Oyindamola Azeez
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Melanie Pilkington
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines L2S 3A1, Canada
| |
Collapse
|
31
|
Singh H, Pinacho P, Obenchain DA, Quesada-Moreno MM, Schnell M. The many forms of alpha-methoxy phenylacetic acid in the gas phase: flexibility, internal dynamics, and their intramolecular interactions. Phys Chem Chem Phys 2022; 24:27312-27320. [DOI: 10.1039/d2cp03962a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Five conformers of the flexible molecule alpha-methoxy phenylacetic acid were identified using rotational spectroscopy. The conformational landscape, internal dynamics, and intramolecular interactions were investigated.
Collapse
Affiliation(s)
- Himanshi Singh
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| | - Pablo Pinacho
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Daniel A. Obenchain
- Institut fur Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - María Mar Quesada-Moreno
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada, Spain
| | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Institute of Physical Chemistry, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany
| |
Collapse
|
32
|
Wang N, Fan LW, Zhang J, Gu QS, Lin JS, Chen GQ, Liu XY, Yu P. Chiral N-Triflylphosphoramide-Catalyzed Asymmetric Hydroamination of Unactivated Alkenes: A Hetero-Ene Reaction Mechanism. Org Chem Front 2022. [DOI: 10.1039/d1qo01874d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective intramolecular hydroamination reaction catalyzed by chiral N-triflylphosphoramide (NTPA) that covers an exceptionally broad substrate scope of isolated unactivated alkenes was recently reported by some of us. Herein...
Collapse
|
33
|
Dey SK, Harmalkar SS, Yadav RKHO, Lama P, Das G. Structure directing roles of weak noncovalent interactions and charge-assisted hydrogen bonds in the self-assembly of solvated podands: Example of an anion-assisted dimeric water capsule. CrystEngComm 2022. [DOI: 10.1039/d2ce00180b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crystal structures of two new podand molecules (1 and 2) synthesized from 1,3,5-tris(bromomethyl)mesitylene and two bromide salts of tris(4-amino-N-ethylbenzamide)amine (3) were elucidated to witness the structure directing roles of weak...
Collapse
|
34
|
Li HH, Zhang YP, Zhai TY, Liu BY, Shi CY, Zhou JM, Ye LW. Metal-free dearomatization reactions of naphthol-ynamides for the divergent and enantioselective synthesis of azaspirocycles. Org Chem Front 2022. [DOI: 10.1039/d2qo00685e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient Brønsted acid (BA) catalyzed intramolecular dearomatization cyclization of naphthol-ynamides has been developed, enabling the practical and divergent synthesis of two azaspirocycles in high yields.
Collapse
Affiliation(s)
- Hang-Hao Li
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yi-Ping Zhang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-Yi Zhai
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-Yang Liu
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chong-Yang Shi
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jin-Mei Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Kumar R, Chandra D, Sharma U. Pd‐Catalyzed Atropselective C−H Olefination Promoted by a Transient Directing Group. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rohit Kumar
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Devesh Chandra
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Upendra Sharma
- Chemical Technology Division CSIR-Institute of Himalayan Bioresource Technology Palampur Himachal Pradesh 176 061 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
36
|
Niu R, He Y, Lin JB. Catalytic asymmetric synthesis of α-stereogenic carboxylic acids: recent advances. Org Biomol Chem 2021; 20:37-54. [PMID: 34854454 DOI: 10.1039/d1ob02038b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chiral carboxylic acids bearing an α-stereogenic center constitute the backbone of many natural products and therapeutic reagents as well as privileged chiral ligands and catalysts. Hence, it is not surprising that a large number of elegant catalytic asymmetric strategies have been developed toward the efficient synthesis of α-chiral carboxylic acids, such as α-hydroxy acids and α-amino acids. In this review, the recent advances in asymmetric synthesis of α-stereogenic free carboxylic acids via organocatalysis and transition metal catalysis are summarized (mainly from 2010 to 2020). The content is organized by the reaction type of the carboxyl source involved, including asymmetric functionalization of substituted carboxylic acids, cyclic anhydrides, α-keto acids, substituted α,β-unsaturated acids and so on. We hope that this review will motivate further interest in catalytic asymmetric synthesis of chiral α-substituted carboxylic acids.
Collapse
Affiliation(s)
- Rui Niu
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Yi He
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| | - Jun-Bing Lin
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
37
|
Yang C, Li F, Wu TR, Cui R, Wu BB, Jin RX, Li Y, Wang XS. Development of Axially Chiral Styrene-Type Carboxylic Acid Ligands via Palladium-Catalyzed Asymmetric C-H Alkynylation. Org Lett 2021; 23:8132-8137. [PMID: 34647750 DOI: 10.1021/acs.orglett.1c02692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A weakly coordinated carboxylate-directed palladium-catalyzed atroposelective C-H alkynylation method for the development of novel axially chiral styrene-type carboxylic acids is disclosed. This transformation exhibits good yields (up to 85%), excellent enantiocontrol (up to 99% ee), and mild conditions. Notably, the synthetic utility of the resulting alkynyl carboxylic acid derivatives was demonstrated by various derivatizations as well as their potential as chiral ligands in asymmetric C-H activations.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Fei Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ru Cui
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Zhang YQ, Chen YB, Liu JR, Wu SQ, Fan XY, Zhang ZX, Hong X, Ye LW. Asymmetric dearomatization catalysed by chiral Brønsted acids via activation of ynamides. Nat Chem 2021; 13:1093-1100. [PMID: 34635816 DOI: 10.1038/s41557-021-00778-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Chiral Brønsted acid-catalysed asymmetric synthesis has received tremendous interest over the past decades, and numerous efficient synthetic methods have been developed based on this approach. However, the use of chiral Brønsted acids in these reactions is mostly limited to the activation of imine and carbonyl moieties, and the direct activation of carbon-carbon triple bonds has so far not been invoked. Here we show that chiral Brønsted acids enable the catalytic asymmetric dearomatization reactions of naphthol-, phenol- and pyrrole-ynamides by the direct activation of alkynes. This method leads to the practical and atom-economic construction of various valuable spirocyclic enones and 2H-pyrroles that bear a chiral quaternary carbon stereocentre in generally good-to-excellent yields with excellent chemo-, regio- and enantioselectivities. The activation mode of chiral Brønsted acid catalysis revealed in this study is expected to be of broad utility in catalytic asymmetric reactions that involve ynamides and the related heteroatom-substituted alkynes.
Collapse
Affiliation(s)
- Ying-Qi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ji-Ren Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Shao-Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xin-Yang Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Zhi-Xin Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou, China.
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
39
|
Yang G, Sun S, Li Z, Liu Y, Wang J. Organocatalytic atroposelective heterocycloaddition to access axially chiral 2-arylquinolines. Commun Chem 2021; 4:144. [PMID: 36697620 PMCID: PMC9814953 DOI: 10.1038/s42004-021-00580-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 01/28/2023] Open
Abstract
Axially chiral heterobiaryls play a vital role in asymmetric synthesis and drug discovery. However, there are few reports on the synthesis of atropisomeric heterobiaryls compared with axially chiral biaryls. Thus, the rapid enantioselective construction of optically active heterobiaryls and their analogues remains an attractive challenge. Here, we report a concise chiral amine-catalyzed atroposelective heterocycloaddition reaction of alkynes with ortho-aminoarylaldehydes, and obtain a new class of axially chiral 2-arylquinoline skeletons with high yields and excellent enantioselectivities. In addition, the axially chiral 2-arylquinoline framework with different substituents is expected to be widely used in enantioselective synthesis.
Collapse
Affiliation(s)
- Gongming Yang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Shaofa Sun
- grid.470508.e0000 0004 4677 3586College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| | - Zhipeng Li
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Yuhan Liu
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China
| | - Jian Wang
- grid.12527.330000 0001 0662 3178School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084 China ,grid.470508.e0000 0004 4677 3586College of Chemistry and Biological Sciences, Hubei University of Science and Technology, Xianning, Hubei 437100 China
| |
Collapse
|
40
|
Takagi R, Duong DT, Ichiki T. Disulfonimide catalyzed asymmetric intramolecular hydroamination of alkenyl thioureas: Concentration effect in the hydroamination. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Zhu L, Yang H, Wong MW. Asymmetric Nucleophilic Allylation of α-Chloro Glycinate via Squaramide Anion-Abstraction Catalysis: SN1 or SN2 Mechanism, or Both? J Org Chem 2021; 86:8414-8424. [DOI: 10.1021/acs.joc.1c00839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lihan Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
42
|
Takagi R, Sakai Y, Duong DT. Bis(trifluoromethanesulfonimide) (BSI): Acidity and application to hydrofunctionalization as a Brønsted acid catalyst. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
43
|
Enhanced enantioselectivity of tartaric acid in capillary electrophoresis: From tartaric acid to tartaric acid-based ionic liquid. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114840] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Carmona JA, Rodríguez-Franco C, López-Serrano J, Ros A, Iglesias-Sigüenza J, Fernández R, Lassaletta JM, Hornillos V. Atroposelective Transfer Hydrogenation of Biaryl Aminals via Dynamic Kinetic Resolution. Synthesis of Axially Chiral Diamines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Joaquín López-Serrano
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Inorgánica, Universidad de Sevilla and Centro de Innovación Química Avanzada (ORFEO-CINQA). Avda. Américo Vespucio, 49,41092 Sevilla, Spain
| | - Abel Ros
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain
| |
Collapse
|
45
|
Ji C, Wu D, Lu J, Shan C, Ren Y, Li T, Lv L, Pan B, Zhang W. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: Mechanisms and the role of exchangeable protons. WATER RESEARCH 2021; 189:116599. [PMID: 33166920 DOI: 10.1016/j.watres.2020.116599] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/28/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Adsorption is a viable technology to remove trace heavy metals from wastewater, but regeneration of adsorbents in an economic and environmentally friendly manner often represents a limiting factor of its application. Compared with traditional strong acid desorption, developing a chemical-free method is of great significance to both economic and the environmental welfare. Herein, we synthesized a novel thermoresponsive absorbent, A-MIL-121, which could effectively remove trace Cu(II) (> 95 %) from a high-salinity ([Na+]/[Cu2+] = 20000) water at normal temperature. At elevated temperature, A-MIL-121 could quickly and efficiently desorb Cu(II), with over 90% desorption rate at 80°C within 3 h. Fourier transform infrared spectroscopy (FTIR) analysis revealed that two types of -COOH groups existed in the material. One was in free form and acted as the sites for Cu(II) adsorption; the other was in dimer connected by two H-bonds, which cleaved at elevated temperature. As a result, massive exchangeable protons were released to the solution, which caused the desorption of Cu(II). Similar temperature dependent adsorption-desorption behavior was also found to other heavy metals, such as Cd2+, Pb2+, Ni2+. No significant capacity loss was observed after 10 successive adsorption-desorption cycles. Finally, Column experiments using a real copper electroplating wastewater showed that a total of ~ 1650 mL of clean water was generated before breakthrough (Cu2+ < 0.5 mg/L), while less than 45 mL of 80°C water was used for regeneration. This study indicates the potential of A-MIL-121 as a novel green adsorbent to address trace heavy metals in wastewater.
Collapse
Affiliation(s)
- Chenghan Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Daowen Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yi Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ting Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210046, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; State Environmental Protection Engineering Center for Organic Chemical Wastewater Treatment and Resource Reuse, Nanjing 210046, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
46
|
Tetraalkylammonium-l-tartrate ionic liquids as sole chiral selectors in capillary electrophoresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117842] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
47
|
Gao YQ, Hou Y, Chen J, Zhen Y, Xu D, Zhang H, Wei H, Xie W. Asymmetric synthesis of 9-alkyl tetrahydroxanthenones via tandem asymmetric Michael/cyclization promoted by chiral phosphoric acid. Org Biomol Chem 2021; 19:348-354. [PMID: 33300926 DOI: 10.1039/d0ob02140g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem asymmetric Michael-addition/cyclization of cyclic 1,3-dicarbonyl compounds to β,γ-unsaturated α-ketoesters catalyzed by chiral phosphoric acid is presented. This protocol provides a facile approach for the construction of enantioenriched 9-alkyl tetrahydroxanthenones, an ubiquitous framework found in a number of natural products and pharmaceutical molecules, in high yields with good to high enantioselectivities.
Collapse
Affiliation(s)
- Yu-Qi Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yi Hou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Junhan Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Yanxia Zhen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Dongyang Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongli Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China.
| | - Hongbo Wei
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling 712100, Shaanxi, China. and Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, Shaanxi 712100, China
| |
Collapse
|
48
|
Yang C, Wu TR, Li Y, Wu BB, Jin RX, Hu DD, Li YB, Bian KJ, Wang XS. Facile synthesis of axially chiral styrene-type carboxylic acids via palladium-catalyzed asymmetric C-H activation. Chem Sci 2021; 12:3726-3732. [PMID: 34163646 PMCID: PMC8179534 DOI: 10.1039/d0sc06661c] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/19/2021] [Indexed: 12/27/2022] Open
Abstract
A novel method by a one-step introduction of axial chirality and sterically hindered group has been developed for facile synthesis of axially chiral styrene-type carboxylic acids. With the palladium-catalyzed C-H arylation and olefination of readily available cinnamic acid established, this transformation demonstrated excellent yield, excellent stereocontrol (up to 99% yield and 99% ee), and broad substrate scope under mild conditions. The axially chiral styrene-type carboxylic acids produced have been successfully applied to Cp*CoIII-catalyzed asymmetric C-H activation reactions, indicating their potential as chiral ligands or catalysts in asymmetric synthesis.
Collapse
Affiliation(s)
- Chi Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Tian-Rui Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Bing-Bing Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruo-Xing Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Duo-Duo Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yuan-Bo Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Kang-Jie Bian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xi-Sheng Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
49
|
Ke J, Zu B, Guo Y, Li Y, He C. Hexafluoroisopropanol-Enabled Copper-Catalyzed Asymmetric Halogenation of Cyclic Diaryliodoniums for the Synthesis of Axially Chiral 2,2'-Dihalobiaryls. Org Lett 2021; 23:329-333. [PMID: 33372799 DOI: 10.1021/acs.orglett.0c03833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient asymmetric halogenation of cyclic diaryliodonium salts is demonstrated, which gives access to a wide range of axially chiral 2,2'-dihalobiaryls in good to excellent yields and with excellent enantioselectivities. The use of CuX with chiral bisoxazoline ligand and tetrabutylammonium halides in the unique solvent of hexafluoroisopropanol (HFIP) led to the best results in the process. The axially chiral 2,2'-dihalobiaryls can be transformed into a number of enantiopure chiral ligands that could be potentially useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
50
|
Huelgas G, Somanathan R, Hernández Pérez JM, Rojas Cabrera H, de la Higuera Macías M, Domínguez-Huerta A, Sabala R, Anaya de Parrodi C. Homochiral bifunctional L-prolinamide- and L-bis-prolinamide-catalyzed asymmetric aldol reactions performed in wet solvent-free conditions. Chirality 2020; 33:22-36. [PMID: 33232537 DOI: 10.1002/chir.23283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 01/20/2023]
Abstract
In this study, the novel bifunctional homochiral thiourea-L-prolinamides 1-4, tertiary amino-L-prolinamide 5, and bis-L-prolinamides 6 and 7 were prepared from enantiomerically pure (11R,12R)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene 8 and (11S,12S)-11,12-diamino-9,10-dihydro-9,10-ethanoanthracene ent-8. Highly enantioselective and diastereoselective aldolic intermolecular reactions (up to 95% enantiomeric excess, 93:7 anti/syn) between aliphatic ketones (20 equiv) and a range of aromatic aldehydes (1 equiv) were successfully carried out in the presence of water (10 equiv) and monochloroacetic acid (10 mol%), solvent-free conditions, at room temperature over 24 h using organocatalysts 1-7 (5 mol%). Stereoselective induction using density functional theory-based methods was consistent with the experimental data.
Collapse
Affiliation(s)
- Gabriela Huelgas
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Ratnasamy Somanathan
- Centro de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto Tecnológico de Tijuana, Tijuana, Baja California, Mexico
| | | | - Haydee Rojas Cabrera
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | | | - Alejandra Domínguez-Huerta
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Rocío Sabala
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| | - Cecilia Anaya de Parrodi
- Departamento de Ciencias Químico Biológicas, Universidad de las Americas Puebla, Cholula, Puebla, Mexico
| |
Collapse
|