1
|
Behar AE, Maayan G. A cocktail of Cu 2+- and Zn 2+-peptoid-based chelators can stop ROS formation for Alzheimer's disease therapy. Chem Sci 2024:d4sc04313h. [PMID: 39464602 PMCID: PMC11503657 DOI: 10.1039/d4sc04313h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024] Open
Abstract
The formation of reactive oxygen species (ROS) in the brain is a major cause of neuropathologic degradation associated with Alzheimer's Disease (AD). It has been suggested that the copper (Cu)-amyloid-β (Aβ) peptide complex can lead to ROS formation in the brain. An external chelator for Cu that can extract Cu from the CuAβ complex should inhibit the formation of ROS, making Cu chelation an excellent therapeutic approach for AD. Such a chelator should possess high selectivity for Cu over zinc (Zn), which is also present within the synaptic cleft. However, such selectivity is generally hard to achieve in one molecule due to the similarities in the binding preferences of these two metal ions. As an alternative to monotherapy (where Cu extraction is performed using a single chelator), herein we describe a variation of combination therapy - a novel cocktail approach, which is based on the co-administration of two structurally different peptidomimetic chelators, aiming to target both Cu2+ and Zn2+ ions simultaneously but independently from each other. Based on rigorous spectroscopic experiments, we demonstrate that our peptidomimetic cocktail allows, for the first time, the complete and immediate inhibition of ROS production by the CuAβ complex in the presence of Zn2+. In addition, we further demonstrate the high stability of the cocktail under simulated physiological conditions and its resistance to proteolytic degradation by trypsin and report the water/n-octanol partition coefficient, initially assessing the blood-brain barrier (BBB) permeability potential of the chelators.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City 3200008 Haifa Israel
| |
Collapse
|
2
|
Gharai PK, Khan J, Pradhan K, Mallesh R, Garg S, Arshi MU, Barman S, Ghosh S. Power of Dopamine: Multifunctional Compound Assisted Conversion of the Most Risk Factor into Therapeutics of Alzheimer's Disease. ACS Chem Neurosci 2024; 15:2470-2483. [PMID: 38874606 DOI: 10.1021/acschemneuro.3c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
In Alzheimer's disease (AD), reactive oxygen species (ROS) plays a crucial role, which is produced from molecular oxygen with extracellular deposited amyloid-β (Aβ) aggregates through the reduction of a Cu2+ ion. In the presence of a small amount of redox-active Cu2+ ion, ROS is produced by the Aβ-Cu2+ complex as Aβ peptide alone is unable to generate excess ROS. Therefore, Cu2+ ion chelators are considered promising therapeutics against AD. Here, we have designed and synthesized a series of Schiff base derivatives (SB) based on 2-hydroxy aromatic aldehyde derivatives and dopamine. These SB compounds contain one copper chelating core, which captures the Cu2+ ions from the Aβ-Cu2+ complex. Thereby, it inhibits copper-induced amyloid aggregation as well as amyloid self-aggregation. It also inhibits copper-catalyzed ROS production through sequestering of Cu2+ ions. The uniqueness of our designed ligands has the dual property of dopamine, which not only acts as a ROS scavenger but also chelates the copper ion. The crystallographic analysis proves the power of the dopamine unit. Therefore, dual exploration of dopamine core can be considered as potential therapeutics for future AD treatment.
Collapse
Affiliation(s)
- Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Krishnangsu Pradhan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Mohammad Umar Arshi
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
| | - Surajit Barman
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR─Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar 342037, Rajasthan, India
- National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
3
|
Rulmont C, Stigliani JL, Hureau C, Esmieu C. Rationally Designed Cu(I) Ligand to Prevent CuAβ-Generated ROS Production in the Alzheimer's Disease Context. Inorg Chem 2024; 63:2340-2351. [PMID: 38243896 DOI: 10.1021/acs.inorgchem.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
In the context of Alzheimer's disease, copper (Cu) can be loosely bound to the amyloid-β (Aβ) peptide, leading to the formation of CuAβ, which can catalytically generate reactive oxygen species that contribute to oxidative stress. To fight against this phenomenon, the chelation therapy approach has been developed and consists of using a ligand able to remove Cu from Aβ and to redox-silence it, thus stopping the reactive oxygen species (ROS) production. A large number of Cu(II) chelators has been studied, allowing us to define and refine the properties required to design a "good" ligand, but without strong therapeutic outcomes to date. Those chelators targeted the Cu(II) redox state. Herein, we explore a parallel and relevant alternative pathway by designing a chelator able to target the Cu(I) redox state. To that end, we designed LH2 ([1N3S] binding set) and demonstrated that (i) it is perfectly able to extract Cu(I) from Cu(I)Aβ even in the presence of an excess of Zn(II) and (ii) it redox-silences the Cu, preventing the formation of ROS. We showed that LH2 that is sensitive to oxidation can efficiently replace the [Zn(II)L] complex without losing its excellent ability to stop the ROS production while increasing its resistance to oxidation.
Collapse
Affiliation(s)
- Clément Rulmont
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| | | | | | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse 31077, France
| |
Collapse
|
4
|
Malikidogo KP, Drommi M, Atrián-Blasco E, Hormann J, Kulak N, Esmieu C, Hureau C. Ability of Azathiacyclen Ligands To Stop Cu(Aβ)-Induced Production of Reactive Oxygen Species: [3N1S] Is the Right Donor Set. Chemistry 2023; 29:e202203667. [PMID: 36606721 DOI: 10.1002/chem.202203667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease that leads to the progressive and irreversible loss of mental functions. The amyloid beta (Aβ) peptide involved in the disease is responsible for the production of damaging reactive oxygen species (ROS) when bound to Cu ions. A therapeutic approach that consists of removing Cu ions from Aβ to alter this deleterious interaction is currently being developed. In this context, we report the ability of five different 12-membered thiaazacyclen ligands to capture Cu from Aβ and to redox silence it. We propose that the presence of a sole sulfur atom in the ligand increases the rate of Cu capture and removal from Aβ, while the kinetic aspect of the chelation was an issue encountered with the 4N parent ligand. The best ligand for removing Cu from Aβ and inhibiting the associated ROS production is the 1-thia-4,7,10-triazacyclododecane [3N1S]. Indeed the replacement of more N by S atoms makes the corresponding Cu complexes easier to reduce and thus able to produce ROS on their own. In addition, the ligand with three sulfur atoms has a weaker affinity for CuII than Aβ, and is thus unable to remove Cu from CuAβ.
Collapse
Affiliation(s)
- Kyangwi P Malikidogo
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Université Grenoble Alpes, DCM (UMR 5250) - CNRS and CEA, IRIG, LCBM (UMR, 5249, Grenoble, France
| | - Marielle Drommi
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Elena Atrián-Blasco
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France.,Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
| | - Jan Hormann
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany
| | - Nora Kulak
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstr. 34/36, 14195, Berlin, Germany.,Institut für Chemie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Charlène Esmieu
- LCC-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | | |
Collapse
|
5
|
Carvalho A, Barbosa BM, Flores JS, do Carmo Gonçalves P, Diniz R, Cordeiro Y, Fernández CO, Cukierman DS, Rey NA. New mescaline-related N-acylhydrazone and its unsubstituted benzoyl derivative: Promising metallophores for copper-associated deleterious effects relief in Alzheimer's disease. J Inorg Biochem 2023; 238:112033. [PMID: 36396525 DOI: 10.1016/j.jinorgbio.2022.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is related to the presence of extracellular aggregated amyloid-β peptide (Aβ), which binds copper(II) with high affinity in its N-terminal region. In this sense, two new 1-methylimidazole-containing N-acylhydrazonic metallophores, namely, X1TMP and X1Benz, were synthesized as hydrochlorides and characterized. The compound X1TMP contains the 3,4,5-trimethoxybenzoyl moiety present in the structure of mescaline, a natural hallucinogenic protoalkaloid that occurs in some species of cacti. Single crystals of X1Benz, the unsubstituted derivative of X1TMP, were obtained. The experimental partition coefficients of both compounds were determined, as well as their apparent affinity for Cu2+ in aqueous solution. Ascorbate consumption assays showed that these N-acylhydrazones are able to lessen the production of ROS by the Cu(Aβ)-system, and a short-time scale aggregation study, measured through turbidity and confirmed by TEM images, revealed their capacity in preventing Aβ fibrillation at equimolar conditions in the presence and absence of copper. 1H15N HSQC NMR experiments demonstrated a direct interaction between Aβ and X1Benz, the most soluble of the compounds. The Cu2+ sequestering potential of this hydrazone towards Aβ was explored by 1H NMR. Although increasing amounts of X1Benz were unexpectedly not efficient at removing the metal-induced perturbations in Aβ backbone amides, the broadening effects observed on the compound's signals indicate the formation of a ternary Aβ‑copper-X1Benz species, which can be responsible for the observed ROS-lessening and aggregation-preventing activities. Overall, the N-acylhydrazones X1TMP and X1Benz have shown promising prospects as agents for the treatment of AD.
Collapse
Affiliation(s)
- Alessandra Carvalho
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Barbara Marinho Barbosa
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil
| | - Jesica S Flores
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Phelippe do Carmo Gonçalves
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Renata Diniz
- Department of Chemistry, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Yraima Cordeiro
- Faculty of Pharmacy, CCS, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner Laboratory of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario S2002LRK, Argentina
| | - Daphne S Cukierman
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil; Faculty of Pharmacy, CCS, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Nicolás A Rey
- Department of Chemistry, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro 22451-900, Brazil.
| |
Collapse
|
6
|
Sequence-Activity Relationship of ATCUN Peptides in the Context of Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227903. [PMID: 36432004 PMCID: PMC9698028 DOI: 10.3390/molecules27227903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
Abstract
Amino-terminal CuII and NiII (ATCUN) binding sequences are widespread in the biological world. Here, we report on the study of eight ATCUN peptides aimed at targeting copper ions and stopping the associated formation of reactive oxygen species (ROS). This study was actually more focused on Cu(Aβ)-induced ROS production in which the Aβ peptide is the "villain" linked to Alzheimer's disease. The full characterization of CuII binding to the ATCUN peptides, the CuII extraction from CuII(Aβ), and the ability of the peptides to prevent and/or stop ROS formation are described in the relevant biological conditions. We highlighted in this research that all the ATCUN motifs studied formed the same thermodynamic complex but that the addition of a second histidine in position 1 or 2 allowed for an improvement in the CuII uptake kinetics. This kinetic rate was directly related to the ability of the peptide to stop the CuII(Aβ)-induced production of ROS, with the most efficient motifs being HWHG and HGHW.
Collapse
|
7
|
Gonzalez P, Sabater L, Mathieu E, Faller P, Hureau C. Why the Ala-His-His Peptide Is an Appropriate Scaffold to Remove and Redox Silence Copper Ions from the Alzheimer's-Related Aβ Peptide. Biomolecules 2022; 12:1327. [PMID: 36291536 PMCID: PMC9599918 DOI: 10.3390/biom12101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The progressive, neurodegenerative Alzheimer's disease (AD) is the most widespread dementia. Due to the ageing of the population and the current lack of molecules able to prevent or stop the disease, AD will be even more impactful for society in the future. AD is a multifactorial disease, and, among other factors, metal ions have been regarded as potential therapeutic targets. This is the case for the redox-competent Cu ions involved in the production of reactive oxygen species (ROS) when bound to the Alzheimer-related Aβ peptide, a process that contributes to the overall oxidative stress and inflammation observed in AD. Here, we made use of peptide ligands to stop the Cu(Aβ)-induced ROS production and we showed why the AHH sequence is fully appropriate, while the two parents, AH and AAH, are not. The AHH peptide keeps its beneficial ability against Cu(Aβ)-induced ROS, even in the presence of ZnII-competing ions and other biologically relevant ions. The detailed kinetic mechanism by which AHH could exert its action against Cu(Aβ)-induced ROS is also proposed.
Collapse
Affiliation(s)
- Paulina Gonzalez
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Sabater
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Emilie Mathieu
- LCC-CNRS, Université de Toulouse, CNRS, 31077 Toulouse, France
| | - Peter Faller
- Laboratory of Biometals and Biological Chemistry, Institut de Chimie (UMR 7177), Université de Strasbourg-CNRS, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | | |
Collapse
|
8
|
Behar AE, Sabater L, Baskin M, Hureau C, Maayan G. A Water-Soluble Peptoid Chelator that Can Remove Cu 2+ from Amyloid-β Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2021; 60:24588-24597. [PMID: 34510664 DOI: 10.1002/anie.202109758] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Indexed: 12/25/2022]
Abstract
Cu bound to amyloid-β (Aβ) peptides can act as a catalyst for the formation of reactive oxygen species (ROS), leading to neuropathologic degradation associated with Alzheimer's disease (AD). An excellent therapeutic approach is to use a chelator that can selectively remove Cu from Cu-Aβ. This chelator should compete with Zn2+ ions (Zn) that are present in the synaptic cleft while forming a nontoxic Cu complex. Herein we describe P3, a water-soluble peptidomimetic chelator that selectively removes Cu2+ from Cu-Aβ in the presence of Zn and prevent the formation of ROS even in a reductive environment. We demonstrate, based on extensive spectroscopic analysis, that although P3 extracts Zn from Cu,Zn-Aβ faster than it removes Cu, the formed Zn complexes are kinetic products that further dissociate, while CuP3 is formed as an exclusive stable thermodynamic product. Our unique findings, combined with the bioavailability of peptoids, make P3 an excellent drug candidate in the context of AD.
Collapse
Affiliation(s)
- Anastasia E Behar
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Laurent Sabater
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, 31077, Toulouse, France
| | - Maria Baskin
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, 31077, Toulouse, France.,Université de Toulouse, 31077, Toulouse, France
| | - Galia Maayan
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| |
Collapse
|
9
|
Behar AE, Sabater L, Baskin M, Hureau C, Maayan G. A Water‐Soluble Peptoid Chelator that Can Remove Cu
2+
from Amyloid‐β Peptides and Stop the Formation of Reactive Oxygen Species Associated with Alzheimer's Disease. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anastasia E. Behar
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| | - Laurent Sabater
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne 31077 Toulouse France
- Université de Toulouse 31077 Toulouse France
| | - Maria Baskin
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| | - Christelle Hureau
- CNRS LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne 31077 Toulouse France
- Université de Toulouse 31077 Toulouse France
| | - Galia Maayan
- Schulich Faculty of Chemistry Technion—Israel Institute of Technology Technion City 3200008 Haifa Israel
| |
Collapse
|
10
|
Oliveri V, Vecchio G. Bis(8‐hydroxyquinoline) Ligands: Exploring their Potential as Selective Copper‐Binding Agents for Alzheimer's Disease. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| | - Graziella Vecchio
- Dipartimento di Scienze Chimiche Università degli Studi di Catania viale A. Doria 6 95125 Catania Italy
| |
Collapse
|
11
|
Esmieu C, Balderrama-Martínez-Sotomayor R, Conte-Daban A, Iranzo O, Hureau C. Unexpected Trends in Copper Removal from Aβ Peptide: When Less Ligand Is Better and Zn Helps. Inorg Chem 2021; 60:1248-1256. [PMID: 33400522 DOI: 10.1021/acs.inorgchem.0c03407] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu, Zn, and amyloid-β (Aβ) peptides play an important role in the etiology of Alzheimer's disease (AD). Their interaction indeed modifies the self-assembly propensity of the peptide that is at the origin of the deposition of insoluble peptide aggregates in the amyloid plaque, a hallmark found in AD brains. Another even more important fallout of the Cu binding to Aβ peptide is the formation of reactive oxygen species (ROS) that contributes to the overall oxidative stress detected in the disease and is due to the redox ability of the Cu ions. Many therapeutic approaches are currently developed to aid fighting against AD, one of them targeting the redox-active Cu ions. Along this research line, we report in the present article the use of a phenanthroline-based peptide-like ligand (L), which is able to withdraw Cu from Aβ and redox-silence it in a very stable 4N Cu(II) binding site even in the presence of Zn(II). In addition and in contrast to what is usually observed, the presence of excess of L lessens the searched effect of ROS production prevention, but it is counterbalanced by the co-presence of Zn(II). To explain such unprecedented trends, we proposed a mechanism that involves the redox reaction between Cu(II)L and Cu(I)L2. We thus illustrated (i) how speciation and redox chemistry can weaken the effect of a ligand that would have appeared perfectly suitable if only tested in a 1:1 ratio and on CuAβ and (ii) how Zn overcomes the undesired lessening of ROS arrest due to excess of ligand. In brief, we have shown how working in biologically relevant conditions is important for the understanding of all of the reactions at play and this must be taken into consideration for the further rational design of ligands aiming to become drug candidates.
Collapse
Affiliation(s)
- Charlène Esmieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
| | | | - Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
| | - Olga Iranzo
- Aix Marseille University, CNRS, Centrale Marseille, iSm2, Campus Scientifique de St Jérôme, 13397 Marseille, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, 31077 Toulouse, Cedex 4, France
| |
Collapse
|
12
|
Esmieu C, Ferrand G, Borghesani V, Hureau C. Impact of N-Truncated Aβ Peptides on Cu- and Cu(Aβ)-Generated ROS: Cu I Matters! Chemistry 2020; 27:1777-1786. [PMID: 33058356 DOI: 10.1002/chem.202003949] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/07/2020] [Indexed: 12/15/2022]
Abstract
In vitro Cu(Aβ1-x )-induced ROS production has been extensively studied. Conversely, the ability of N-truncated isoforms of Aβ to alter the Cu-induced ROS production has been overlooked, even though they are main constituents of amyloid plaques found in the human brain. N-Truncated peptides at the positions 4 and 11 (Aβ4-x and Aβ11-x ) contain an amino-terminal copper and nickel (ATCUN) binding motif (H2 N-Xxx-Zzz-His) that confer them different coordination sites and higher affinities for CuII compared to the Aβ1-x peptide. It has further been proposed that the role of Aβ4-x peptide is to quench CuII toxicity in the brain. However, the role of CuI coordination has not been investigated to date. In contrast to CuII , CuI coordination is expected to be the same for N-truncated and N-intact peptides. Herein, we report in-depth characterizations and ROS production studies of Cu (CuI and CuII ) complexes of the Aβ4-16 and Aβ11-16 N-truncated peptides. Our findings show that the N-truncated peptides do produce ROS when CuI is present in the medium, albeit to a lesser extent than the unmodified counterpart. In addition, when used as competitor ligands (i.e., in the presence of Aβ1-16 ), the N-truncated peptides are not able to fully preclude Cu(Aβ1-16 )-induced ROS production.
Collapse
Affiliation(s)
- Charlène Esmieu
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France
| | - Guillaume Ferrand
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| | - Valentina Borghesani
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France.,current address: School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,UPS, INPT, University of Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
13
|
|
14
|
Ejaz HW, Wang W, Lang M. Copper Toxicity Links to Pathogenesis of Alzheimer's Disease and Therapeutics Approaches. Int J Mol Sci 2020; 21:E7660. [PMID: 33081348 PMCID: PMC7589751 DOI: 10.3390/ijms21207660] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is an irreversible, age-related progressive neurological disorder, and the most common type of dementia in aged people. Neuropathological lesions of AD are neurofibrillary tangles (NFTs), and senile plaques comprise the accumulated amyloid-beta (Aβ), loaded with metal ions including Cu, Fe, or Zn. Some reports have identified metal dyshomeostasis as a neurotoxic factor of AD, among which Cu ions seem to be a central cationic metal in the formation of plaque and soluble oligomers, and have an essential role in the AD pathology. Cu-Aβ complex catalyzes the generation of reactive oxygen species (ROS) and results in oxidative damage. Several studies have indicated that oxidative stress plays a crucial role in the pathogenesis of AD. The connection of copper levels in AD is still ambiguous, as some researches indicate a Cu deficiency, while others show its higher content in AD, and therefore there is a need to increase and decrease its levels in animal models, respectively, to study which one is the cause. For more than twenty years, many in vitro studies have been devoted to identifying metals' roles in Aβ accumulation, oxidative damage, and neurotoxicity. Towards the end, a short review of the modern therapeutic approach in chelation therapy, with the main focus on Cu ions, is discussed. Despite the lack of strong proofs of clinical advantage so far, the conjecture that using a therapeutic metal chelator is an effective strategy for AD remains popular. However, some recent reports of genetic-regulating copper transporters in AD models have shed light on treating this refractory disease. This review aims to succinctly present a better understanding of Cu ions' current status in several AD features, and some conflicting reports are present herein.
Collapse
Affiliation(s)
- Hafza Wajeeha Ejaz
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth WA6027, Australia;
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, China;
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
15
|
The aroylhydrazone INHHQ prevents memory impairment induced by Alzheimer's-linked amyloid-β oligomers in mice. Behav Pharmacol 2020; 31:738-747. [PMID: 32773452 DOI: 10.1097/fbp.0000000000000578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Converging evidence indicates that neurotoxicity and memory impairment in Alzheimer's disease is induced by brain accumulation of soluble amyloid-β oligomers (AβOs). Physiological metals are poorly distributed and concentrated in the senile plaques typical of Alzheimer's disease, where they may be coordinated to the amyloid-β peptide (Aβ). Indeed, zinc and copper increase Aβ oligomerization and toxicity. Metal-protein attenuating compounds represent a class of agents proposed for Alzheimer's disease treatment, as they reduce abnormal interactions of metal ions with Aβ, inhibit Aβ oligomerization and prevent deleterious redox reactions in the brain. The present work investigates the protective action of an isoniazid-derived aroylhydrazone, INHHQ, on AβO-induced memory impairment. Systemic administration of a single dose of INHHQ (1 mg/kg) prevented both short-term and long-term memory impairment caused by AβOs in mice. In-vitro studies showed that INHHQ prevents Cu(Aβ)-catalyzed production of reactive oxygen species. Although the mechanism of protection by INHHQ is not yet fully understood at a molecular level, the results reported herein certainly point to the value of aroylhydrazones as promising neuroprotective agents in Alzheimer's disease and related disorders.
Collapse
|
16
|
Importance of Biometals as Targets in Medicinal Chemistry: An Overview about the Role of Zinc (II) Chelating Agents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zinc (II) is an important biometal in human physiology. Moreover, in the last two decades, it was deeply studied for its involvement in several pathological states. In particular, the regulation of its concentration in synaptic clefts can be fundamental for the treatment of neurodegenerative diseases, such as Alzheimer’s disease (AD). Zinc (II) is also a constituent of metalloenzymes (i.e., matrix metalloproteinases, MMPs, and carbonic anhydrases, CAs) with catalytic function; therefore, it can be an important target for the inhibition of these proteins, frequently involved in cancer onset. This review is focused on the significance of zinc (II) chelating agents in past and future medicinal chemistry research, and on the importance of selectivity in order to revamp the possibility of their use in therapy, often hindered by possible side effects.
Collapse
|
17
|
Santoro A, Calvo JS, Peris-Díaz MD, Krężel A, Meloni G, Faller P. The Glutathione/Metallothionein System Challenges the Design of Efficient O 2 -Activating Copper Complexes. Angew Chem Int Ed Engl 2020; 59:7830-7835. [PMID: 32049413 PMCID: PMC7294961 DOI: 10.1002/anie.201916316] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 01/17/2023]
Abstract
Copper complexes are of medicinal and biological interest, including as anticancer drugs designed to cleave intracellular biomolecules by O2 activation. To exhibit such activity, the copper complex must be redox active and resistant to dissociation. Metallothioneins (MTs) and glutathione (GSH) are abundant in the cytosol and nucleus. Because they are thiol-rich reducing molecules with high CuI affinity, they are potential competitors for a copper ion bound in a copper drug. Herein, we report the investigation of a panel of CuI /CuII complexes often used as drugs, with diverse coordination chemistries and redox potentials. We evaluated their catalytic activity in ascorbate oxidation based on redox cycling between CuI and CuII , as well as their resistance to dissociation or inactivation under cytosolically relevant concentrations of GSH and MT. O2 -activating CuI /CuII complexes for cytosolic/nuclear targets are generally not stable against the GSH/MT system, which creates a challenge for their future design.
Collapse
Affiliation(s)
- Alice Santoro
- Institut de Chimie, UMR 7177, University of Strasbourg/ CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| | - Jenifer S Calvo
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX, 75080, USA
| | - Peter Faller
- Institut de Chimie, UMR 7177, University of Strasbourg/ CNRS, 4 rue Blaise Pascal, 67000, Strasbourg, France
| |
Collapse
|
18
|
Santoro A, Calvo JS, Peris‐Díaz MD, Krężel A, Meloni G, Faller P. The Glutathione/Metallothionein System Challenges the Design of Efficient O
2
‐Activating Copper Complexes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Alice Santoro
- Institut de Chimie UMR 7177 University of Strasbourg/ CNRS 4 rue Blaise Pascal 67000 Strasbourg France
| | - Jenifer S. Calvo
- Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W Campbell Rd. Richardson TX 75080 USA
| | - Manuel David Peris‐Díaz
- Department of Chemical Biology, Faculty of Biotechnology University of Wrocław F. Joliot-Curie 14a 50–383 Wrocław Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology University of Wrocław F. Joliot-Curie 14a 50–383 Wrocław Poland
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry The University of Texas at Dallas 800 W Campbell Rd. Richardson TX 75080 USA
| | - Peter Faller
- Institut de Chimie UMR 7177 University of Strasbourg/ CNRS 4 rue Blaise Pascal 67000 Strasbourg France
| |
Collapse
|
19
|
Esmieu C, Guettas D, Conte-Daban A, Sabater L, Faller P, Hureau C. Copper-Targeting Approaches in Alzheimer’s Disease: How To Improve the Fallouts Obtained from in Vitro Studies. Inorg Chem 2019; 58:13509-13527. [DOI: 10.1021/acs.inorgchem.9b00995] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Peter Faller
- LCC−CNRS, Université de Toulouse, CNRS, Toulouse, France
| | | |
Collapse
|
20
|
Sarasamma S, Audira G, Juniardi S, Sampurna BP, Liang ST, Hao E, Lai YH, Hsiao CD. Zinc Chloride Exposure Inhibits Brain Acetylcholine Levels, Produces Neurotoxic Signatures, and Diminishes Memory and Motor Activities in Adult Zebrafish. Int J Mol Sci 2018; 19:ijms19103195. [PMID: 30332818 PMCID: PMC6213992 DOI: 10.3390/ijms19103195] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, we evaluated the acute (24, 48, 72, and 96 h) and chronic (21 days) adverse effects induced by low doses (0.1, 0.5, 1, and 1.5 mg/L) of zinc chloride (ZnCl2) exposure in adult zebrafish by using behavioral endpoints like three-dimensional (3D) locomotion, passive avoidance, aggression, circadian rhythm, and predator avoidance tests. Also, brain tissues were dissected and subjected to analysis of multiple parameters related to oxidative stress, antioxidant responses, superoxide dismutase (SOD), neurotoxicity, and neurotransmitters. The results showed that ZnCl2-exposed fishes displayed decreased locomotor behavior and impaired short-term memory, which caused an Alzheimer’s Disease (AD)-like syndrome. In addition, low concentrations of ZnCl2 induced amyloid beta (amyloid β) and phosphorylated Tau (p-Tau) protein levels in brains. In addition, significant induction in oxidative stress indices (reactive oxygen species (ROS) and malondialdehyde (MDA)), reduction in antioxidant defense system (glutathione (GSH), GSH peroxidase (GSH-Px) and SOD) and changes in neurotransmitters were observed at low concentrations of ZnCl2. Neurotoxic effects of ZnCl2 were observed with significant inhibition of acetylcholine (ACh) activity when the exposure dose was higher than 1 ppm. Furthermore, we found that zinc, metallothionein (MT), and cortisol levels in brain were elevated compared to the control group. A significantly negative correlation was observed between memory and acetylcholinesterase (AChE) activity. In summary, these findings revealed that exposure to ZnCl2 affected the behavior profile of zebrafish, and induced neurotoxicity which may be associated with damaged brain areas related to memory. Moreover, our ZnCl2-induced zebrafish model may have potential for AD-associated research in the future.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Bonifasius Putera Sampurna
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Sung-Tzu Liang
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, No. 55 Hwa-Kang Rd, Taipei 11114, Taiwan.
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Department of Bioscience Technology, Chung Yuan Christian University, No. 200, Chung-Pei Rd., Chung-Li 32023, Taiwan.
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan.
| |
Collapse
|
21
|
Conte-Daban A, Beyler M, Tripier R, Hureau C. Kinetics Are Crucial When Targeting Copper Ions to Fight Alzheimer's Disease: An Illustration with Azamacrocyclic Ligands. Chemistry 2018; 24:8447-8452. [PMID: 29611877 DOI: 10.1002/chem.201801520] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 01/16/2023]
Abstract
Targeting copper ions to either remove or redistribute them is currently viewed as a possible therapeutic strategy in the context of Alzheimer's disease (AD). Thermodynamic parameters, as for instance the copper(II) affinity of the drug candidate or the copper(II) over zinc(II) selectivity, are considered in the design of the drug candidate. In contrast, kinetic factors have been overlooked despite their probable high importance. In the present article, we use a series of azamacrocyclic ligands to demonstrate that kinetic issues must be taken into account when designing copper-targeting drug candidates in the context of AD.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| | - Maryline Beyler
- Université de Bretagne Occidentale, UMR-CNRS 6521 CEMCA, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, BREST Cedex 3, France
| | - Raphaël Tripier
- Université de Bretagne Occidentale, UMR-CNRS 6521 CEMCA, IBSAM, UFR des Sciences et Techniques, 6 avenue Victor le Gorgeu, C.S. 93837, 29238, BREST Cedex 3, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077, Toulouse Cedex 4, France.,University of Toulouse, UPS, INPT, 31077, Toulouse Cedex 4, France
| |
Collapse
|
22
|
Zhang W, Liu Y, Hureau C, Robert A, Meunier B. N 4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-β 1-16. Chemistry 2018; 24:7825-7829. [PMID: 29687932 DOI: 10.1002/chem.201801387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Indexed: 01/15/2023]
Abstract
The disruption of copper homeostasis and the oxidative stress induced by Cu-amyloids are crucial features of Alzheimer's disease pathology. The copper specific N4 -tetradendate ligands TDMQ20 and 1 are able to fully inhibit in vitro the aerobic oxidation of ascorbate induced by Cu-Aβ1-16 , even in the presence of 100 molar equivalents of ZnII with respect to CuII , whereas other ligands with N2 O2 or N3 O2 coordination spheres failed to do so. This essential result indicates that, in addition to metal selectivity, the coordination sphere of copper chelators should exhibit a N4 -tetradendate motif to be able to reduce an oxidative stress in the zinc-rich physiological environment of brain. The N4 -scaffolds of these two aminoquinoline-based ligands, TDMQ20 or 1, suitable for a square-planar coordination of copper(II), allowed them to enhance both the selectivity for copper and the ability to reduce the oxidative stress induced by copper-amyloid in a zinc-rich environment.
Collapse
Affiliation(s)
- Weixin Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Yan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China
| | - Christelle Hureau
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Anne Robert
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| | - Bernard Meunier
- School of Chemical Engineering and Light Industry, Guangdong University of Technology (GDUT), Higher Education Mega Center, 100 Waihuan Xi road, Panyu District, Guangzhou, 510006, P. R. China.,Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, BP 44099, 31077, Toulouse cedex 4, France.,Université de Toulouse, 31077, Toulouse Cedex 4, France
| |
Collapse
|
23
|
Conte-Daban A, Ambike V, Guillot R, Delsuc N, Policar C, Hureau C. A Metallo Pro-Drug to Target Cu II in the Context of Alzheimer's Disease. Chemistry 2018; 24:5095-5099. [PMID: 29334419 PMCID: PMC6120673 DOI: 10.1002/chem.201706049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Indexed: 01/28/2023]
Abstract
Alzheimer's disease and oxidative stress are connected. In the present communication, we report the use of a MnII -based superoxide dismutase (SOD) mimic ([MnII (L)]+ , 1+ ) as a pro-drug candidate to target CuII -associated events, namely, CuII -induced formation of reactive oxygen species (ROS) and modulation of the amyloid-β (Aβ) peptide aggregation. Complex 1+ is able to remove CuII from Aβ, stop ROS and prevent alteration of Aβ aggregation as would do the corresponding free ligand LH. Using 1+ instead of LH in further biological applications would have the double advantage to avoid the cell toxicity of LH and to benefit from its proved SOD-like activity.
Collapse
Affiliation(s)
- Amandine Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| | - Vinita Ambike
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR CNRS 8182, Bâtiments 420, Université Paris-Sud 11, Université Paris-Saclay, Rue du doyen Georges Poitou, 91405 Orsay cedex, France
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Clotilde Policar
- Laboratoire des Biomolécules, Département de chimie, École normale supérieure, UPMC Univ. Paris 06, CNRS, PSL Research University, 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4, France
- Université de Toulouse, UPS, INPT, 31077 Toulouse Cedex 4, France
| |
Collapse
|
24
|
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 2018; 14:450-464. [PMID: 29080524 PMCID: PMC5680523 DOI: 10.1016/j.redox.2017.10.014] [Citation(s) in RCA: 1395] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/12/2023] Open
Abstract
Oxidative stress is known to play an important role in the pathogenesis of a number of diseases. In particular, it is linked to the etiology of Alzheimer's disease (AD), an age-related neurodegenerative disease and the most common cause of dementia in the elderly. Histopathological hallmarks of AD are intracellular neurofibrillary tangles and extracellular formation of senile plaques composed of the amyloid-beta peptide (Aβ) in aggregated form along with metal-ions such as copper, iron or zinc. Redox active metal ions, as for example copper, can catalyze the production of Reactive Oxygen Species (ROS) when bound to the amyloid-β (Aβ). The ROS thus produced, in particular the hydroxyl radical which is the most reactive one, may contribute to oxidative damage on both the Aβ peptide itself and on surrounding molecule (proteins, lipids, …). This review highlights the existing link between oxidative stress and AD, and the consequences towards the Aβ peptide and surrounding molecules in terms of oxidative damage. In addition, the implication of metal ions in AD, their interaction with the Aβ peptide and redox properties leading to ROS production are discussed, along with both in vitro and in vivo oxidation of the Aβ peptide, at the molecular level.
Collapse
Affiliation(s)
- C Cheignon
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - M Tomas
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - D Bonnefont-Rousselot
- Department of Metabolic Biochemistry, La Pitié Salpêtrière-Charles Foix University Hospital (AP-HP), Paris, France; Department of Biochemistry, Faculty of Pharmacy, Paris Descartes University, Paris, France; CNRS UMR8258 - INSERM U1022, Faculty of Pharmacy, Paris Descartes University, Paris, France
| | - P Faller
- Biometals and Biology Chemistry, Institut de Chimie (CNRS UMR 7177), University of Strasbourg, 4 rue B. Pascal, 67081 Strasbourg Cedex, France
| | - C Hureau
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France
| | - F Collin
- LCC (Laboratoire de Chimie de Coordination), CNRS UPR 8241, 205 route de Narbonne, 31062 Toulouse Cedex 09, France; Université de Toulouse; UPS, INPT, 31077 Toulouse, France.
| |
Collapse
|
25
|
Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer's disease. Eur J Med Chem 2018; 148:255-267. [PMID: 29466775 DOI: 10.1016/j.ejmech.2018.02.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/30/2023]
Abstract
Alzheimer's disease (AD) is a severe age-dependent neurodegenerative disorder affecting millions of people, with no cure so far. The current treatments only achieve some temporary amelioration of the cognition symptoms. The main characteristics of the patient brains include the accumulation of amyloid plaques and neurofibrillary tangles (outside and inside the neurons) but also cholinergic deficit, increased oxidative stress and dyshomeostasis of transition metal ions. Considering the multi-factorial nature of AD, we report herein the development of a novel series of potential multi-target directed drugs which, besides the capacity to recover the cholinergic neurons, can also target other AD hallmarks. The novel series of tacrine-hydroxyphenylbenzimidazole (TAC-BIM) hybrid molecules has been designed, synthesized and studied for their multiple biological activities. These agents showed improved AChE inhibitory activity (IC50 in nanomolar range), as compared with the single drug tacrine (TAC), and also a high inhibition of self-induced- and Cu-induced-Aβ aggregation (up to 75%). They also present moderate radical scavenging activity and metal chelating ability. In addition, neuroprotective studies revealed that all these tested compounds are able to inhibit the neurotoxicity induced by Aβ and Fe/AscH(-) in neuronal cells. Hence, for this set of hybrids, structure-activity relationships are discussed and finally it is highlighted their real promising interest as potential anti-AD drugs.
Collapse
|
26
|
Bagheri S, Squitti R, Haertlé T, Siotto M, Saboury AA. Role of Copper in the Onset of Alzheimer's Disease Compared to Other Metals. Front Aging Neurosci 2018; 9:446. [PMID: 29472855 PMCID: PMC5810277 DOI: 10.3389/fnagi.2017.00446] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by amyloid plaques in patients' brain tissue. The plaques are mainly made of β-amyloid peptides and trace elements including Zn2+, Cu2+, and Fe2+. Some studies have shown that AD can be considered a type of metal dyshomeostasis. Among metal ions involved in plaques, numerous studies have focused on copper ions, which seem to be one of the main cationic elements in plaque formation. The involvement of copper in AD is controversial, as some studies show a copper deficiency in AD, and consequently a need to enhance copper levels, while other data point to copper overload and therefore a need to reduce copper levels. In this paper, the role of copper ions in AD and some contradictory reports are reviewed and discussed.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Thomas Haertlé
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- UR 1268 Biopolymères Interactions Assemblages, Institut National de la Recherche Agronomique, Equipe Fonctions et Interactions des Protéines, Nantes, France
- Department of Animal Nutrition and Feed Management, Poznan University of Life Sciences, Poznań, Poland
| | | | - Ali A. Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
27
|
Chaves S, Hiremathad A, Tomás D, Keri RS, Piemontese L, Santos MA. Exploring the chelating capacity of 2-hydroxyphenyl-benzimidazole based hybrids with multi-target ability as anti-Alzheimer's agents. NEW J CHEM 2018. [DOI: 10.1039/c8nj00117k] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Donepezil and tacrine hybrids, containing a 2-hydroxyphenyl-benzimidazole chelating moiety and with multifunctional anti-AD activity, are evaluated in terms of metal (Cu and Zn) chelating capacity.
Collapse
Affiliation(s)
- Sílvia Chaves
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Asha Hiremathad
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Daniel Tomás
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - Rangappa S. Keri
- Centre for Nano and Material Sciences
- Jain University
- Jain Global Campus
- Bangalore 562112
- India
| | - Luca Piemontese
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural
- Instituto Superior Técnico
- Universidade de Lisboa
- 1049-001 Lisboa
- Portugal
| |
Collapse
|
28
|
Conte-Daban A, Boff B, Candido Matias A, Aparicio CNM, Gateau C, Lebrun C, Cerchiaro G, Kieffer I, Sayen S, Guillon E, Delangle P, Hureau C. A Trishistidine Pseudopeptide with Ability to Remove Both Cu Ι and Cu ΙΙ from the Amyloid-β Peptide and to Stop the Associated ROS Formation. Chemistry 2017; 23:17078-17088. [PMID: 28846165 PMCID: PMC5714062 DOI: 10.1002/chem.201703429] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Indexed: 01/08/2023]
Abstract
The pseudopeptide L, derived from a nitrilotriacetic acid scaffold and functionalized with three histidine moieties, is reminiscent of the amino acid side chains encountered in the Alzheimer's peptide (Aβ). Its synthesis and coordination properties for CuΙ and CuΙΙ are described. L efficiently complex CuΙΙ in a square-planar geometry involving three imidazole nitrogen atoms and an amidate-Cu bond. By contrast, CuΙ is coordinated in a tetrahedral environment. The redox behavior is irreversible and follows an ECEC mechanism in accordance with the very different environments of the two redox states of the Cu center. This is in line with the observed resistance of the CuΙ complex to oxidation by oxygen and the CuΙΙ complex reduction by ascorbate. The affinities of L for CuΙΙ and CuΙ at physiological pH are larger than that reported for the Aβ peptide. Therefore, due to its peculiar Cu coordination properties, the ligand L is able to target both redox states of Cu, redox silence them and prevent reactive oxygen species production by the CuAβ complex. Because reactive oxygen species contribute to the oxidative stress, a key issue in Alzheimer's disease, this ligand thus represents a new strategy in the long route of finding molecular concepts for fighting Alzheimer's disease.
Collapse
Affiliation(s)
- A. Conte-Daban
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - B. Boff
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - A. Candido Matias
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - C. N. Montes Aparicio
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| | - C. Gateau
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - G. Cerchiaro
- Center for Natural Sciences and Humanities, Federal University of ABC – UFABC 09210-580, Santo André, SP, Brazil
| | - I. Kieffer
- BM30B/FAME beamline, ESRF, F-38043 Grenoble cedex 9, France
- Observatoire des Sciences de l’Univers de Grenoble, UMS 832 CNRS Université Grenoble Alpes, F-38041 Grenoble, France
| | - S. Sayen
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - E. Guillon
- Institut de Chimie Moléculaire de Reims (ICMR, UMR CNRS 7312), Université de Reims Champagne-Ardenne, F-51687 Reims Cedex 2, France
| | - P. Delangle
- Univ. Grenoble Alpes, CEA, CNRS, INAC, SyMMES (UMR 5819), CIBEST, 17 rue des martyrs, F-38 000 Grenoble, France
| | - C. Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination) 205 route de Narbonne,BP 44099 31077 Toulouse Cedex 4, France
- University of Toulouse, UPS, INPT 31077 Toulouse Cedex 4, France
| |
Collapse
|
29
|
Atrián-Blasco E, Conte-Daban A, Hureau C. Mutual interference of Cu and Zn ions in Alzheimer's disease: perspectives at the molecular level. Dalton Trans 2017; 46:12750-12759. [PMID: 28937157 PMCID: PMC5656098 DOI: 10.1039/c7dt01344b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022]
Abstract
While metal ions such as copper and zinc are essential in biology, they are also linked to several amyloid-related diseases, including Alzheimer's disease (AD). Zinc and copper can indeed modify the aggregation pathways of the amyloid-β (Aβ) peptide, the key component encountered in AD. In addition, the redox active copper ions do produce Reactive Oxygen Species (ROS) when bound to the Aβ peptide. While Cu(i) or Cu(ii) or Zn(ii) coordination to the Aβ has been extensively studied in the last ten years, characterization of hetero-bimetallic Aβ complexes is still scarce. This is also true for the metal induced Aβ aggregation and ROS production, for which studies on the mutual influence of the copper and zinc ions are currently appearing. Last but not least, zinc can strongly interfere in therapeutic approaches relying on copper detoxification. This will be exemplified with a biological lead, namely metallothioneins, and with synthetic ligands.
Collapse
Affiliation(s)
- Elena Atrián-Blasco
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Amandine Conte-Daban
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| | - Christelle Hureau
- CNRS , LCC (Laboratoire de Chimie de Coordination) , 205 route de Narbonne , BP 44099 31077 Toulouse Cedex 4 , France .
- University of Toulouse , UPS , INPT , 31077 Toulouse Cedex 4 , France
| |
Collapse
|
30
|
Jones MR, Mathieu E, Dyrager C, Faissner S, Vaillancourt Z, Korshavn KJ, Lim MH, Ramamoorthy A, Wee Yong V, Tsutsui S, Stys PK, Storr T. Multi-target-directed phenol-triazole ligands as therapeutic agents for Alzheimer's disease. Chem Sci 2017; 8:5636-5643. [PMID: 28989601 PMCID: PMC5621006 DOI: 10.1039/c7sc01269a] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/04/2017] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial disease that is characterized by the formation of intracellular neurofibrillary tangles and extracellular amyloid-β (Aβ) plaque deposits. Increased oxidative stress, metal ion dysregulation, and the formation of toxic Aβ peptide oligomers are all considered to contribute to the etiology of AD. In this work we have developed a series of ligands that are multi-target-directed in order to address several disease properties. 2-(1-(3-Hydroxypropyl)-1H-1,2,3-triazol-4-yl)phenol (POH), 2-(1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PMorph), and 2-(1-(2-thiomorpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PTMorph) have been synthesized and screened for their antioxidant capacity, Cu-binding affinity, interaction with the Aβ peptide and modulation of Aβ peptide aggregation, and the ability to limit Aβ1-42-induced neurotoxicity in human neuronal culture. The synthetic protocol and structural variance incorporated via click chemistry, highlights the influence of R-group modification on ligand-Aβ interactions and neuroprotective effects. Overall, this study demonstrates that the phenol-triazole ligand scaffold can target multiple factors associated with AD, thus warranting further therapeutic development.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Emilie Mathieu
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Christine Dyrager
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Simon Faissner
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
- Department of Neurology , St. Josef-Hospital , Ruhr-University , Bochum , Germany
| | - Zavier Vaillancourt
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| | - Kyle J Korshavn
- Department of Chemistry , University of Michigan , Ann Arbor , USA
| | - Mi Hee Lim
- Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan , Korea
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry , University of Michigan , Ann Arbor , USA
- Department of Biophysics , University of Michigan , Ann Arbor , USA
| | - V Wee Yong
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Peter K Stys
- Department of Clinical Neurosciences , Hotchkiss Brain Institute , Cumming School of Medicine , University of Calgary , Calgary , Canada
| | - Tim Storr
- Department of Chemistry , Simon Fraser University , V5A1S6 , Burnaby , BC , Canada .
| |
Collapse
|
31
|
Wallin C, Luo J, Jarvet J, Wärmländer SKTS, Gräslund A. The Amyloid-β Peptide in Amyloid Formation Processes: Interactions with Blood Proteins and Naturally Occurring Metal Ions. Isr J Chem 2016. [DOI: 10.1002/ijch.201600105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Cecilia Wallin
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
| | - Jinghui Luo
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
- Chemical Research Laboratory; University of Oxford; 12 Mansfield Road Oxford Ox 1 3TA UK
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
- The National Institute of Chemical Physics and Biophysics; Tallinn Estonia
| | | | - Astrid Gräslund
- Department of Biochemistry and Biophysics; Arrhenius Laboratories; Stockholm University; 10691 Stockholm Sweden
| |
Collapse
|