1
|
Ren J, Cuan Y. Fe 3O 4 nanomotors loaded with siRNA are used for tumor therapy. Colloids Surf B Biointerfaces 2024; 245:114257. [PMID: 39317043 DOI: 10.1016/j.colsurfb.2024.114257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Excessive iron ion accumulation in cells can trigger apoptosis; however, the balance of iron ions in cells minimizes the effect of excessive iron accumulation. Here, we report a biocompatible nanomotor that reduces the ability of cells to clear iron ions using loaded siRNA. First, catalase and polydopamine were loaded onto Fe3O4 particles by layer-by-layer self-assembly technology to endow the particles with a self-propulsion ability. A nanomotor (NP-siRNA) loaded with siRNA was then prepared by electrostatic action. Nanoparticles (NP) can achieve self-actuation in an aqueous solution with a magnetic field and H2O2 and have good movement ability in water, PBS, and FBS solutions, resulting in greater contact with tumor cells. The results show that the nanomotor has good in vivo and in vitro anti-tumor effects, and good biocompatibility.
Collapse
Affiliation(s)
- Jiaoyu Ren
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China.
| | - Yanyan Cuan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221116, PR China
| |
Collapse
|
2
|
Gao R, Wang W, Wang Z, Fan Y, Zhang L, Sun J, Hong M, Pan M, Wu J, Mei Q, Wang Y, Qiao L, Liu J, Tong F. Hibernating/Awakening Nanomotors Promote Highly Efficient Cryopreservation by Limiting Ice Crystals. Adv Healthc Mater 2024:e2401833. [PMID: 39101314 DOI: 10.1002/adhm.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Indexed: 08/06/2024]
Abstract
The disruptions caused by ice crystal formation during the cryopreservation of cells and tissues can cause cell and tissue damage. Thus, preventing such damage during cryopreservation is an important but challenging goal. Here, a hibernating/awakening nanomotor with magnesium/palladium covering one side of a silica platform (Mg@Pd@SiO2) is proposed. This nanomotor is used in the cultivation of live NCM460 cells to demonstrate a new method to actively limit ice crystal formation and enable highly efficient cryopreservation. Cooling Mg@Pd@SiO2 in solution releases Mg2+/H2 and promotes the adsorption of H2 at multiple Pd binding sites on the cell surface to inhibit ice crystal formation and cell/tissue damage; additionally, the Pd adsorbs and stores H2 to form a hibernating nanomotor. During laser-mediated heating, the hibernating nanomotor is activated (awakened) and releases H2, which further suppresses recrystallization and decreases cell/tissue damage. These hibernating/awakening nanomotors have great potential for promoting highly efficient cryopreservation by inhibiting ice crystal formation.
Collapse
Affiliation(s)
- Rui Gao
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Weixin Wang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Zhongchao Wang
- Institute of Cardiovascular Disease, Shanxi Medical University, Taiyuan, 030001, P. R. China
| | - Yapeng Fan
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Lin Zhang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jiahui Sun
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Miaofang Hong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Min Pan
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Yini Wang
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Lingyan Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, P. R. China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
| | - Fei Tong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, P. R. China
| |
Collapse
|
3
|
Yi X, Guo L, Zeng Q, Huang S, Wen D, Wang C, Kou Y, Zhang M, Li H, Wen L, Chen G. Magnetic/Acoustic Dual-Controlled Microrobot Overcoming Oto-Biological Barrier for On-Demand Multidrug Delivery against Hearing Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401369. [PMID: 39016116 DOI: 10.1002/smll.202401369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/28/2024] [Indexed: 07/18/2024]
Abstract
Multidrug combination therapy in the inner ear faces diverse challenges due to the distinct physicochemical properties of drugs and the difficulties of overcoming the oto-biologic barrier. Although nanomedicine platforms offer potential solutions to multidrug delivery, the access of drugs to the inner ear remains limited. Micro/nanomachines, capable of delivering cargo actively, are promising tools for overcoming bio-barriers. Herein, a novel microrobot-based strategy to penetrate the round window membrane (RWM) is presented and multidrug in on-demand manner is delivered. The tube-type microrobot (TTMR) is constructed using the template-assisted layer-by-layer (LbL) assembly of chitosan/ferroferric oxide/silicon dioxide (CS/Fe3O4/SiO2) and loaded with anti-ototoxic drugs (curcumin, CUR and tanshinone IIA, TSA) and perfluorohexane (PFH). Fe3O4 provides magnetic actuation, while PFH ensures acoustic propulsion. Upon ultrasound stimulation, the vaporization of PFH enables a microshotgun-like behavior, propelling the drugs through barriers and driving them into the inner ear. Notably, the proportion of drugs entering the inner ear can be precisely controlled by varying the feeding ratios. Furthermore, in vivo studies demonstrate that the drug-loaded microrobot exhibits superior protective effects and excellent biosafety toward cisplatin (CDDP)-induced hearing loss. Overall, the microrobot-based strategy provides a promising direction for on-demand multidrug delivery for ear diseases.
Collapse
Affiliation(s)
- Xinyang Yi
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lifang Guo
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Qi Zeng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Suling Huang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dingsheng Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Chu Wang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yuwei Kou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Ming Zhang
- Guangdong Sunho Pharmaceutical Co. Ltd, Zhongshan, 528437, P. R. China
| | - Huaan Li
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Gang Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery & Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Wang W, Fu R, Gao R, Luo L, Wang Z, Xue Y, Sun J, Pan M, Hong M, Qiao L, Qiao W, Mei Q, Wu J, Wang Y, Zhong Y, Liu J, Tong F. H 2S-Powered Nanomotors for Active Therapy of Tumors by Inducing Ferroptosis and Lactate-Pyruvate Axis Disorders. ACS Biomater Sci Eng 2024; 10:3994-4008. [PMID: 38736179 DOI: 10.1021/acsbiomaterials.3c01665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Disruption of the symbiosis of extra/intratumoral metabolism is a good strategy for treating tumors that shuttle resources from the tumor microenvironment. Here, we report a precision treatment strategy for enhancing pyruvic acid and intratumoral acidosis to destroy tumoral metabolic symbiosis to eliminate tumors; this approach is based on PEGylated gold and lactate oxidase-modified aminated dendritic mesoporous silica with lonidamine and ferrous sulfide loading (PEG-Au@DMSNs/FeS/LND@LOX). In the tumor microenvironment, LOX oxidizes lactic acid to produce pyruvate, which represses tumor cell proliferation by inhibiting histone gene expression and induces ferroptosis by partial histone monoubiquitination. In acidic tumor conditions, the nanoparticles release H2S gas and Fe2+ ions, which can inhibit catalase activity to promote the Fenton reaction of Fe2+, resulting in massive ·OH production and ferroptosis via Fe3+. More interestingly, the combination of H2S and LND (a monocarboxylic acid transporter inhibitor) can cause intracellular acidosis by lactate, and protons overaccumulate in cells. Multiple intracellular acidosis is caused by lactate-pyruvate axis disorders. Moreover, H2S provides motive power to intensify the shuttling of nanoparticles in the tumor region. The findings confirm that this nanomedicine system can enable precise antitumor effects by disrupting extra/intratumoral metabolic symbiosis and inducing ferroptosis and represents a promising active drug delivery system candidate for tumor treatment.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Renquan Fu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Rui Gao
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lei Luo
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongchao Wang
- Institute of Cardiovascular Disease, Shanxi Medical University, Taiyuan, 030001, PR China
| | - Yingli Xue
- Xi'an Medical University, Xi'an, 710000, PR China
| | - Jiahui Sun
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Min Pan
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Miaofang Hong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
| | - Lingyan Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Weiwei Qiao
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Qibing Mei
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Jianming Wu
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yini Wang
- Clinical Medical College, Binzhou Medical University, Yantai, 264003, PR China
| | - Yali Zhong
- Southwest University of Science and Technology, 621000 Mianyang, China
| | - Jin Liu
- Key Laboratory of Tropical Biological Resources of Ministry of Education and One Health Institute, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Fei Tong
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, PR China
- Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou; Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- School of Medicine, Zhejiang University, 310000 Hangzhou, China
| |
Collapse
|
5
|
Xiong K, Xu L. The Model Study of Phase-Transitional Magnetic-Driven Micromotors for Sealing Gastric Perforation via Mg-Based Micropower Traction. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:865. [PMID: 38786822 PMCID: PMC11123717 DOI: 10.3390/nano14100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Gastric perforation refers to the complete rupture of the gastric wall, leading to the extravasation of gastric contents into the thoracic cavity or peritoneum. Without timely intervention, the expulsion of gastric contents may culminate in profound discomfort, exacerbating the inflammatory process and potentially triggering perilous sepsis. In clinical practice, surgical suturing or endoscopic closure procedures are commonly employed. Magnetic-driven microswarms have also been employed for sealing gastrointestinal perforation. However, surgical intervention entails significant risk of bleeding, while endoscopic closure poses risks of inadequate closure and the need for subsequent removal of closure clips. Moreover, the efficacy of microswarms is limited as they merely adhere to the perforated area, and their sealing effect diminishes upon removal of the magnetic field. Herein, we present a Fe&Mg@Lard-Paraffin micromotor (LPM) constructed from a mixture of lard and paraffin coated with magnesium (Mg) microspheres and iron (Fe) nanospheres for sutureless sealing gastric perforations. Under the control of a rotating magnetic field, this micromotor demonstrates precise control over its movement on gastric mucosal folds and accurately targets the gastric perforation area. The phase transition induced by the high-frequency magnetothermal effect causes the micromotor composed of a mixed oil phase of lard and paraffin to change from a solid to a liquid phase. The coated Mg microspheres are subsequently exposed to the acidic gastric acid environment to produce a magnesium protonation reaction, which in turn generates hydrogen (H2) bubble recoil. Through a Mg-based micropower traction, part of the oil phase could be pushed into the gastric perforation, and it would then solidify to seal the gastric perforation area. Experimental results show that this can achieve long-term (>2 h) gastric perforation sealing. This innovative approach holds potential for improving outcomes in gastric perforation management.
Collapse
Affiliation(s)
| | - Leilei Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China;
| |
Collapse
|
6
|
Zeng J, Xie L, Liu T, He Y, Liu W, Zhang Q, Li J, Li X, Qiu B, Zhou S, Liang Q, Wang X, Liang K, Tang J, Liu J, Jiang L, Huang G, Kong B. Super-Assembled Multilayered Mesoporous TiO 2 Nanorockets for Light-Powered Space-Confined Microfluidic Catalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38661542 DOI: 10.1021/acsami.3c19302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the field of sustainable chemistry, it is still a significant challenge to realize efficient light-powered space-confined catalysis and propulsion due to the limited solar absorption efficiency and the low mass and heat transfer efficiency. Here, novel semiconductor TiO2 nanorockets with asymmetric, hollow, mesoporous, and double-layer structures are successfully constructed through a facile interfacial superassembly strategy. The high concentration of defects and unique topological features improve light scattering and reduce the distance for charge migration and directed charge separation, resulting in enhanced light harvesting in the confined nanospace and resulting in enhanced catalysis and self-propulsion. The movement velocity of double-layered nanorockets can reach up to 10.5 μm s-1 under visible light, which is approximately 57 and 119% higher than that of asymmetric single-layered TiO2 and isotropic hollow TiO2 nanospheres, respectively. In addition, the double-layered nanorockets improve the degradation rate of the common pollutant methylene blue under sustainable visible light with a 247% rise of first-order rate constant compared to isotropic hollow TiO2 nanospheres. Furthermore, FEA simulations reveal and confirm the double-layered confined-space enhanced catalysis and self-propulsion mechanism.
Collapse
Affiliation(s)
- Jie Zeng
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Lei Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Tianyi Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yanjun He
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Weiyan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Qing Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Junyan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Xiaofeng Li
- The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Qirui Liang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xudong Wang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
| | - Kang Liang
- School of Chemical Engineering, Graduate School of Biomedical Engineering, and Australian Centre for NanoMedicine, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jinyao Tang
- The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
- Shandong Research Institute, Fudan University, Shandong 250103, China
| |
Collapse
|
7
|
Ye Z, Che Y, Dai D, Jin D, Yang Y, Yan X, Ma X. Supramolecular Modular Assembly of Imaging-Trackable Enzymatic Nanomotors. Angew Chem Int Ed Engl 2024; 63:e202401209. [PMID: 38400604 DOI: 10.1002/anie.202401209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
Self-propelled micro/nanomotors (MNMs) have shown great application potential in biomedicine, sensing, environmental remediation, etc. In the past decade, various strategies or technologies have been used to prepare and functionalize MNMs. However, the current preparation strategies of the MNMs were mainly following the pre-designed methods based on specific tasks to introduce expected functional parts on the various micro/nanocarriers, which lacks a universal platform and common features, making it difficult to apply to different application scenarios. Here, we have developed a modular assembly strategy based on host-guest chemistry, which enables the on-demand construction of imaging-trackable nanomotors mounted with suitable driving and imaging modules using a universal assembly platform, according to different application scenarios. These assembled nanomotors exhibited enhanced diffusion behavior driven by enzymatic reactions. The loaded imaging functions were used to dynamically trace the swarm motion behavior of assembled nanomotors with corresponding fuel conditions both in vitro and in vivo. The modular assembly strategy endowed with host-guest interaction provides a universal approach to producing multifunctional MNMs in a facile and controllable manner, which paves the way for the future development of MNMs systems with programmable functions.
Collapse
Affiliation(s)
- Zihan Ye
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yanan Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Dihua Dai
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yingwei Yang
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaohui Yan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361005, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
8
|
Liu X, Wang Y, Wang L, Chen W, Ma X. Enzymatic Nanomotors Surviving Harsh Conditions Enabled by Metal Organic Frameworks Encapsulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305800. [PMID: 37991255 DOI: 10.1002/smll.202305800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/03/2023] [Indexed: 11/23/2023]
Abstract
Enzyme-driven micro/nanomotors (MNMs) have demonstrated potentials in the biomedical field because of their excellent biocompatibility, versatility, and fuel bioavailability. However, the fragility of enzymes limits their practical application, because of their susceptibility to denaturation and degradation in realistic scenarios. Herein, a simple yet versatile and effective approach is reported to preserve the enzymatic activity and propulsion capability of enzymatic MNMs under various harsh conditions using metal organic frameworks (MOFs) as a protective shell. Urease can be encapsulated within the exoskeleton of zeolitic imidazolate framework-8 (ZIF-8) via biomimetic mineralization to form ZIF-8@urease (ZU-I) nanomotors that exhibit self-propulsion in the presence of urea. When exposed to harsh conditions, including high temperature, presence of proteases, and organic solvents, the ZU-I nanomotors still maintained their activity and mobility, whereas ZIF-8 with externally modified urease (ZU-O) nanomotors with externally modified urease as a control rapidly lost their motion capabilities owing to the inactivation of urease. Furthermore, ZU-I nanomotors exhibit effectively enhanced diffusion within the small intestine fluid, achieving a fourfold higher mucus penetration than the ZU-O nanomotors. The results highlight the effectiveness of using MOFs as protective shells for enzyme nano-engines, which can greatly advance the practical applications of enzymatic MNMs under realistic conditions, especially for biomedical purpose.
Collapse
Affiliation(s)
- Xiaoxia Liu
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liying Wang
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Wenjun Chen
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| | - Xing Ma
- School of Materials Science and Engineering, and Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
9
|
Simó C, Serra-Casablancas M, Hortelao AC, Di Carlo V, Guallar-Garrido S, Plaza-García S, Rabanal RM, Ramos-Cabrer P, Yagüe B, Aguado L, Bardia L, Tosi S, Gómez-Vallejo V, Martín A, Patiño T, Julián E, Colombelli J, Llop J, Sánchez S. Urease-powered nanobots for radionuclide bladder cancer therapy. NATURE NANOTECHNOLOGY 2024; 19:554-564. [PMID: 38225356 PMCID: PMC11026160 DOI: 10.1038/s41565-023-01577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024]
Abstract
Bladder cancer treatment via intravesical drug administration achieves reasonable survival rates but suffers from low therapeutic efficacy. To address the latter, self-propelled nanoparticles or nanobots have been proposed, taking advantage of their enhanced diffusion and mixing capabilities in urine when compared with conventional drugs or passive nanoparticles. However, the translational capabilities of nanobots in treating bladder cancer are underexplored. Here, we tested radiolabelled mesoporous silica-based urease-powered nanobots in an orthotopic mouse model of bladder cancer. In vivo and ex vivo results demonstrated enhanced nanobot accumulation at the tumour site, with an eightfold increase revealed by positron emission tomography in vivo. Label-free optical contrast based on polarization-dependent scattered light-sheet microscopy of cleared bladders confirmed tumour penetration by nanobots ex vivo. Treating tumour-bearing mice with intravesically administered radio-iodinated nanobots for radionuclide therapy resulted in a tumour size reduction of about 90%, positioning nanobots as efficient delivery nanosystems for bladder cancer therapy.
Collapse
Affiliation(s)
- Cristina Simó
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St Louis, MO, USA
| | - Meritxell Serra-Casablancas
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Ana C Hortelao
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Valerio Di Carlo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
| | - Sandra Guallar-Garrido
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Sandra Plaza-García
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Rosa Maria Rabanal
- Unitat de Patologia Murina i Comparada, Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pedro Ramos-Cabrer
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Balbino Yagüe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Laura Aguado
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
- Laboratory of Neuroimaging and Biomarkers of Inflammation, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Lídia Bardia
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Sébastien Tosi
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Sciences, Faculty Of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vanessa Gómez-Vallejo
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Abraham Martín
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Laboratory of Neuroimaging and Biomarkers of Inflammation, Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain
- Biomedical Engineering Department, Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Eindhoven, The Netherlands
| | - Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Julien Colombelli
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jordi Llop
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
10
|
Wu G, Xian W, You Q, Zhang J, Chen X. AcousticRobots: Smart acoustically powered micro-/nanoswimmers for precise biomedical applications. Adv Drug Deliv Rev 2024; 207:115201. [PMID: 38331256 DOI: 10.1016/j.addr.2024.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Although nanotechnology has evolutionarily progressed in biomedical field over the past decades, achieving satisfactory therapeutic effects remains difficult with limited delivery efficiency. Ultrasound could provide a deep penetration and maneuverable actuation to efficiently power micro-/nanoswimmers with little harm, offering an emerging and fascinating alternative to the active delivery platform. Recent advances in novel fabrication, controllable concepts like intelligent swarm and the integration of hybrid propulsions have promoted its function and potential for medical applications. In this review, we will summarize the mechanisms and types of ultrasonically propelled micro/nanorobots (termed here as "AcousticRobots"), including the interactions between AcousticRobots and acoustic field, practical design considerations (e.g., component, size, shape), the synthetic methods, surface modification, controllable behaviors, and the advantages when combined with other propulsion approaches. The representative biomedical applications of functional AcousticRobots are also highlighted, including drug delivery, invasive surgery, eradication on the surrounding bio-environment, cell manipulation, detection, and imaging, etc. We conclude by discussing the challenges and outlook of AcousticRobots in biomedical applications.
Collapse
Affiliation(s)
- Gege Wu
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wei Xian
- Siansonic Technology Limited, No.1, Xingguang 5th Street, Ciqu, Tongzhou District, Beijing 101111, China
| | - Qing You
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Chemical and Biomolecular Engineering, and Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| |
Collapse
|
11
|
Xu R, Xu Q. A Survey of Recent Developments in Magnetic Microrobots for Micro-/Nano-Manipulation. MICROMACHINES 2024; 15:468. [PMID: 38675279 PMCID: PMC11052276 DOI: 10.3390/mi15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.
Collapse
Affiliation(s)
| | - Qingsong Xu
- Department of Electromechanical Engineering, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, China;
| |
Collapse
|
12
|
Hua E, Gao J, Xu Y, Matsuo M, Nakata S. Self-propelled motion controlled by ionic liquids. Phys Chem Chem Phys 2024; 26:8488-8493. [PMID: 38411193 DOI: 10.1039/d3cp05630a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
We studied the self-propulsion of a camphor disk floating on a water surface using two types of ionic liquids (hexylammonium-trifluoroacetate (HHexam-TFA) and hexylethylenediaminium-trifluoroacetate (HHexen-TFA)). Bifurcation between continuous, oscillatory, and no motion was observed depending on the concentration of the ionic liquid. The bifurcation concentration between oscillatory and no motion for HHexam-TFA was lower than that for HHexen-TFA. The different bifurcation concentrations are discussed in relation to the surface tension and Fourier transform infrared spectra of the mixtures of camphor and ionic liquids. These results suggest that the interaction between the ionic liquid molecules at the air/water interface is weakened by the addition of camphor molecules and the features of self-propulsion vary due to the change in the driving force.
Collapse
Affiliation(s)
- Er Hua
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Jun Gao
- Chemical Science and Engineering College, Key Laboratory of Chemical Technology of State Ethnic Affairs Commission, North Minzu University, 204 Wenchang North Street, Xixia District, Yinchuan City, Ningxia 750021, China.
| | - Yu Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Chang'an Campus 1 Dongxiang Road, Chang'an District, Xi'an Shaanxi 710129, China
| | - Muneyuki Matsuo
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.
| |
Collapse
|
13
|
Jin J, Li Y, Wang S, Xie J, Yan X. Organic nanomotors: emerging versatile nanobots. NANOSCALE 2024; 16:2789-2804. [PMID: 38231523 DOI: 10.1039/d3nr05995b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Artificial nanomotors are self-propelled nanometer-scaled machines that are capable of converting external energy into mechanical motion. A significant progress on artificial nanomotors over the last decades has unlocked the potential of carrying out manipulatable transport and cargo delivery missions with enhanced efficiencies owing to their stimulus-responsive autonomous movement in various complex environments, allowing for future advances in a large range of applications. Emergent kinetic systems with programmable energy-converting mechanisms that are capable of powering the nanomotors are attracting increasing attention. This review highlights the most-recent representative examples of synthetic organic nanomotors having self-propelled motion exclusively powered by organic molecule- or their aggregate-based kinetic systems. The stimulus-responsive propulsion mechanism, motion behaviors, and performance in antitumor therapy of organic nanomotors developed so far are illustrated. A future perspective on the development of organic nanomotors is also proposed. With continuous innovation, it is believed that the scope and possible achievements in practical applications of organic nanomotors with diversified organic kinetic systems will expand.
Collapse
Affiliation(s)
- Jingjun Jin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yan Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Jianchun Xie
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Kariminia S, Shamsipur M, Mansouri K. A novel magnetically guided, oxygen propelled CoPt/Au nanosheet motor in conjugation with a multilayer hollow microcapsule for effective drug delivery and light triggered drug release. J Mater Chem B 2023; 12:176-186. [PMID: 38055010 DOI: 10.1039/d3tb01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
In recent years, nanomotors have been developed and attracted extensive attention in biomedical applications. In this work, a magnetically-guided oxygen-propelled CoPt/gold nanosheet motor (NSM) was prepared and used as an active self-propelled platform that can load, transfer and control the release of drug carrier to cancer cells. As a drug carrier, the microcapsules were constructed by the layer-by-layer (LbL) coating of chitosan and carboxymethyl cellulose layers, followed by incorporation of gold and magnetite nanoparticles. Doxorubicin (DOX) as an anti-cancer drug was loaded onto the synthesized microcapsules with a loading efficiency of 77%. The prepared NSMs can deliver the DOX loaded magnetic multilayer microcapsule to the target cancer cell based on the catalytic decomposition of H2O2 solution (1% v/v) via guidance from an external magnetic force. The velocity of NSM was determined to be 25.1 μm s-1 in 1% H2O2. Under near-infrared irradiation, and due to the photothermal effect of the gold nanoparticles, the proposed system was found to rapidly release more drugs compared to that of an internal stimulus diffusion process. Moreover, the investigation of cytotoxicity of NSMs and multilayer microcapsules clearly revealed that they have negligible side effects over all the concentrations tested.
Collapse
Affiliation(s)
| | | | - Kamran Mansouri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
15
|
Kou Y, Liu X, Ma X, Xiang Y, Zang J. Learning-based intelligent trajectory planning for auto navigation of magnetic robots. Front Robot AI 2023; 10:1281362. [PMID: 38149059 PMCID: PMC10750377 DOI: 10.3389/frobt.2023.1281362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction: Electromagnetically controlled small-scale robots show great potential in precise diagnosis, targeted delivery, and minimally invasive surgery. The automatic navigation of such robots could reduce human intervention, as well as the risk and difficulty of surgery. However, it is challenging to build a precise kinematics model for automatic robotic control because the controlling process is affected by various delays and complex environments. Method: Here, we propose a learning-based intelligent trajectory planning strategy for automatic navigation of magnetic robots without kinematics modeling. The Long Short-Term Memory (LSTM) neural network is employed to establish a global mapping relationship between the current sequence in the electromagnetic actuation system and the trajectory coordinates. Result: We manually control the robot to move on a curved path 50 times to form the training database to train the LSTM network. The trained LSTM network is validated to output the current sequence for automatically controlling the magnetic robot to move on the same curved path and the tortuous and branched new paths in simulated vascular tracks. Discussion: The proposed trajectory planning strategy is expected to impact the clinical applications of robots.
Collapse
Affiliation(s)
- Yuanshi Kou
- Laboratory for Soft intelligent Materials and Devices, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
| | - Xurui Liu
- Laboratory for Soft intelligent Materials and Devices, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaotian Ma
- Laboratory for Soft intelligent Materials and Devices, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanzhuo Xiang
- Wuhan National Laboratory for Optoelectronics, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
| | - Jianfeng Zang
- Laboratory for Soft intelligent Materials and Devices, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
- Wuhan National Laboratory for Optoelectronics, School of Integrated Circuit, Huazhong University of Science and Technology, Wuhan, China
- State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Song YR, Song ZW, Wu JK, Li ZY, Gu XF, Wang C, Wang L, Liang JG. Focus on the performance enhancement of micro/nanomotor-based biosensors. Biosens Bioelectron 2023; 241:115686. [PMID: 37729810 DOI: 10.1016/j.bios.2023.115686] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/22/2023]
Abstract
Micro/nanomotors (MNMs) emerge as a vital candidate for biosensing due to its nano-size structure, high surface-to-area ratio, directional mobility, biocompatibility, and ease of functionalization, therefore being able to detect objects with high efficiency, precision, and selectivity. The driving mode, nanostructure, materials property, preparation technique, and biosensing applications have been thoroughly discussed in publications. To promote the MNMs-based biosensors from in vitro to in vivo, it is necessary to give a comprehensive discussion from the perspective of sensing performances enhancement. However, until now, there is few reviews dedicated to the systematic discussion on the multiple performance enhancement schemes and the current challenges of MNMs-based biosensors. Bearing it in mind and based on our research experience in this field, we summarized the enhancement methods for biosensing properties such as sensitivity, selectivity, detection time, biocompatibility, simplify system operation, and environmental availability. We hope that this review provides the readers with fundamental understanding on performance enhancement schemes for MNMs-based biosensors.
Collapse
Affiliation(s)
- Yi-Ran Song
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zi-Wei Song
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jia-Kang Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhe-Yi Li
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, China
| | - Xiao-Feng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Wang
- Department of Microwave Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute (LSMRI), Qingdao, 266237, China.
| | - Jun-Ge Liang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Wang Q, Yang S, Zhang L. Untethered Micro/Nanorobots for Remote Sensing: Toward Intelligent Platform. NANO-MICRO LETTERS 2023; 16:40. [PMID: 38032461 PMCID: PMC10689342 DOI: 10.1007/s40820-023-01261-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Untethered micro/nanorobots that can wirelessly control their motion and deformation state have gained enormous interest in remote sensing applications due to their unique motion characteristics in various media and diverse functionalities. Researchers are developing micro/nanorobots as innovative tools to improve sensing performance and miniaturize sensing systems, enabling in situ detection of substances that traditional sensing methods struggle to achieve. Over the past decade of development, significant research progress has been made in designing sensing strategies based on micro/nanorobots, employing various coordinated control and sensing approaches. This review summarizes the latest developments on micro/nanorobots for remote sensing applications by utilizing the self-generated signals of the robots, robot behavior, microrobotic manipulation, and robot-environment interactions. Providing recent studies and relevant applications in remote sensing, we also discuss the challenges and future perspectives facing micro/nanorobots-based intelligent sensing platforms to achieve sensing in complex environments, translating lab research achievements into widespread real applications.
Collapse
Affiliation(s)
- Qianqian Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing, 211189, People's Republic of China.
| | - Shihao Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
- Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong, 999077, People's Republic of China.
| |
Collapse
|
18
|
Guo Z, Zhuang C, Song Y, Yong J, Li Y, Guo Z, Kong B, Whitelock JM, Wang J, Liang K. Biocatalytic Buoyancy-Driven Nanobots for Autonomous Cell Recognition and Enrichment. NANO-MICRO LETTERS 2023; 15:236. [PMID: 37874411 PMCID: PMC10597912 DOI: 10.1007/s40820-023-01207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/01/2023] [Indexed: 10/25/2023]
Abstract
Autonomously self-propelled nanoswimmers represent the next-generation nano-devices for bio- and environmental technology. However, current nanoswimmers generate limited energy output and can only move in short distances and duration, thus are struggling to be applied in practical challenges, such as living cell transportation. Here, we describe the construction of biodegradable metal-organic framework based nanobots with chemically driven buoyancy to achieve highly efficient, long-distance, directional vertical motion to "find-and-fetch" target cells. Nanobots surface-functionalized with antibodies against the cell surface marker carcinoembryonic antigen are exploited to impart the nanobots with specific cell targeting capacity to recognize and separate cancer cells. We demonstrate that the self-propelled motility of the nanobots can sufficiently transport the recognized cells autonomously, and the separated cells can be easily collected with a customized glass column, and finally regain their full metabolic potential after the separation. The utilization of nanobots with easy synthetic pathway shows considerable promise in cell recognition, separation, and enrichment.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Chenchen Zhuang
- General Intensive Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yihang Song
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China
| | - Joel Yong
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yi Li
- School/Hospital of Stomatology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Zhong Guo
- Medical College, Northwest Minzu University, Lanzhou, 730000, People's Republic of China.
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - John M Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering, Australian Centre for NanoMedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
19
|
Fujino T, Matsuo M, Pimienta V, Nakata S. Oscillatory Motion of an Organic Droplet Reflecting a Reaction Scheme. J Phys Chem Lett 2023; 14:9279-9284. [PMID: 37815116 DOI: 10.1021/acs.jpclett.3c02130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
An organic droplet containing thymol acetate (TA) floating on a sodium dodecyl sulfate aqueous phase was examined to develop a novel self-propelled object based on reaction kinetics. Two types of oscillatory motion, without back-and-forth motion (Osc I) and with back-and-forth motion (Osc II), were observed by varying the pH of the aqueous phase. The oscillation frequency reached its maximum at pH 9.6, coinciding with the occurrence of Osc II. The kinetics of the hydrolysis of TA as a reactant and the acid-base equilibrium between thymol (TOH) and the thymolate ion (TO-) as products were evaluated experimentally. The driving force of motion was discussed on the basis of the interfacial tension. The pH dependence of the oscillation frequency and the selection of Osc I or II were attributed to the equilibrium between the TOH and TO-. These results highlight the possibility of designing self-propulsion systems by considering reaction kinetics and chemical properties.
Collapse
Affiliation(s)
- Takuya Fujino
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Muneyuki Matsuo
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Véronique Pimienta
- Laboratoire des IMRCP, Université de Toulouse, CNRS UMR 5623, Université Toulouse III - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
20
|
Liu J, Huang Z, Yue H, Zhuang R, Li L, Chang X, Zhou D. A magnetic field-driven multi-functional "medical ship" for intestinal tissue collection in vivo. NANOSCALE 2023; 15:15831-15839. [PMID: 37743755 DOI: 10.1039/d3nr03770c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The incidence of intestinal cancer has risen significantly. Because of the many challenges posed by the complex environment of the intestine, it is difficult to diagnose accurately and painlessly using conventional methods, which requires the development of new body-friendly diagnostic methods. Micro- and nanomotors show great potential for biomedical applications in restricted environments. However, the difficulty of recycling has been a constraint in the collection of biological tissues for diagnostic purposes. Here, we propose a multi-functional "medical ship" (MFMS) that can be rapidly driven by a magnetic field and can reversibly "open" and "close" its internal storage space under NIR laser irradiation. It provides a transportation and recovery platform for micro- and nanomotors and cargoes. In addition, fast selection of the MFMS and magnetic nanoparticles (MNPs) can be realized through adjusting the strength and frequency of the external magnetic field. Rapid encapsulation of intestinal tissues by MNPs was achieved using a low-frequency rotating magnetic field. In addition, we demonstrated the controlled release of MNPs using the MFMS and the collection of intestinal tissues. The proposed MFMS is an intelligent and controllable transportation platform with a simple structure, which is expected to be a new tool for performing medical tasks within the digestive system.
Collapse
Affiliation(s)
- Junmin Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Zhiyuan Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Honger Yue
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Rencheng Zhuang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Longqiu Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | - Xiaocong Chang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, China
| | - Dekai Zhou
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
- Chongqing Research Institute of Harbin Institute of Technology, Chongqing, 400722, China
| |
Collapse
|
21
|
You Q, Shao X, Wang J, Chen X. Progress on Physical Field-Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. SMALL METHODS 2023; 7:e2300426. [PMID: 37391275 DOI: 10.1002/smtd.202300426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Cardiovascular and cerebrovascular diseases (CCVDs) are two major vasculature-related diseases that seriously affect public health worldwide, which can cause serious death and disability. Lack of targeting effect of the traditional CCVD treatment drugs may damage other tissues and organs, thus more specific methods are needed to solve this dilemma. Micro/nanomotors are new materials that can convert external energy into driving force for autonomous movement, which can not only enhance the penetration depth and retention rates, but also increase the contact areas with the lesion sites (such as thrombus and inflammation sites of blood vessels). Physical field-regulated micro/nanomotors using the physical energy sources with deep tissue penetration and controllable performance, such as magnetic field, light, and ultrasound, etc. are considered as the emerging patient-friendly and effective therapeutic tools to overcome the limitations of conventional CCVD treatments. Recent efforts have suggested that physical field-regulated micro/nanomotors on CCVD treatments could simultaneously provide efficient therapeutic effect and intelligent control. In this review, various physical field-driven micro/nanomotors are mainly introduced and their latest advances for CCVDs are highlighted. Last, the remaining challenges and future perspectives regarding the physical field-regulated micro/nanomotors for CCVD treatments are discussed and outlined.
Collapse
Affiliation(s)
- Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xinyue Shao
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore
| |
Collapse
|
22
|
Jiang L, Liu X, Zhao D, Guo J, Ma X, Wang Y. Intelligent sensing based on active micro/nanomotors. J Mater Chem B 2023; 11:8897-8915. [PMID: 37667977 DOI: 10.1039/d3tb01163a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
In the microscopic world, synthetic micro/nanomotors (MNMs) can convert a variety of energy sources into driving forces to help humans perform a number of complex tasks with greater ease and efficiency. These tiny machines have attracted tremendous attention in the field of drug delivery, minimally invasive surgery, in vivo sampling, and environmental management. By modifying their surface materials and functionalizing them with bioactive agents, these MNMs can also be transformed into dynamic micro/nano-biosensors that can detect biomolecules in real-time with high sensitivity. The extensive range of operations and uses combined with their minuscule size have opened up new avenues for tackling intricate analytical difficulties. Here, in this review, various driving methods are briefly introduced, followed by a focus on intelligent detection techniques based on MNMs. And we discuss the distinctive advantages, current issues, and challenges associated with MNM-based intelligent detection. It is believed that the future advancements of MNMs will greatly impact the diagnosis, treatment, and prevention of diseases.
Collapse
Affiliation(s)
- Lingfeng Jiang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoxia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Dongfang Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Jinhong Guo
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Yong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Mundaca-Uribe R, Askarinam N, Fang RH, Zhang L, Wang J. Towards multifunctional robotic pills. Nat Biomed Eng 2023:10.1038/s41551-023-01090-6. [PMID: 37723325 DOI: 10.1038/s41551-023-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Robotic pills leverage the advantages of oral pharmaceutical formulations-in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance-as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills-specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets-summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.
Collapse
Affiliation(s)
- Rodolfo Mundaca-Uribe
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Nelly Askarinam
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
24
|
Lu Q, Yu H, Zhao T, Zhu G, Li X. Nanoparticles with transformable physicochemical properties for overcoming biological barriers. NANOSCALE 2023; 15:13202-13223. [PMID: 37526946 DOI: 10.1039/d3nr01332d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In recent years, tremendous progress has been made in the development of nanomedicines for advanced therapeutics, yet their unsatisfactory targeting ability hinders the further application of nanomedicines. Nanomaterials undergo a series of processes, from intravenous injection to precise delivery at target sites. Each process faces different or even contradictory requirements for nanoparticles to pass through biological barriers. To overcome biological barriers, researchers have been developing nanomedicines with transformable physicochemical properties in recent years. Physicochemical transformability enables nanomedicines to responsively switch their physicochemical properties, including size, shape, surface charge, etc., thus enabling them to cross a series of biological barriers and achieve maximum delivery efficiency. In this review, we summarize recent developments in nanomedicines with transformable physicochemical properties. First, the biological dilemmas faced by nanomedicines are analyzed. Furthermore, the design and synthesis of nanomaterials with transformable physicochemical properties in terms of size, charge, and shape are summarized. Other switchable physicochemical parameters such as mobility, roughness and mechanical properties, which have been sought after most recently, are also discussed. Finally, the prospects and challenges for nanomedicines with transformable physicochemical properties are highlighted.
Collapse
Affiliation(s)
- Qianqian Lu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Hongyue Yu
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Tiancong Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | - Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China.
| | - Xiaomin Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
25
|
Voß J, Wittkowski R. Dependence of the acoustic propulsion of nano- and microcones on their orientation and aspect ratio. Sci Rep 2023; 13:12858. [PMID: 37553408 PMCID: PMC10409789 DOI: 10.1038/s41598-023-39231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/21/2023] [Indexed: 08/10/2023] Open
Abstract
Recent research revealed the orientation-dependent propulsion of a cone-shaped colloidal particle that is exposed to a planar traveling ultrasound wave. Here, we extend the previous research by considering nano- and microcones with different aspect ratios and studying how the propulsion of a particle depends on its orientation and aspect ratio. We also study how the orientation-averaged propulsion of a cone-shaped particle, which corresponds to an isotropic ultrasound field, depends on its aspect ratio and identify an aspect ratio of 1/2 where the orientation-averaged propulsion is particularly strong. To make our simulation results easier reusable for follow-up research, we provide a corresponding simple analytic representation.
Collapse
Affiliation(s)
- Johannes Voß
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149, Münster, Germany.
| |
Collapse
|
26
|
Kong X, Gao P, Wang J, Fang Y, Hwang KC. Advances of medical nanorobots for future cancer treatments. J Hematol Oncol 2023; 16:74. [PMID: 37452423 PMCID: PMC10347767 DOI: 10.1186/s13045-023-01463-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Early detection and diagnosis of many cancers is very challenging. Late stage detection of a cancer always leads to high mortality rates. It is imperative to develop novel and more sensitive and effective diagnosis and therapeutic methods for cancer treatments. The development of new cancer treatments has become a crucial aspect of medical advancements. Nanobots, as one of the most promising applications of nanomedicines, are at the forefront of multidisciplinary research. With the progress of nanotechnology, nanobots enable the assembly and deployment of functional molecular/nanosized machines and are increasingly being utilized in cancer diagnosis and therapeutic treatment. In recent years, various practical applications of nanobots for cancer treatments have transitioned from theory to practice, from in vitro experiments to in vivo applications. In this paper, we review and analyze the recent advancements of nanobots in cancer treatments, with a particular emphasis on their key fundamental features and their applications in drug delivery, tumor sensing and diagnosis, targeted therapy, minimally invasive surgery, and other comprehensive treatments. At the same time, we discuss the challenges and the potential research opportunities for nanobots in revolutionizing cancer treatments. In the future, medical nanobots are expected to become more sophisticated and capable of performing multiple medical functions and tasks, ultimately becoming true nanosubmarines in the bloodstream.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Peng Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Division of Breast Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Yi Fang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Kuo Chu Hwang
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan ROC.
| |
Collapse
|
27
|
Li T, Yu S, Sun B, Li Y, Wang X, Pan Y, Song C, Ren Y, Zhang Z, Grattan KTV, Wu Z, Zhao J. Bioinspired claw-engaged and biolubricated swimming microrobots creating active retention in blood vessels. SCIENCE ADVANCES 2023; 9:eadg4501. [PMID: 37146139 PMCID: PMC10162671 DOI: 10.1126/sciadv.adg4501] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Swimming microrobots guided in the circulation system offer considerable promise in precision medicine but currently suffer from problems such as limited adhesion to blood vessels, intensive blood flow, and immune system clearance-all reducing the targeted interaction. A swimming microrobot design with clawed geometry, a red blood cell (RBC) membrane-camouflaged surface, and magnetically actuated retention is discussed, allowing better navigation and inspired by the tardigrade's mechanical claw engagement, coupled to an RBC membrane coating, to minimize blood flow impact. Using clinical intravascular optical coherence tomography in vivo, the microrobots' activity and dynamics in a rabbit jugular vein was monitored, illustrating very effective magnetic propulsion, even against a flow of ~2.1 cm/s, comparable with rabbit blood flow characteristics. The equivalent friction coefficient with magnetically actuated retention is elevated ~24-fold, compared to magnetic microspheres, achieving active retention at 3.2 cm/s, for >36 hours, showing considerable promise across biomedical applications.
Collapse
Affiliation(s)
- Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Shimin Yu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xinlong Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery (Ministry of Education), the First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yunlu Pan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Chunlei Song
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Yukun Ren
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Kenneth T V Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- School of Science and Technology, University of London, London EC1V 0HB, UK
| | - Zhiguang Wu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
- Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
28
|
Feng A, Cheng X, Huang X, Liu Y, He Z, Zhao J, Duan H, Shi Z, Guo J, Wang S, Yan X. Engineered Organic Nanorockets with Light-Driven Ultrafast Transportability for Antitumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206426. [PMID: 36840673 DOI: 10.1002/smll.202206426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/05/2023] [Indexed: 05/25/2023]
Abstract
Nanomedicines confront various complicated physiological barriers limiting the accumulation and deep penetration in the tumor microenvironment, which seriously restricts the efficacy of antitumor therapy. Self-propelled nanocarriers assembled with kinetic engines can translate external energy into orientated motion for tumor penetration. However, achieving a stable ultrafast permeability at the tumor site remains challenging. Here, sub-200 nm photoactivated completely organic nanorockets (NRs), with asymmetric geometry conveniently assembled from photothermal semiconducting polymer payload and thermo-driven macromolecular propulsion through a straightforward nanoprecipitation process, are presented. The artificial NRs can be remotely manipulated by 808 nm near-infrared light to trigger the photothermal conversion and Curtius rearrangement reaction within the particles for robustly pushing nitrogen out into the solution. Such a two-stage light-to-heat-to-chemical energy transition effectively powers the NRs for an ultrafast (≈300 µm s-1 ) and chemical medium-independent self-propulsion in the liquid media. That endows the NRs with high permeability against physiological barriers in the tumor microenvironment to directionally deliver therapeutic agents to target lesions for elevating tumor accumulation, deep penetration, and cellular uptake, resulting in a significant enhancement of antitumor efficacy. This work will inspire the design of advanced kinetic systems for powering intelligent nanomachines in biomedical applications.
Collapse
Affiliation(s)
- Ao Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xie Cheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xing Huang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yang Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhaoxia He
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Juan Zhao
- Research Centre of Modern Analysis Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Huiyan Duan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Zhiqing Shi
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shuai Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xibo Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
29
|
Xie D, Fu S, Fu D, Chen B, He W, Liang H, Tu Y, Wilson DA, Peng F. Adaptive particle patterning in the presence of active synthetic nanomotors. NANOSCALE 2023; 15:6619-6628. [PMID: 36951243 DOI: 10.1039/d3nr00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For the maintenance of a biological system, spatial organization of material condensates within the cell through the dissipation of energy is crucial. Besides directed transport via microtubules, material arrangement can be achieved via motor protein facilitated adaptive active diffusiophoresis. For example, the distribution of membrane proteins during the cell division of Escherichia coli is affected by the MinD system. Synthetic active motors exhibit the ability to simulate natural motors. Here we propose an active Au-Zn nanomotor driven by water and discovered an interesting adaptive interaction mode of the diffusiophoretic Au-Zn nanomotors with passive condensate particles in different environments. It is found that the attraction/repulsion between the nanomotor and passive particles is adaptive, while an interesting hollow pattern is formed with a negatively charged substrate and a cluster pattern is favored with a positively charged substrate.
Collapse
Affiliation(s)
- Dazhi Xie
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shaoming Fu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dongmei Fu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haiying Liang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingfeng Tu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Nijmegen, 6525 AJ, The Netherlands
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
30
|
Jiang J, Wang F, Huang W, Sun J, Ye Y, Ou J, Liu M, Gao J, Wang S, Fu D, Chen B, Liu L, Peng F, Tu Y. Mobile mechanical signal generator for macrophage polarization. EXPLORATION (BEIJING, CHINA) 2023; 3:20220147. [PMID: 37324036 PMCID: PMC10190931 DOI: 10.1002/exp.20220147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/08/2023] [Indexed: 06/17/2023]
Abstract
The importance of mechanical signals in regulating the fate of macrophages is gaining increased attention recently. However, the recently used mechanical signals normally rely on the physical characteristics of matrix with non-specificity and instability or mechanical loading devices with uncontrollability and complexity. Herein, we demonstrate the successful fabrication of self-assembled microrobots (SMRs) based on magnetic nanoparticles as local mechanical signal generators for precise macrophage polarization. Under a rotating magnetic field (RMF), the propulsion of SMRs occurs due to the elastic deformation via magnetic force and hydrodynamics. SMRs perform wireless navigation toward the targeted macrophage in a controllable manner and subsequently rotate around the cell for mechanical signal generation. Macrophages are eventually polarized from M0 to anti-inflammatory related M2 phenotypes by blocking the Piezo1-activating protein-1 (AP-1)-CCL2 signaling pathway. The as-developed microrobot system provides a new platform of mechanical signal loading for macrophage polarization, which holds great potential for precise regulation of cell fate.
Collapse
Affiliation(s)
- Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Weichang Huang
- Department of Critical Care Medicine, Dongguan Institute of Respiratory and Critical Care MedicineAffiliated Dongguan HospitalSouthern Medical UniversityDongguanChina
| | - Jia Sun
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Juanfeng Ou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Meihuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Shuanghu Wang
- The Laboratory of Clinical PharmacyThe Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of LishuiLishuiChina
| | - Dongmei Fu
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhouChina
| | - Bin Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Lu Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhouChina
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
31
|
Zhang J, Zhang K, Hao Y, Yang H, Wang J, Zhang Y, Zhao W, Ma S, Mao C. Polydopamine nanomotors loaded indocyanine green and ferric ion for photothermal and photodynamic synergistic therapy of tumor. J Colloid Interface Sci 2023; 633:679-690. [PMID: 36473358 DOI: 10.1016/j.jcis.2022.11.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The limited penetration depth of nanodrugs in the tumor and the severe hypoxia inside the tumor significantly reduce the efficacy of photothermal-photodynamic synergistic therapy (PTT-PDT). Here, we synthesized a methoxypolyethylene glycol amine (mPEG-NH2)-modified walnut-shaped polydopamine nanomotor (PDA-PEG) driven by near-infrared light (NIR). At the same time, it also loaded the photosensitizer indocyanine green (ICG) via electrostatic/hydrophobicinteractions and chelated with ferric ion (Fe3+). Under the irradiation of NIR, the asymmetry of PDA-PEG morphology led to the asymmetry of local photothermal effects and the formation of thermal gradient, which can make the nanomotor move autonomously. This ability of autonomous movement was proved to be used to improve the permeability of the nanomotor in three-dimensional (3D) tumor sphere. Fe3+ can catalyze endogenous hydrogen peroxide to produce oxygen, so as to overcome the hypoxia of tumor microenvironment and thereby generate more singlet oxygen to kill tumor cells. Animal experiments in vivo confirmed that the nanomotors had a good PTT-PDT synergistic treatment effect. The introduction of nanomotor technology has brought new ideas for cancer optical therapy.
Collapse
Affiliation(s)
- Jinzha Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Ke Zhang
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Yijie Hao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongna Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Shenglin Ma
- Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Bio Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| |
Collapse
|
32
|
Medical micro- and nanomotors in the body. Acta Pharm Sin B 2023; 13:517-541. [PMID: 36873176 PMCID: PMC9979267 DOI: 10.1016/j.apsb.2022.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/24/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Attributed to the miniaturized body size and active mobility, micro- and nanomotors (MNMs) have demonstrated tremendous potential for medical applications. However, from bench to bedside, massive efforts are needed to address critical issues, such as cost-effective fabrication, on-demand integration of multiple functions, biocompatibility, biodegradability, controlled propulsion and in vivo navigation. Herein, we summarize the advances of biomedical MNMs reported in the past two decades, with particular emphasis on the design, fabrication, propulsion, navigation, and the abilities of biological barriers penetration, biosensing, diagnosis, minimally invasive surgery and targeted cargo delivery. Future perspectives and challenges are discussed as well. This review can lay the foundation for the future direction of medical MNMs, pushing one step forward on the road to achieving practical theranostics using MNMs.
Collapse
|
33
|
Shivalkar S, Chowdhary P, Afshan T, Chaudhary S, Roy A, Samanta SK, Sahoo AK. Nanoengineering of biohybrid micro/nanobots for programmed biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113054. [PMID: 36446238 DOI: 10.1016/j.colsurfb.2022.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Biohybrid micro/nanobots have emerged as an innovative resource to be employed in the biomedical field due to their biocompatible and biodegradable properties. These are tiny nanomaterial-based integrated structures engineered in a way that they can move autonomously and perform the programmed tasks efficiently even at hard-to-reach organ/tissues/cellular sites. The biohybrid micro/nanobots can either be cell/bacterial/enzyme-based or may mimic the properties of an active molecule. It holds the potential to change the landscape in various areas of biomedical including early diagnosis of disease, therapeutics, imaging, or precision surgery. The propulsion mechanism of the biohybrid micro/nanobots can be both fuel-based and fuel-free, but the most effective and easiest way to propel these micro/nanobots is via enzymes. Micro/nanobots possess the feature to adsorb/functionalize chemicals or drugs at their surfaces thus offering the scope of delivering drugs at the targeted locations. They also have shown immense potential in intracellular sensing of biomolecules and molecular events. Moreover, with recent progress in the material development and processing is required for enhanced activity and robustness the fabrication is done via various advanced techniques to avoid self-degradation and cause cellular toxicity during autonomous movement in biological medium. In this review, various approaches of design, architecture, and performance of such micro/nanobots have been illustrated along with their potential applications in controlled cargo release, therapeutics, intracellular sensing, and bioimaging. Furthermore, it is also foregrounding their advancement offering an insight into their future scopes, opportunities, and challenges involved in advanced biomedical applications.
Collapse
Affiliation(s)
- Saurabh Shivalkar
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| | - Pallabi Chowdhary
- Department of Biotechnology, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Tayyaba Afshan
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Shrutika Chaudhary
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Anwesha Roy
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
34
|
Liang H, Peng F, Tu Y. Active therapy based on the byproducts of micro/nanomotors. NANOSCALE 2023; 15:953-962. [PMID: 36537366 DOI: 10.1039/d2nr05818a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Different from traditional colloidal particles based on Brownian motion, micro/nanomotors are micro/nanoscale devices capable of performing complex tasks in liquid media via transforming various energy sources into mechanical motion or actuation. Such unique self-propulsion endows motors with fantastic capabilities to access and enter the deep layer of targeted diseased tissue, which in turn breaks through the limitation of the poor permeability of traditional pharmaceutical preparations, thus providing giant prospects for active therapy. It is noteworthy that recently several studies, which utilized the byproducts generated in situ by micro/nanomotors to achieve active therapy, in a truly green zero-waste manner, have been carried out. In this minireview, we highlight the recent efforts with respect to active therapy based on the byproducts of micro/nanomotors, expecting to motivate readers to expand the practical biomedical application scope of micro/nanomotors in a broader horizon. Accompanied by ever booming enthusiasm and persevering exploration, micro/nanomotors are on their way to revolutionize conventional fields.
Collapse
Affiliation(s)
- Haiying Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
35
|
Zhang J, Laskar A, Song J, Shklyaev OE, Mou F, Guan J, Balazs AC, Sen A. Light-Powered, Fuel-Free Oscillation, Migration, and Reversible Manipulation of Multiple Cargo Types by Micromotor Swarms. ACS NANO 2023; 17:251-262. [PMID: 36321936 DOI: 10.1021/acsnano.2c07266] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Through experiments and simulations, we show that fuel-free photoactive TiO2 microparticles can form mobile, coherent swarms in the presence of UV light, which track the subsequent movement of an irradiated spot in a fluid-filled microchamber. Multiple concurrent propulsion mechanisms (electrolyte diffusioosmotic swarming, photocatalytic expansion, and photothermal migration) control the rich collective behavior of the swarms, which provide a strategy to reversely manipulate cargo. The active swarms can autonomously pick up groups of inert particles, sort them by size, and sequentially release the sorted particles at particular locations in the microchamber. Hence, these swarms overcome three obstacles, limiting the utility of self-propelled particles. Namely, they can (1) undergo directed, long-range migration without the addition of a chemical fuel, (2) perform diverse collective behavior not possible with a single active particle, and (3) repeatedly and controllably isolate and deliver specific components of a multiparticle "cargo". Since light sources are easily fabricated, transported, and controlled, the results can facilitate the development of portable devices, providing broader access to the diagnostic and manufacturing advances enabled by microfluidics.
Collapse
Affiliation(s)
- Jianhua Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Abhrajit Laskar
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Fangzhi Mou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Anna C Balazs
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
36
|
Wang Y, Shen J, Handschuh-Wang S, Qiu M, Du S, Wang B. Microrobots for Targeted Delivery and Therapy in Digestive System. ACS NANO 2023; 17:27-50. [PMID: 36534488 DOI: 10.1021/acsnano.2c04716] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Untethered miniature robots enable targeted delivery and therapy deep inside the gastrointestinal tract in a minimally invasive manner. By combining actuation systems and imaging tools, significant progress has been made toward the development of functional microrobots. These robots can be actuated by external fields and fuels while featuring real-time tracking feedback toward certain regions and can perform the therapeutic process by rational exertion of the local environment of the gastrointestinal tract (e.g., pH, enzyme). Compared with conventional surgical tools, such as endoscopic devices and catheters, miniature robots feature minimally invasive diagnosis and treatment, multifunctionality, high safety and adaptivity, embodied intelligence, and easy access to tortuous and narrow lumens. In addition, the active motion of microrobots enhances local penetration and retention of drugs in tissues compared to common passive oral drug delivery. Based on the dissimilar microenvironments in the various sections of the gastrointestinal tract, this review introduces the advances of miniature robots for minimally invasive targeted delivery and therapy of diseases along the gastrointestinal tract. The imaging modalities for the tracking and their application scenarios are also discussed. We finally evaluate the challenges and barriers that retard their applications and hint on future research directions in this field.
Collapse
Affiliation(s)
- Yun Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen518036, P.R. China
| | - Stephan Handschuh-Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen518055, P.R. China
| |
Collapse
|
37
|
Song X, Qian R, Li T, Fu W, Fang L, Cai Y, Guo H, Xi L, Cheang UK. Imaging-Guided Biomimetic M1 Macrophage Membrane-Camouflaged Magnetic Nanorobots for Photothermal Immunotargeting Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56548-56559. [PMID: 36521052 DOI: 10.1021/acsami.2c16457] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biohybrid micro/nanorobots have demonstrated improved therapeutic outcomes for targeting and treating diseases in preclinical trials. However, in vivo applications remain challenging due to a lack of sufficient targeting. Based on evidence that immune cells play a role in the immune modulation in the tumor microenvironment, we developed M1 macrophage membrane-coated magnetic photothermal nanocomplexes (MPN) for photoacoustic (PA) imaging-guided tumor therapy. The MPN were able to inherit the protein from the original macrophage cells and exert a targeted immunosuppression role. Integrating black phosphorus quantum dots and DOX also greatly enhanced reactive oxygen species generation and chemo-phototherapy efficacy. The results suggest that the MPN can be employed as an excellent tumor immunotargeting nanorobotic platform for modulating the tumor microenvironment under PA imaging and magnetic guidance and, thus, exert synergistic therapeutic efficacies.
Collapse
Affiliation(s)
- Xiaoxia Song
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongxin Qian
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tingting Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Wei Fu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lijun Fang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuzhen Cai
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Lei Xi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - U Kei Cheang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
38
|
Xu G, Du X, Wang W, Qu Y, Liu X, Zhao M, Li W, Li YQ. Plasmonic Nanozymes: Leveraging Localized Surface Plasmon Resonance to Boost the Enzyme-Mimicking Activity of Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204131. [PMID: 36161698 DOI: 10.1002/smll.202204131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, a type of nanomaterials that function similarly to natural enzymes, receive extensive attention in biomedical fields. However, the widespread applications of nanozymes are greatly plagued by their unsatisfactory enzyme-mimicking activity. Localized surface plasmon resonance (LSPR), a nanoscale physical phenomenon described as the collective oscillation of surface free electrons in plasmonic nanoparticles under light irradiation, offers a robust universal paradigm to boost the catalytic performance of nanozymes. Plasmonic nanozymes (PNzymes) with elevated enzyme-mimicking activity by leveraging LSPR, emerge and provide unprecedented opportunities for biocatalysis. In this review, the physical mechanisms behind PNzymes are thoroughly revealed including near-field enhancement, hot carriers, and the photothermal effect. The rational design and applications of PNzymes in biosensing, cancer therapy, and bacterial infections elimination are systematically introduced. Current challenges and further perspectives of PNzymes are also summarized and discussed to stimulate their clinical translation. It is hoped that this review can attract more researchers to further advance the promising field of PNzymes and open up a new avenue for optimizing the enzyme-mimicking activity of nanozymes to create superior nanocatalysts for biomedical applications.
Collapse
Affiliation(s)
- Guopeng Xu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weijie Wang
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yuanyuan Qu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Xiangdong Liu
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Mingwen Zhao
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Weifeng Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan, 250100, China
- Suzhou Research Institute, Shandong University, Suzhou, 215123, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
39
|
Zhang Q, Yan Y, Liu J, Wu Y, He Q. Supramolecular colloidal motors via chemical self-assembly. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Wang J, Dong Y, Ma P, Wang Y, Zhang F, Cai B, Chen P, Liu BF. Intelligent Micro-/Nanorobots for Cancer Theragnostic. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201051. [PMID: 35385160 DOI: 10.1002/adma.202201051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Cancer is one of the most intractable diseases owing to its high mortality rate and lack of effective diagnostic and treatment tools. Advancements in micro-/nanorobot (MNR)-assisted sensing, imaging, and therapeutics offer unprecedented opportunities to develop MNR-based cancer theragnostic platforms. Unlike ordinary nanoparticles, which exhibit Brownian motion in biofluids, MNRs overcome viscous resistance in an ultralow Reynolds number (Re << 1) environment by effective self-propulsion. This unique locomotion property has motivated the advanced design and functionalization of MNRs as a basis for next-generation cancer-therapy platforms, which offer the potential for precise distribution and improved permeation of therapeutic agents. Enhanced barrier penetration, imaging-guided operation, and biosensing are additionally studied to enable the promising cancer-related applications of MNRs. Herein, the recent advances in MNR-based cancer therapy are comprehensively addresses, including actuation engines, diagnostics, medical imaging, and targeted drug delivery; promising research opportunities that can have a profound impact on cancer therapy over the next decade is highlighted.
Collapse
Affiliation(s)
- Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fangyu Zhang
- Department of Nano Engineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bocheng Cai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
41
|
Abstract
Control of self-propelled particles is central to the development of many microrobotic technologies, from dynamically reconfigurable materials to advanced lab-on-a-chip systems. However, there are few physical principles by which particle trajectories can be specified and can be used to generate a wide range of behaviors. Within the field of ray optics, a single principle for controlling the trajectory of light─Snell's law─yields an intuitive framework for engineering a broad range of devices, from microscopes to cameras and telescopes. Here we show that the motion of self-propelled particles gliding across a resistance discontinuity is governed by a variant of Snell's law, and develop a corresponding ray optics for gliders. Just as the ratio of refractive indexes sets the path of a light ray, the ratio of resistance coefficients is shown to determine the trajectories of gliders. The magnitude of refraction depends on the glider's shape, in particular its aspect ratio, which serves as an analogue to the wavelength of light. This enables the demixing of a polymorphic, many-shaped, beam of gliders into distinct monomorphic, single-shaped, beams through a friction prism. In turn, beams of monomorphic gliders can be focused by spherical and gradient friction lenses. Alternatively, the critical angle for total internal reflection can be used to create shape-selective glider traps. Overall our work suggests that furthering the analogy between light and microscopic gliders may be used for sorting, concentrating, and analyzing self-propelled particles.
Collapse
Affiliation(s)
- Tyler D Ross
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California91125, United States
| | - Dino Osmanović
- Center for the Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - John F Brady
- Divisions of Chemistry & Chemical Engineering and Engineering & Applied Science, California Institute of Technology, Pasadena, California91125, United States
| | - Paul W K Rothemund
- Department of Computing and Mathematical Sciences, California Institute of Technology, Pasadena, California91125, United States
| |
Collapse
|
42
|
Uthe B, Sader JE, Pelton M. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:103001. [PMID: 36049471 DOI: 10.1088/1361-6633/ac8e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Standard continuum assumptions commonly used to describe the fluid mechanics of simple liquids have the potential to break down when considering flows at the nanometer scale. Two common assumptions for simple molecular liquids are that (1) they exhibit a Newtonian response, where the viscosity uniquely specifies the linear relationship between the stress and strain rate, and (2) the liquid moves in tandem with the solid at any solid-liquid interface, known as the no-slip condition. However, even simple molecular liquids can exhibit a non-Newtonian, viscoelastic response at the picosecond time scales that are characteristic of the motion of many nanoscale objects; this viscoelasticity arises because these time scales can be comparable to those of molecular relaxation in the liquid. In addition, even liquids that wet solid surfaces can exhibit nanometer-scale slip at those surfaces. It has recently become possible to interrogate the viscoelastic response of simple liquids and associated nanoscale slip using optical measurements of the mechanical vibrations of metal nanoparticles. Plasmon resonances in metal nanoparticles provide strong optical signals that can be accessed by several spectroscopies, most notably ultrafast transient-absorption spectroscopy. These spectroscopies have been used to measure the frequency and damping rate of acoustic oscillations in the nanoparticles, providing quantitative information about mechanical coupling and exchange of mechanical energy between the solid particle and its surrounding liquid. This information, in turn, has been used to elucidate the rheology of viscoelastic simple liquids at the nanoscale in terms of their constitutive relations, taking into account separate viscoelastic responses for both shear and compressible flows. The nanoparticle vibrations have also been used to provide quantitative measurements of slip lengths on the single-nanometer scale. Viscoelasticity has been shown to amplify nanoscale slip, illustrating the interplay between different aspects of the unconventional fluid dynamics of simple liquids at nanometer length scales and picosecond time scales.
Collapse
Affiliation(s)
- Brian Uthe
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| | - John E Sader
- School of Mathematics and Statistics, The University of Melbourne, Victoria 3010, Australia
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), Baltimore, MD 21250, United States of America
| |
Collapse
|
43
|
Zhou H, Dong G, Gao G, Du R, Tang X, Ma Y, Li J. Hydrogel-Based Stimuli-Responsive Micromotors for Biomedicine. CYBORG AND BIONIC SYSTEMS 2022; 2022:9852853. [PMID: 36285306 PMCID: PMC9579945 DOI: 10.34133/2022/9852853] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
The rapid development of medical micromotors draws a beautiful blueprint for the noninvasive or minimally invasive diagnosis and therapy. By combining stimuli-sensitive hydrogel materials, micromotors are bestowed with new characteristics such as stimuli-responsive shape transformation/morphing, excellent biocompatibility and biodegradability, and drug loading ability. Actuated by chemical fuels or external fields (e.g., magnetic field, ultrasound, light, and electric field), hydrogel-based stimuli-responsive (HBSR) micromotors can be utilized to load therapeutic agents into the hydrogel networks or directly grip the target cargos (e.g., drug-loaded particles, cells, and thrombus), transport them to sites of interest (e.g., tumor area and diseased tissues), and unload the cargos or execute a specific task (e.g., cell capture, targeted sampling, and removal of blood clots) in response to a stimulus (e.g., change of temperature, pH, ion strength, and chemicals) in the physiological environment. The high flexibility, adaptive capacity, and shape morphing property enable the HBSR micromotors to complete specific medical tasks in complex physiological scenarios, especially in confined, hard-to-reach tissues, and vessels of the body. Herein, this review summarizes the current progress in hydrogel-based medical micromotors with stimuli responsiveness. The thermo-responsive, photothermal-responsive, magnetocaloric-responsive, pH-responsive, ionic-strength-responsive, and chemoresponsive micromotors are discussed in detail. Finally, current challenges and future perspectives for the development of HBSR micromotors in the biomedical field are discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, China
| | - Guozhao Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ran Du
- School of Materials Science & Engineering, Key Laboratory of High Energy Density Materials of the Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoying Tang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yining Ma
- Department of Forensic Science, Jiangsu Police Institute, Nanjing 210031, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
44
|
Guo Z, Wu Y, Xie Z, Shao J, Liu. J, Yao Y, Wang J, Shen Y, Gooding JJ, Liang K. Self-Propelled Initiative Collision at Microelectrodes with Vertically Mobile Micromotors. Angew Chem Int Ed Engl 2022; 61:e202209747. [PMID: 35946544 PMCID: PMC9805068 DOI: 10.1002/anie.202209747] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 01/09/2023]
Abstract
Impact experiments enable single particle analysis for many applications. However, the effect of the trajectory of a particle to an electrode on impact signals still requires further exploration. Here, we investigate the particle impact measurements versus motion using micromotors with controllable vertical motion. With biocatalytic cascade reactions, the micromotor system utilizes buoyancy as the driving force, thus enabling more regulated interactions with the electrode. With the aid of numerical simulations, the dynamic interactions between the electrode and micromotors are categorized into four representative patterns: approaching, departing, approaching-and-departing, and departing-and-reapproaching, which correspond well with the experimentally observed impact signals. This study offers a possibility of exploring the dynamic interactions between the electrode and particles, shedding light on the design of new electrochemical sensors.
Collapse
Affiliation(s)
- Ziyi Guo
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
| | - Yanfang Wu
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Zhouzun Xie
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - Junming Shao
- School of Materials Science and EngineeringCentral South UniversityChangsha410083China
| | - Jian Liu.
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
| | - Yin Yao
- Electron Microscope UnitThe University of New South WalesSydneyNSW 2052Australia
| | - Joseph Wang
- Department of NanoengineeringUniversity of California San DiegoLa JollaCA 92093USA
| | - Yansong Shen
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| | - J. Justin Gooding
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Kang Liang
- School of Chemical EngineeringThe University of New South WalesSydneyNSW 2052Australia
- Australian Centre for NanoMedicineThe University of New South WalesSydneyNSW 2052Australia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
45
|
Voß J, Wittkowski R. Acoustic Propulsion of Nano- and Microcones: Dependence on the Viscosity of the Surrounding Fluid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10736-10748. [PMID: 35998334 DOI: 10.1021/acs.langmuir.2c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article investigates how the acoustic propulsion of cone-shaped colloidal particles that are exposed to a traveling ultrasound wave depends on the viscosity of the fluid surrounding the particles. Using acoustofluidic computer simulations, we found that the propulsion of such nano- and microcones decreases strongly and even changes sign for increasing shear viscosity. In contrast, we found only a weak dependence of the propulsion on the bulk viscosity. The obtained results are in line with the findings of previous theoretical and experimental studies.
Collapse
Affiliation(s)
- Johannes Voß
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
46
|
Ji H, Hu H, Tang Q, Kang X, Liu X, Zhao L, Jing R, Wu M, Li G, Zhou X, Liu J, Wang Q, Cong H, Wu L, Qin Y. Precisely controlled and deeply penetrated micro-nano hybrid multifunctional motors with enhanced antibacterial activity against refractory biofilm infections. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129210. [PMID: 35739732 DOI: 10.1016/j.jhazmat.2022.129210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The biofilm resistance of microorganisms has severe economic and environmental implications, especially the contamination of facilities associated with human life, including medical implants, air-conditioning systems, water supply systems, and food-processing equipment, resulting in the prevalence of infectious diseases. Once bacteria form biofilms, their antibiotic resistance can increase by 10-1,000-fold, posing a great challenge to the treatment of related diseases. In order to overcome the contamination of bacterial biofilm, destroying the biofilm's matrix so as to solve the penetration depth dilemma of antibacterial agents is the most effective way. Here, a magnetically controlled multifunctional micromotor was developed by using H2O2 as the fuel and MnO2 as the catalyst to treat bacterial biofilm infection. In the presence of H2O2, the as-prepared motors could be self-propelled by the generated oxygen microbubbles. Thereby, the remotely controlled motors could drill into the EPS of biofilm and disrupt them completely with the help of bubbles. Finally, the generated highly toxic •OH could efficiently kill the unprotected bacteria. This strategy combined the mechanical damage, highly toxic •OH, and precise magnetic guidance in one system, which could effectively eliminate biologically infectious fouling in microchannels within 10 min, possessing a wide range of practical application prospects especially in large scale and complex infection sites.
Collapse
Affiliation(s)
- Haiwei Ji
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Haolu Hu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Qu Tang
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Xiaoxia Kang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Xiaodi Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Lingfeng Zhao
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Rongrong Jing
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China
| | - Mingmin Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Guo Li
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Xiaobo Zhou
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Jinxia Liu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Qi Wang
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China
| | - Hui Cong
- Department of Laboratory Medicine, Affiliated hospital of Nantong University, No. 20, Xisi Road, Nantong 226001, Jiangsu, China.
| | - Li Wu
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China.
| | - Yuling Qin
- School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, China.
| |
Collapse
|
47
|
Guo Z, Wu Y, Xie Z, Shao J, Liu J, Yao Y, Wang J, Shen Y, Gooding JJ, Liang K. Self‐Propelled Initiative Collision at Microelectrodes with Vertically Mobile Micromotors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ziyi Guo
- UNSW: University of New South Wales Chemical Engineering AUSTRALIA
| | - Yanfang Wu
- UNSW: University of New South Wales School of Chemistry AUSTRALIA
| | - Zhouzun Xie
- UNSW: University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Junming Shao
- Central South University School of Materials Science and Engineering CHINA
| | - Jian Liu
- UNSW: University of New South Wales School of Chemical Engineering AUSTRALIA
| | - Yin Yao
- UNSW: University of New South Wales Electron Microscope Unit AUSTRALIA
| | - Joseph Wang
- UCSD: University of California San Diego Department of Nanoengineering UNITED STATES
| | - Yansong Shen
- UNSW: University of New South Wales School of Chemical Engineering AUSTRALIA
| | | | - Kang Liang
- UNSW: University of New South Wales School of Chemical Engineering Chemical Sciences Building F10, room 809 2052 Sydney AUSTRALIA
| |
Collapse
|
48
|
Liu X, Chen W, Zhao D, Liu X, Wang Y, Chen Y, Ma X. Enzyme-Powered Hollow Nanorobots for Active Microsampling Enabled by Thermoresponsive Polymer Gating. ACS NANO 2022; 16:10354-10363. [PMID: 35816232 DOI: 10.1021/acsnano.2c00401] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving molecular sample capture at micro/nanoscales while integrating functions of controllable loading and real-time monitoring of cargo molecules is of great significance in the development of intelligent micro/nanorobots. Herein, we prepare a temperature-responsive microsampling nanorobot by encapsulating metal (Au) nanodots inside hollow mesoporous silica nanoparticles and grafting a temperature-responsive polymer, poly(N-isopropylacrylamide), on their external surface. The molecular gate of nanochannels accessing the internal hollow reservoir can be switched between "open" and "closed" states by regulating the temperature, allowing on-demand loading and releasing of small molecules. The internally embedded surface-enhanced Raman scattering hotspots of gold nanodots can serve as sensing probes for real-time detection of the molecular cargo load inside the hollow nanorobots. Furthermore, we demonstrate temperature-dependent self-propulsion behavior of the nanorobots driven by enzymatic reactions. The active motion behavior can favorably regulate the loading efficiency of molecular cargos. In addition, by further introducing the magnetic component Ni, the nanorobots can accomplish effective transportation of cargo molecules by magnetic guidance under real-time Raman monitoring. The current strategy is expected to provide a manipulable nanorobot platform for precise biomedical sampling, which holds promising potential for disease diagnosis or controlled drug delivery in precision medicine.
Collapse
Affiliation(s)
- Xiaojia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Dongfang Zhao
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Xiaoxia Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yong Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Yuduo Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Guangdong, Shenzhen 518055, China
- Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen 518055, China
| |
Collapse
|
49
|
Luthfikasari R, Patil TV, Patel DK, Dutta SD, Ganguly K, Espinal MM, Lim KT. Plant-Actuated Micro-Nanorobotics Platforms: Structural Designs, Functional Prospects, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201417. [PMID: 35801427 DOI: 10.1002/smll.202201417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Plants are anatomically and physiologically different from humans and animals; however, there are several possibilities to utilize the unique structures and physiological systems of plants and adapt them to new emerging technologies through a strategic biomimetic approach. Moreover, plants provide safe and sustainable results that can potentially solve the problem of mass-producing practical materials with hazardous and toxic side effects, particularly in the biomedical field, which requires high biocompatibility. In this review, it is investigated how micro-nanostructures available in plants (e.g., nanoparticles, nanofibers and their composites, nanoporous materials, and natural micromotors) are adapted and utilized in the design of suitable materials for a micro-nanorobot platform. How plants' work on micro- and nanoscale systems (e.g., surface roughness, osmotically induced movements such as nastic and tropic, and energy conversion and harvesting) that are unique to plants, can provide functionality on the platform and become further prospective resources are examined. Furthermore, implementation across organisms and fields, which is promising for future practical applications of the plant-actuated micro-nanorobot platform, especially on biomedical applications, is discussed. Finally, the challenges following its implementation in the micro-nanorobot platform are also presented to provide advanced adaptation in the future.
Collapse
Affiliation(s)
- Rachmi Luthfikasari
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Dinesh K Patel
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Maria Mercedes Espinal
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisiplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| |
Collapse
|
50
|
Nitschke T, Stenhammar J, Wittkowski R. Collective guiding of acoustically propelled nano- and microparticles. NANOSCALE ADVANCES 2022; 4:2844-2856. [PMID: 36132012 PMCID: PMC9417943 DOI: 10.1039/d2na00007e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
One of the most important potential applications of motile nano- and microdevices is targeted drug delivery. To realize this, biocompatible particles that can be guided collectively towards a target inside a patient's body are required. Acoustically propelled nano- and microparticles constitute a promising candidate for such biocompatible, artificial motile particles. The main remaining obstacle to targeted drug delivery by motile nano- and microdevices is to also achieve a reliable and biocompatible method for guiding them collectively to their target. Here, we propose such a method. As we confirm by computer simulations, it allows for the remote guiding of large numbers of acoustically propelled particles to a prescribed target by combining a space- and time-dependent acoustic field and a time-dependent magnetic field. The method works without detailed knowledge about the particle positions and for arbitrary initial particle distributions. With these features, it paves the way for the future application of motile particles as vehicles for targeted drug delivery in nanomedicine.
Collapse
Affiliation(s)
- Tobias Nitschke
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| | - Joakim Stenhammar
- Division of Physical Chemistry, Lund University SE-221 00 Lund Sweden
| | - Raphael Wittkowski
- Institut für Theoretische Physik, Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster 48149 Münster Germany
| |
Collapse
|