1
|
Yao X, Su X, Wang X, Hu X, Hong X. Encapsulating stable perovskite catalysts in hollow nanoreactors for enhanced pollutants degradation. J Colloid Interface Sci 2024; 669:657-666. [PMID: 38733877 DOI: 10.1016/j.jcis.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Creating a microenvironment for enhanced peroxymonosulfate (PMS) activation is vital in advanced oxidation processes. The objective of this study was to fabricate nanoshells composed of titanium dioxide embedded with cobalt titanate nanoparticles of perovskite to act as nanoreactors for effectively initiating PMS and degrading contaminants. The unique porous structure and confined space of the nanoreactor facilitated reactant absorption and mass transfer to the active sites, resulting in exceptional catalytic performance for pollutant elimination. Experimental findings revealed close to 100% decomposition efficiency of 4-chlorophenol (4-CP) within an hour utilizing the nanoreactors over a wide pH range. The TiO2/CoTiO3 hollow nanoshells catalysts also displayed adaptability in disintegrating organic dyes and antibiotics. The radicals SO4•-, •OH, and non-radicals 1O2 were determined to be accountable for eliminating pollutants, as supported by trapping experiments and electron paramagnetic resonance spectra. The catalyst was confirmed as an electron donor and PMS as an electron acceptor through electrochemical tests and density functional theory calculations. This study underscores the potential of incorporating stable perovskite catalysts in hollow nanoreactors to enhance wastewater treatment.
Collapse
Affiliation(s)
- Xiaxi Yao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China; Changshu Research Institute, East China University of Science and Technology, Changshu 215500, PR China.
| | - Xuhui Su
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xuhong Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiuli Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Xuekun Hong
- School of Electronic Information Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| |
Collapse
|
2
|
Elugoke SE, Ganesh P, Kim S, Ebenso EE. Common Transition Metal Oxide Nanomaterials in Electrochemical Sensors for the Diagnosis of Monoamine Neurotransmitter‐Related Disorders. ChemElectroChem 2024; 11. [DOI: 10.1002/celc.202300578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 07/23/2024]
Abstract
AbstractMonoamine neurotransmitters are essential for learning, mental alertness, emotions, and blood flow, among other functions. Fatal neurological disorders that signal the imbalance of these biomolecules in the human system include Parkinson's disease, myocardial infarction, Alzheimer's disease, hypoglycemia, Schizophrenia, and a host of other ailments. The diagnosis of these monoamine neurotransmitter‐related conditions revolves around the development of analytical tools with high sensitivity for the four major monoamine neurotransmitters namely dopamine, epinephrine, norepinephrine, and serotonin. The application of electrochemical sensors made from notable metal oxide nanoparticles or composites containing the metal oxide nanoparticles for the detection of these monoamine neurotransmitters was discussed herein. More importantly, the feasibility of the application of the ZnO, CuO, and TiO2 nanoparticle‐based electrochemical sensors for a comprehensive diagnosis of monoamine neurotransmitter‐related conditions was critically investigated in this review.
Collapse
Affiliation(s)
- Saheed E. Elugoke
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| | - Pattan‐Siddappa Ganesh
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Sang‐Youn Kim
- Interaction Laboratory Advanced Technology Research Center Future Convergence Engineering Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Eno E. Ebenso
- Centre for Material Science College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
- Institute for Nanotechnology and Water Sustainability (iNanoWS) College of Science, Engineering and Technology University of South Africa Johannesburg 1709 South Africa
| |
Collapse
|
3
|
Reza Amani-Ghadim A, Dadkhah S, Abdouss M, Khataee A, Sattari S, Fattahi M. Development of a novel Z-scheme Co xNi 1-xTiO 3/CdS (x = 0.5) photocatalyst for the efficient degradation of organic pollutants via a visible-light-driven photocatalytic process. J Colloid Interface Sci 2024; 663:1035-1051. [PMID: 38452545 DOI: 10.1016/j.jcis.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Herein, for the first time, we reported the synthesis of a novel Z-scheme CoxNi1-xTiO3/CdS (x = 0.5) heterojunction photocatalyst and the investigation of its visible-light-driven photocatalytic performance toward degradation of methylene blue (MB). The developed photocatalyst was structurally characterized by applying X-Ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), differential reflectance spectroscopy (DRS), and photoluminescence (PL) techniques. The results indicated the formation of a highly porous structure with improved visible light adsorption capacity, favorable for the catalytic activity. At an optimum condition of 10 mg/L of MB and 300 mg/L of catalyst, the ternary photocatalyst demonstrated a MB removal efficiency of 99 % after 75 min of the treatment process. The radical trapping experiments unveiled that hydroxyl and superoxide radicals were two main reactive species formed under visible light, while the valance holes possessed an insignificant role. The synergetic impact of the CoxNi1-xTiO3 (x = 0.5) and CdS on the photodegradation of MB over the as-prepared CoxNi1-xTiO3/CdS (x = 0.5) photocatalyst through Z-scheme photocatalysis was indicated by the results of the mechanism studies. The percentage impact of the treatment time, MB concentration, the ratio of CoxNi1-xTiO3/CdS (x = 0.5), and the dosage of catalyst using analysis of the CCD modeling was obtained as 47.04, 16.67, 7.22 and 0.87 %, respectively. Furthermore, the as-synthesized photocatalyst possessed high recyclability and photostability with only a 3 % decline in activity after four repetitive cycles.
Collapse
Affiliation(s)
- Ali Reza Amani-Ghadim
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran; New Technologies in the Environment Research Center, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran.
| | - Shadi Dadkhah
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, 15875-4413 Tehran, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey
| | - Shabnam Sattari
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University (ASMU), Tabriz 53751-71379, Iran
| | - Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam.
| |
Collapse
|
4
|
Zhang T, Zhu J, Xie M, Meng K, Yao G, Pan T, Gao M, Cheng H, Lin Y. Highly Sensitive Wearable Sensor Based on (001)-Orientated TiO 2 for Real-Time Electrochemical Detection of Dopamine, Tyrosine, and Paracetamol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312238. [PMID: 38319031 DOI: 10.1002/smll.202312238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The concentration of dopamine (DA) and tyrosine (Tyr) reflects the condition of patients with Parkinson's disease, whereas moderate paracetamol (PA) can help relieve their pain. Therefore, real-time measurements of these bioanalytes have important clinical implications for patients with Parkinson's disease. However, previous sensors suffer from either limited sensitivity or complex fabrication and integration processes. This work introduces a simple and cost-effective method to prepare high-quality, flexible titanium dioxide (TiO2) thin films with highly reactive (001)-facets. The as-fabricated TiO2 film supported by a carbon cloth electrode (i.e., TiO2-CC) allows excellent electrochemical specificity and sensitivity to DA (1.390 µA µM-1 cm-2), Tyr (0.126 µA µM-1 cm-2), and PA (0.0841 µA µM-1 cm-2). More importantly, accurate DA concentration in varied pH conditions can be obtained by decoupling them within a single differential pulse voltammetry measurement without additional sensing units. The TiO2-CC electrochemical sensor can be integrated into a smart diaper to detect the trace amount of DA or an integrated skin-interfaced patch with microfluidic sampling and wireless transmission units for real-time detection of the sweat Try and PA concentration. The wearable sensor based on TiO2-CC prepared by facile manufacturing methods holds great potential in the daily health monitoring and care of patients with neurological disorders.
Collapse
Affiliation(s)
- Tianyao Zhang
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jia Zhu
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, 324000, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Maowen Xie
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ke Meng
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guang Yao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Taisong Pan
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Min Gao
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yuan Lin
- School of Material and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronics Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
5
|
Chen M, Liu H, Wang Y, Zhong Z, Zeng Y, Jin Y, Ye D, Chen L. Cobalt catalyzed ethane dehydrogenation to ethylene with CO 2: Relationships between cobalt species and reaction pathways. J Colloid Interface Sci 2024; 660:124-135. [PMID: 38241861 DOI: 10.1016/j.jcis.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/21/2024]
Abstract
TiO2, ZrO2 and a series of TiO2-ZrO2 (TxZ1, x means the atomic ratio of Ti/Zr = 10, 5, 1, 0.2 and 0.1) composite oxide supports were prepared through co-precipitation, and then 3 wt% Co was loaded through wetness impregnation methods. The obtained 3 wt% Co/TiO2 (3CT), 3 wt% Co/ZrO2 (3CZ) and 3 wt% Co/TxZ1 (3CTxZ1) catalysts were evaluated for the oxidative ethane dehydrogenation reaction with CO2 (CO2-ODHE) as a soft oxidant. 3CT1Z1 catalyst exhibits excellent catalytic properties, with C2H4 yield, C2H6 conversion and CO2 conversion about 24.5 %, 33.8 % and 18.0 % at 650 °C, respectively. X-Ray Diffraction (XRD), in-situ Raman, UV-vis diffuse reflectance spectra (UV-vis DRS), H2 temperature-programmed reduction (H2-TPR), Electron paramagnetic resonance (EPR) and quasi in-situ X-ray Photoelectron Spectroscopy (XPS) have been utilized to thoroughly characterize the investigated catalysts. The results revealed that 3CT1Z1 produced TiZrO4 solid solution with more metal defect sites and oxygen vacancies (Ov), promoting the formation of Co2+-TiZrO4 structure. Furthermore, the presence of Ov and Ti3+can facilitate the high dispersion and stabilization of Co2+, as well as suppressing the severe reduction of Co2+, leading to superior ethane oxidative dehydrogenation activity. Besides, less Co0 is beneficial to ODHE reaction, because of its promotion effects for reverse water gas shift reaction; however, more Co0 results in dry reforming reaction (DRE). This work will shed new lights for the design and preparation of highly efficient catalysts for ethylene production.
Collapse
Affiliation(s)
- Ming Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huan Liu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhiyong Zhong
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yu Zeng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuxin Jin
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China
| | - Limin Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| |
Collapse
|
6
|
Riemke FC, Ücker CL, Rangel EM, Cozza L, Almeida SL, Ferrer MM, Cava S, Carreño N, Ceretta E, Raubach CW. Theoretical and experimental photocatalytic implications of Co ions upon the SrTiO3 lattice. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kim SH, Jeong H, Sharma B, Myung JH. In Situ Exsolution Catalyst: An Innovative Approach to Develop Highly Selective and Sensitive Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18275-18282. [PMID: 35385269 DOI: 10.1021/acsami.1c22701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The gas sensing characteristics of oxide semiconductors can be enhanced by loading noble metal or metal oxide catalysts. The uniform distribution of nanoscale catalysts with high thermal stability over the sensing materials is essential for sensors operating at elevated temperatures. An in situ exsolution process, which can be applied to catalysts, batteries, and sensors, provides a facile synthetic route for developing second-phase nanoparticles with uniform distribution, excellent thermochemical stability, and strong adhesion to the mother phase. In this study, we investigated the effect of Co-exsolved nanoparticles on the gas sensing characteristics of La0.43Ca0.37Co0.06Ti0.94O3-d (LCCoT). The amount and size of the Co-exsolved nanoparticles on the surface of the perovskite mother phase were adjusted depending on the reduction temperature of the exsolution process. The LCCoT with Co-exsolved nanoparticles prepared by reduction at 700 °C exhibited a response (resistance ratio) of 116.3 to 5 ppm ethanol at 350 °C, which was 10-fold higher than the response of a sensor without exsolution. The high gas response was attributed to the catalytic effect promoted by the uniformly distributed Co-exsolved nanoparticles and the formation of p-n junctions on the sensing surface during reduction. Additionally, we demonstrated the catalytic effect of Co-exsolved nanoparticles using a proton transfer reaction-quadrupole mass spectrometer. By controlling the amount and distribution of exsolved nanoparticles on semiconductor chemiresistors, a new pathway for designing high-performance gas sensors with enhanced thermal stability can be achieved.
Collapse
Affiliation(s)
- Sang Hun Kim
- Department of Materials Science Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongwon Jeong
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Bharat Sharma
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Ha Myung
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
8
|
Pallavolu MR, Gaddam N, Banerjee AN, Nallapureddy RR, Kumar YA, Joo SW. Facile construction and controllable design of CoTiO3@Co3O4/N CNO hybrid heterojunction nanocomposite electrode for high-performance supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Buzoverov ME, Glazunova TY, Lermontova EK. Synthesis, crystal structure and thermal properties of Na2Ti(CF3COO)6(CF3COOH)2. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Ehsan MA, Shah SS, Basha SI, Hakeem AS, Aziz MA. Recent Advances in Processing and Applications of Heterobimetallic Oxide Thin Films by Aerosol-assisted Chemical Vapor Deposition. CHEM REC 2021; 22:e202100278. [PMID: 34862719 DOI: 10.1002/tcr.202100278] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
The fabrication of smart, efficient, and innovative devices critically needs highly refined thin-film nanomaterials; therefore, facile, scalable, and economical methods of thin films production are highly sought-after for the sustainable growth of the hi-tech industry. The chemical vapor deposition (CVD) technique is widely implemented at the industrial level due to its versatile features. However, common issues with a precursor, such as reduced volatility and thermal stability, restrict the use of CVD to produce novel and unique materials. A modified CVD approach, named aerosol-assisted CVD (AACVD), has been the center of attention due to its remarkable tendency to fabricate uniform, homogenous, and distinct nano-architecture thin films in an uncomplicated and straightforward manner. Above all, AACVD can utilize any custom-made or commercially available precursors, which can be transformed into a transparent solution in a common organic solvent; thus, a vast array of compounds can be used for the formation of nanomaterial thin films. This review article highlights the importance of AACVD in fabricating heterobimetallic oxide thin films and their potential in making energy production (e. g., photoelectrochemical water splitting), energy storage (e. g., supercapacitors), and environmental protection (e. g., electrochemical sensors) devices. A heterobimetallic oxide system involves two metallic species either in a composite, solid solution, or metal-doped metal oxides. Moreover, the AACVD tunable parameters, such as temperature, deposition time, and precursor, which drastically affect thin films microstructure and their performance in device applications, are also discussed. Lastly, the key challenges and issues of scaling up AACVD to the industrial level and processing for emerging functional materials are also highlighted.
Collapse
Affiliation(s)
- Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Shaik Inayath Basha
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Abbas Saeed Hakeem
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Sharma S, Sidhartha PN, Chappanda KN. Influence of laser and alkali treatment on an Ag/TiO 2nanotube based dopamine sensor. NANOTECHNOLOGY 2021; 33:015502. [PMID: 34587590 DOI: 10.1088/1361-6528/ac2b6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Herein, TiO2nanotubes (T-NTs) arrays were subjected to two types of treatment followed by a simple metal deposition technique to significantly enhance the performances of T-NTs based electrochemical sensing of dopamine. The first type of treatment was done by soaking T-NTs in sodium hydroxide solution for an optimal time to enhance the conductivity and charge carrier density. The second type of treatment employed was laser irradiation, which induces crystallinity disorder and forms rutile TiO2, promoting active analyte adsorption sites. Afterward, silver (Ag) was electro-deposited on the T-NTs as a dopamine sensing catalyst to form T-NTs/Ag nanohybrids. The dual-treated T-NTs based sensor showed 3-fold enhancement in sensitivity (from 8.2μA mM-1cm-2to 32μA mM-1cm-2), reduced charge transfer resistance (from 38 × 10-6Ω to 0.7 × 10-6Ω), above 2 order higher donor charge density (from 3.58 × 1018cm-3to 1.41 × 1021cm-3), and reduced limit of detection (from 32.3μM to 2.8μM) in comparison to plain T-NTs based sensor. In addition, the sensitivity reported here is significantly higher than most of the previously reported TiO2based dopamine sensors. Perspective-wise, the dual treatment approach is a promising technique and is highly desirable for enhancing the performances of T-NTs and other nanomaterial based electrochemical sensors.
Collapse
Affiliation(s)
- Sarda Sharma
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - P N Sidhartha
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Karumbaiah N Chappanda
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| |
Collapse
|
12
|
Butt AS, Baig N, Khan M, Ul‐Hamid A, Sher M, Altaf M, Sohail M. HfO
2
‐CoO nanoparticles for electrochemical dopamine sensing. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Abdul Samad Butt
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| | - Nadeem Baig
- Interdisciplinary Research Center for Membranes and Water Security King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Munezza Khan
- School of Materials Sciences & Engineering Nanyang Technological University Singapore Singapore
| | - Anwar Ul‐Hamid
- Core Research Facilities King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Muhammad Sher
- Department of Chemistry Allama Iqbal Open University Islamabad Pakistan
| | - Muhammad Altaf
- Department of Chemistry Government College University Lahore Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences National University of Sciences and Technology Islamabad Pakistan
| |
Collapse
|
13
|
Xing C, Liu Y, Zhang Y, Wang X, Guardia P, Yao L, Han X, Zhang T, Arbiol J, Soler L, Chen Y, Sivula K, Guijarro N, Cabot A, Llorca J. A Direct Z-Scheme for the Photocatalytic Hydrogen Production from a Water Ethanol Mixture on CoTiO 3/TiO 2 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:449-457. [PMID: 33386057 DOI: 10.1021/acsami.0c17004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalytic H2 evolution from ethanol dehydrogenation is a convenient strategy to store solar energy in a highly valuable fuel with potential zero net CO2 balance. Herein, we report on the synthesis of CoTiO3/TiO2 composite catalysts with controlled amounts of highly distributed CoTiO3 nanodomains for photocatalytic ethanol dehydrogenation. We demonstrate these materials to provide outstanding hydrogen evolution rates under UV and visible illumination. The origin of this enhanced activity is extensively analyzed. In contrast to previous assumptions, UV-vis absorption spectra and ultraviolet photoelectron spectroscopy (UPS) prove CoTiO3/TiO2 heterostructures to have a type II band alignment, with the conduction band minimum of CoTiO3 below the H2/H+ energy level. Additional steady-state photoluminescence (PL) spectra, time-resolved PL spectra (TRPLS), and electrochemical characterization prove such heterostructures to result in enlarged lifetimes of the photogenerated charge carriers. These experimental evidence point toward a direct Z-scheme as the mechanism enabling the high photocatalytic activity of CoTiO3/TiO2 composites toward ethanol dehydrogenation. In addition, we probe small changes of temperature to strongly modify the photocatalytic activity of the materials tested, which could be used to further promote performance in a solar thermophotocatalytic reactor.
Collapse
Affiliation(s)
- Congcong Xing
- Catalonia Institute for Energy Research (IREC), Sant Adriá de Besós 08930, Barcelona, Spain
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| | - Yongpeng Liu
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Yu Zhang
- Catalonia Institute for Energy Research (IREC), Sant Adriá de Besós 08930, Barcelona, Spain
| | - Xiang Wang
- Catalonia Institute for Energy Research (IREC), Sant Adriá de Besós 08930, Barcelona, Spain
| | - Pablo Guardia
- Catalonia Institute for Energy Research (IREC), Sant Adriá de Besós 08930, Barcelona, Spain
| | - Liang Yao
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Xu Han
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Ting Zhang
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lluís Soler
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| | - Yufen Chen
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| | - Kevin Sivula
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Néstor Guijarro
- Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland
| | - Andreu Cabot
- Catalonia Institute for Energy Research (IREC), Sant Adriá de Besós 08930, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Jordi Llorca
- Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain
| |
Collapse
|
14
|
Wang C, Lu YJ, Rao MY, Chen N, Wang SJ, Kong FG. Co-crystal of Ti 4Ni 2 and Ti 8Ni 4 clusters with enhanced photochemical properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00369k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A heterometallic cluster with co-crystal arrangement, {Ti8Ni4+ Ti4Ni2}, which exhibits enhanced photocurrent response and photocatalytic hydrogen evolution activity, has been synthesized.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Yong Jun Lu
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Ming Yang Rao
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Ning Chen
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Shou Juan Wang
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| | - Fan Gong Kong
- State Key Laboratory of Biobased Material and Green Papermaking
- Qilu University of Technology
- Shandong Academy of Sciences
- Jinan
- China
| |
Collapse
|
15
|
Ehsan MA, Rehman A. Facile and scalable fabrication of nanostructured nickel thin film electrodes for electrochemical detection of formaldehyde. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4028-4036. [PMID: 32744279 DOI: 10.1039/d0ay00821d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorine doped tin oxide (FTO) substrates were deposited with thin metallic nickel films, having distinguishable surface morphologies, via a rapid, facile, and scalable approach i.e., aerosol assisted chemical vapor deposition (AACVD). The growth patterns of the nickel deposits were studied, showing a coalescing behavior as a function of the deposition time in a hierarchical fashion. These studies were followed by electrochemical measurements to design an efficient sensor for formaldehyde detection. The electrochemical responses were correlated with the surface characteristics of the films, whereas the optimized parameters were subjected to the evaluation of sensing performances. The developed sensor demonstrated a detection limit of 8.3 × 10-6 M and a sensitivity of 0.18 A M-1 within a linear range of 0-6.5 mM. Further, the sensor showed a response time of less than 5 s, selectivity against similar concentrations of methanol and formaldehyde, and recovery of ∼102% in a spiked fruit juice sample. Finally, the commercial viability of the fabrication procedure is tested using batch production analysis, and the high reproducibility of the data shows a promising future in mass production. It is envisaged that such low-cost fabrication procedures can be converted into many useful applications in the future.
Collapse
Affiliation(s)
- Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | | |
Collapse
|
16
|
Singh M, Qin F, Perez Ordoñez OI, Yang W, Bao J, Genc A, Hadjiev VG, Robles Hernandez FC. Unusual catalytic activity of TiO2–CoTiO3 under 1064 nm pulsed laser illumination. Catal Today 2020. [DOI: 10.1016/j.cattod.2019.06.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Habibi MH, Shojaee E. Synthesis of a heterojunction CoTiO 3/Co 3O 4 nano-composite thin film with superior photocatalytic activity and reusability: Effect of calcination temperature on phase transformation and effect of oxidants on enhanced degradation of Indo Light Blue dye. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117796. [PMID: 31896052 DOI: 10.1016/j.saa.2019.117796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
CoTiO3/Co3O4 heterojunction nano-composite was grown by a coprecipitation method at low temperature. The effects of calcination temperature on the phase composition, crystallization and morphology of the cobalt titanates were also examined. Notably, the novel nano-crystalline cobalt titanate with a narrow band gap to coulpe with cobalt oxide (Co3O4) by a direct coprecipitation method (CoTiO3/Co3O4) was attained. The Nano-crystalline samples were systematically characterized by TG/DTG, XRD, DRS, FESEM, FT-IR, EDX and XPS techniques. The results showed that CoTiO3/Co3O4 nano-composite hetero-junction was formed at 650 °C, while at 750 °C a single phase CoTiO3 nano-crystal was prepared. Photocatalytic activities indicated the heterostructured CoTiO3/Co3O4 nano-composite exhibited much higher photocatalytic activity for degradation of Indo Light blue under visible light irradiation with added oxidants (K2S2O8, KBrO3, and H2O2). The charge separation of CoTiO3 and Co3O4 would result the enhanced visible-light harvesting ability and longer lifetime of photogenerated charge carriers. The stability and reusability of catalysts during four successive cycles were resulted. Finally, a possible mechanism responsible for the charge separation and improved photocatalytic activity was proposed.
Collapse
Affiliation(s)
- Mohammad Hossein Habibi
- Nanotechnology Laboratory, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran.
| | - Elahe Shojaee
- Nanotechnology Laboratory, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Islamic Republic of Iran
| |
Collapse
|
18
|
Mansingh S, Sultana S, Acharya R, Ghosh MK, Parida KM. Efficient Photon Conversion via Double Charge Dynamics CeO2–BiFeO3 p–n Heterojunction Photocatalyst Promising toward N2 Fixation and Phenol–Cr(VI) Detoxification. Inorg Chem 2020; 59:3856-3873. [DOI: 10.1021/acs.inorgchem.9b03526] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sriram Mansingh
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Sabiha Sultana
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - Rashmi Acharya
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| | - M. K. Ghosh
- Advanced Materials Technology Department and Hydro & Electrometallurgy Department, CSIR-Institute of Minerals and Materials Technology, Bhubaneswar 751 013, Odisha, India
| | - K. M. Parida
- Centre for Nano Science and Nano Technology, S ‘O’ A Deemed to be University, Bhubaneswar 751 030, Odisha, India
| |
Collapse
|
19
|
A type-II interband alignment heterojunction architecture of cobalt titanate integrated UiO-66-NH 2: A visible light mediated photocatalytic approach directed towards Norfloxacin degradation and green energy (Hydrogen) evolution. J Colloid Interface Sci 2020; 568:89-105. [PMID: 32088455 DOI: 10.1016/j.jcis.2020.02.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 11/21/2022]
Abstract
Environmental pollution and energy scarcity is a major issue of the current scenario which forbear the progress of developing world. To overcome these problems towards a sustainable future, the utilization of sunlight by means of photocatalysis can be regarded as a best and suitable pathway. To validate this purpose, design and development of efficient heterogeneous photocatalyst for harvesting solar energy should be the major research concern for scientific community. In this regard herein, we have prepared a series of stable and efficient CoTiO3/UiO-66-NH2 p-n junction mediated heterogeneous photocatalyst by hydrothermal method. The functionalised linker of UiO-66-NH2 provided an intimate interfacial contact with CoTiO3 by Co/TiON ionic interaction, as proved by HRTEM and XPS analysis. Moreover the inverted V-shaped Mott-Schottky plot confirmed the junction formation in the optimised CoTiO3/UiO-66-NH2 material. In addition, EIS and PL analysis also provides sufficient evidence about the hindrance of active species recombination in composite as a result of p-n hetero junction. LC-MS characterization technique traces the assorted intermediate species produced in the course of photodegradation of Norfloxacin and confirms its complete degradation to corresponding CO2, H2O and NH4+ by the optimised CoTiO3/UiO-66-NH2. The highest photo-catalytic activity obtained towards Norfloxacin degradation is 90.13% and H2 production is 530.87 µmol in 1 h. The enhanced photo-catalytic reaction follows Type-II p-n hetero junction charge transfer mechanism and thus, paves a new way to design MOF based heterojunction photocatalyst for diverse photo catalytic performance.
Collapse
|
20
|
|
21
|
Wolf M, Roberts SJ, Marquart W, Olivier EJ, Luchters NTJ, Gibson EK, Catlow CRA, Neethling JH, Fischer N, Claeys M. Synthesis, characterisation and water-gas shift activity of nano-particulate mixed-metal (Al, Ti) cobalt oxides. Dalton Trans 2019; 48:13858-13868. [PMID: 31483416 DOI: 10.1039/c9dt01634a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of mixed-metal cobalt oxides, representing potential metal-support compounds for cobalt-based catalysts, has been observed at high conversion levels in the Fischer-Tropsch synthesis over metal oxide-supported cobalt catalysts. An often observed increase in the carbon dioxide selectivity at Fischer-Tropsch conversion levels above 80% has been suggested to be associated to the formation of water-gas shift active oxidic cobalt species. Mixed-metal cobalt oxides, namely cobalt aluminate and cobalt titanate, were therefore synthesised and tested for potential catalytic activity in the water-gas shift reaction. We present a preparation route for amorphous mixed-metal oxides via thermal treatment of metal precursors in benzyl alcohol. Calcination of the as prepared nanoparticles results in highly crystalline phases. The nano-particulate mixed-metal cobalt oxides were thoroughly analysed by means of X-ray diffraction, Raman spectroscopy, temperature-programmed reduction, X-ray absorption near edge structure spectroscopy, extended X-ray absorption fine structure, and high-resolution scanning transmission electron microscopy. This complementary characterisation of the synthesised materials allows for a distinct identification of the phases and their properties. The cobalt aluminate prepared has a cobalt-rich composition (Co1+xAl2-xO4) with a homogeneous atomic distribution throughout the nano-particulate structures, while the perovskite-type cobalt titanate (CoTiO3) features cobalt-lean smaller particles associated with larger ones with an increased concentration of cobalt. The cobalt aluminate prepared showed no water-gas shift activity in the medium-shift temperature range, while the cobalt titanate sample catalysed the conversion of water and carbon monoxide to hydrogen and carbon dioxide after an extended activation period. However, this perovskite underwent vast restructuring forming metallic cobalt, a known catalyst for the water-gas shift reaction at temperatures exceeding typical conditions for the cobalt-based Fischer-Tropsch synthesis, and anatase-TiO2. The partial reduction of the mixed-metal oxide and segregation was identified by means of post-run characterisation using X-ray diffraction, Raman spectroscopy, and transmission electron microscopy energy-dispersive spectrometry.
Collapse
Affiliation(s)
- Moritz Wolf
- Catalysis Institute, Department of Chemical Engineering, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Mansoor M, McKee V, Yusof F, Lim S, Zubir M, Ming H, Mazhar M. Lanthanum–titanium oxide composite from a single molecular cluster: Non-enzymatic mesoporous electrochemical nitrite ion sensor. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
23
|
Chen JY, Jheng SL, Tuan HY. Synthesis of nickel germanide (Ge 12Ni 19) nanoparticles for durable hydrogen evolution reaction in acid solutions. NANOSCALE 2018; 10:11072-11078. [PMID: 29872780 DOI: 10.1039/c7nr09475b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Desigining advanced materials as electrochemical catalysts for the hydrogen evolution reaction (HER) has caught great attention owing to the growing demand for clean and renewable energy. Nickel (Ni)-based compounds and alloys are promising non-noble-metal electrocatalysts due to their low cost and high activity. However, in most cases, Ni-based compounds and alloys have low durability in acid electrolyte, which limits their application in the electrolytic processes. In this study, monoclinic Ge12Ni19 nanoparticles were synthesized and exhibited high electrocatalytic activity and stability for the HER in acidic solution. Ge12Ni19 nanoparticles achieve an overpotential of 190 mV at cathodic current density of 10 mA cm-2 and a Tafel slope of 88.5 mV per decade in 0.50 M H2SO4 electrolyte. Moreover, the performance is maintained after a 10 000-cycle CV sweep (-0.3 to +0.1 V vs. RHE) or under a static overpotential of -0.7 V vs. RHE for 24 hours. The reported electrocatalytic performance of the Ge12Ni19 nanoparticles sufficiently proves the excellent endurance at lower required active overpotentials in acidic solution, enabling the broad applications of the Ni-based electrocatalysts. Finally, a large-area (5 cm2) electrocatalyst for HER was demonstrated for the first time. The great efficiency of the energy conversion performance sufficiently represented the potential of Ge12Ni19 nanoparticles as electrocatalysts in commercial fuel cells.
Collapse
Affiliation(s)
- Jee-Yee Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| | | | | |
Collapse
|
24
|
Naeem R, Ehsan MA, Rehman A, Yamani ZH, Hakeem AS, Mazhar M. Single step aerosol assisted chemical vapor deposition of p–n Sn(ii) oxide–Ti(iv) oxide nanocomposite thin film electrodes for investigation of photoelectrochemical properties. NEW J CHEM 2018. [DOI: 10.1039/c7nj04606e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel p–n SnO–TiO2 nanocomposite film electrodes were fabricated through a single step method and their photoelectrocatalytic properties were evaluated.
Collapse
Affiliation(s)
- Rabia Naeem
- Department of Chemistry
- Faculty of Science
- University of Malaya
- Lembah Pantai
- Malaysia
| | - Muhammad Ali Ehsan
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Abdul Rehman
- Department of Chemistry
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Zain Hassan Yamani
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Abbas Saeed Hakeem
- Center of Research Excellence in Nanotechnology (CENT)
- King Fahd University of Petroleum & Minerals
- Dhahran 31261
- Saudi Arabia
| | - Muhammad Mazhar
- Department of Environmental Sciences
- Fatima Jinnah Women University, the Mall
- Rawalpindi
- Pakistan
| |
Collapse
|
25
|
Wang Q, Guo Q, Wang L, Li B. The flux growth of single-crystalline CoTiO3 polyhedral particles and improved visible-light photocatalytic activity of heterostructured CoTiO3/g-C3N4 composites. Dalton Trans 2016; 45:17748-17758. [DOI: 10.1039/c6dt03449g] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel CoTiO3/g-C3N4 heterostructures with improved photocatalytic activity were successfully synthesized by a facile in situ growth route with the flux-grown CoTiO3 polyhedral crystals serving as an efficient visible-light sensitizer.
Collapse
Affiliation(s)
- Qiang Wang
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qingjun Guo
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Leping Wang
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Bing Li
- School of Mechanical and Power Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|