1
|
Muir DCG, Getzinger GJ, McBride M, Ferguson PL. How Many Chemicals in Commerce Have Been Analyzed in Environmental Media? A 50 Year Bibliometric Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37319372 DOI: 10.1021/acs.est.2c09353] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Over the past 50 years, there has been a tremendous expansion in the measurement of chemical contaminants in environmental media. But how many chemicals have actually been determined, and do they represent a significant fraction of substances in commerce or of chemicals of concern? To address these questions, we conducted a bibliometric survey to identify what individual chemicals have been determined in environmental media and their trends over the past 50 years. The CAplus database of CAS, a Division of the American Chemical Society, was searched for indexing roles "analytical study" and "pollutant" yielding a final list of 19,776 CAS Registry Numbers (CASRNs). That list was then used to link the CASRNs to biological studies, yielding a data set of 9.251 × 106 total counts of the CASRNs over a 55 year period. About 14,150 CASRNs were substances on various priority lists or their close analogs and transformation products. The top 100 most reported CASRNs accounted for 34% of the data set, confirming previous studies showing a significant bias toward repeated measurements of the same substances due to regulatory needs and the challenges of determining new, previously unmeasured, compounds. Substances listed in the industrial chemical inventories of Europe, China, and the United States accounted for only about 5% of measured substances. However, pharmaceuticals and current use pesticides were widely measured accounting for 50-60% of total CASRN counts for the period 2000-2015.
Collapse
Affiliation(s)
- Derek C G Muir
- Environment & Climate Change Canada, Burlington, Ontario L7S1A1, Canada
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | - Gordon J Getzinger
- School of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois 60660, United States
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Matt McBride
- CAS IP Services, CAS, Columbus, Ohio 43202, United States
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
2
|
Persson L, Carney Almroth BM, Collins CD, Cornell S, de Wit CA, Diamond ML, Fantke P, Hassellöv M, MacLeod M, Ryberg MW, Søgaard Jørgensen P, Villarrubia-Gómez P, Wang Z, Hauschild MZ. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1510-1521. [PMID: 35038861 PMCID: PMC8811958 DOI: 10.1021/acs.est.1c04158] [Citation(s) in RCA: 277] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 05/04/2023]
Abstract
We submit that the safe operating space of the planetary boundary of novel entities is exceeded since annual production and releases are increasing at a pace that outstrips the global capacity for assessment and monitoring. The novel entities boundary in the planetary boundaries framework refers to entities that are novel in a geological sense and that could have large-scale impacts that threaten the integrity of Earth system processes. We review the scientific literature relevant to quantifying the boundary for novel entities and highlight plastic pollution as a particular aspect of high concern. An impact pathway from production of novel entities to impacts on Earth system processes is presented. We define and apply three criteria for assessment of the suitability of control variables for the boundary: feasibility, relevance, and comprehensiveness. We propose several complementary control variables to capture the complexity of this boundary, while acknowledging major data limitations. We conclude that humanity is currently operating outside the planetary boundary based on the weight-of-evidence for several of these control variables. The increasing rate of production and releases of larger volumes and higher numbers of novel entities with diverse risk potentials exceed societies' ability to conduct safety related assessments and monitoring. We recommend taking urgent action to reduce the harm associated with exceeding the boundary by reducing the production and releases of novel entities, noting that even so, the persistence of many novel entities and/or their associated effects will continue to pose a threat.
Collapse
Affiliation(s)
- Linn Persson
- Stockholm
Environment Institute, Linnégatan 87D, Box 24218, 104
51 Stockholm, Sweden
| | - Bethanie M. Carney Almroth
- Department
of Biology and Environmental Sciences, University
of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Christopher D. Collins
- Department
of Geography and Environmental Sciences, University of Reading, PO Box 217, Reading, Berkshire, RG6 6AH, United Kingdom
| | - Sarah Cornell
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Cynthia A. de Wit
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Miriam L. Diamond
- Department
of Earth Sciences; and School of the Environment, University of Toronto, Toronto, Canada M5S 3B1
| | - Peter Fantke
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Martin Hassellöv
- Department
of Marine Sciences, University of Gothenburg, Box 100, 405 30 Gothenburg, Sweden
| | - Matthew MacLeod
- Department
of Environmental Science, Stockholm University, 106 91 Stockholm, Sweden
| | - Morten W. Ryberg
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| | - Peter Søgaard Jørgensen
- Stockholm
Resilience Centre, Stockholm University, 106 91 Stockholm, Sweden
- Global
Economic Dynamics and the Biosphere, Royal
Swedish Academy of Sciences, Lilla Frescativägen 4A, 104
05 Stockholm, Sweden
| | | | - Zhanyun Wang
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Michael Zwicky Hauschild
- Quantitative
Sustainability Assessment, Department of Technology, Management and
Economics, Technical University of Denmark, Produktionstorvet 424, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
3
|
Emerging and Persistent Pollutants in the Aquatic Ecosystems of the Lower Danube Basin and North West Black Sea Region—A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The tremendous impact of natural and anthropogenic organic and inorganic substances continuously released into the environment requires a better understanding of the chemical status of aquatic ecosystems. Water contamination monitoring studies were performed for different classes of substances in different regions of the world. Reliable analytical methods and exposure assessment are the basis of a better management of water resources. Our research comprised publications from 2010 regarding the Lower Danube and North West Black Sea region, considering regulated and unregulated persistent and emerging pollutants. The frequently reported ones were: pharmaceuticals (carbamazepine, diclofenac, sulfamethoxazole, and trimethoprim), pesticides (atrazine, carbendazim, and metolachlor), endocrine disruptors—bisphenol A and estrone, polycyclic aromatic hydrocarbons, organochlorinated pesticides, and heavy metals (Cd, Zn, Pb, Hg, Cu, Cr). Seasonal variations were reported for both organic and inorganic contaminants. Microbial pollution was also a subject of the present review.
Collapse
|
4
|
Abrahamsson DP, Wang A, Jiang T, Wang M, Siddharth A, Morello-Frosch R, Park JS, Sirota M, Woodruff TJ. A Comprehensive Non-targeted Analysis Study of the Prenatal Exposome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10542-10557. [PMID: 34260856 PMCID: PMC8338910 DOI: 10.1021/acs.est.1c01010] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: (1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); (2) to examine the differences in chemical abundance between maternal and cord blood samples; and (3) to examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins.
Collapse
Affiliation(s)
- Dimitri Panagopoulos Abrahamsson
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Aolin Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Ting Jiang
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Miaomiao Wang
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Adi Siddharth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California Berkeley, Berkeley, 94720, California, United States
| | - June-Soo Park
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
- California Environmental Protection Agency, Department of Toxic Substances Control, Environmental Chemistry Laboratory, Berkeley, 94710, California, United States
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, 94158, California, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, 94158, California, United States
| | - Tracey J. Woodruff
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, 94143, California, United States
| |
Collapse
|
5
|
The Urban River Syndrome: Achieving Sustainability Against a Backdrop of Accelerating Change. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126406. [PMID: 34199215 PMCID: PMC8296234 DOI: 10.3390/ijerph18126406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 06/10/2021] [Indexed: 02/03/2023]
Abstract
Human activities have been affecting rivers and other natural systems for millennia. Anthropogenic changes to rivers over the last few centuries led to the accelerating state of decline of coastal and estuarine regions globally. Urban rivers are parts of larger catchment ecosystems, which in turn form parts of wider nested, interconnected systems. Accurate modelling of urban rivers may not be possible because of the complex multisystem interactions operating concurrently and over different spatial and temporal scales. This paper overviews urban river syndrome, the accelerating deterioration of urban river ecology, and outlines growing conservation challenges of river restoration projects. This paper also reviews the river Thames, which is a typical urban river that suffers from growing anthropogenic effects and thus represents all urban rivers of similar type. A particular emphasis is made on ecosystem adaptation, widespread extinctions and the proliferation of non-native species in the urban Thames. This research emphasizes the need for a holistic systems approach to urban river restoration.
Collapse
|
6
|
Zhang X, Saini A, Hao C, Harner T. Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: Opportunities and challenges. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Park I, Xun P, Tsinovoi CL, Klemmer P, Liu K, He K. Intakes of long-chain omega-3 polyunsaturated fatty acids and non-fried fish in relation to incidence of chronic kidney disease in young adults: a 25-year follow-up. Eur J Nutr 2020; 59:399-407. [PMID: 31175412 PMCID: PMC6898765 DOI: 10.1007/s00394-019-02022-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE The prevalence of chronic kidney disease (CKD) is increasing rapidly in many countries and has become a major public health concern. Although intakes of long-chain omega-3 polyunsaturated fatty acids (LCω3PUFA) and its food source-fish-may have renal protective effects, little is known about the longitudinal association between these dietary factors and CKD incidence. METHODS A total of 4133 healthy individuals of black and white race aged 18-30 at baseline (1985-1986) from the Coronary Artery Risk Development in Young Adults study were enrolled and followed up over 25 years. LCω3PUFA and fish intake were assessed by an interview-based dietary history questionnaire at baseline, year 7 (1992-1993) and 20 (2005-2006). RESULTS Four hundred and eighty-nine incident cases of CKD were identified. After adjustment for potential confounders, LCω3PUFA intake was inversely associated with CKD incidence [HR = 0.73 (95% CI 0.60-0.89), P = 0.002, with one standard division (0.19 g/day) increment in LCω3PUFA]. This inverse association was persisted among females [0.64 (95% CI 0.48, 0.84; P = 0.002], but not males (Pinteraction = 0.070). A marginal significant inverse association was also found between non-fried fish consumption and CKD incidence (HR = 0.86, 95% CI 0.73, 1.01; P = 0.073). CONCLUSIONS Dietary LCω3PUFA intake was inversely associated with incidence of CKD among American young adults over 25 years of follow-up. The suggestive evidence of the inverse association between non-fried fish consumption with CKD incidence needs further confirmation.
Collapse
Affiliation(s)
- Inwhee Park
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, 1025 E. 7th Street, Bloomington, IN, 47405, USA
- Department of Nephrology, School of Medicine, Ajou University, Suwon, Gyeonggi-do, Republic of Korea
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, 1025 E. 7th Street, Bloomington, IN, 47405, USA
| | - Cari Lewis Tsinovoi
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, 1025 E. 7th Street, Bloomington, IN, 47405, USA
| | - Philip Klemmer
- Division of Nephrology and Hypertension, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Kiang Liu
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ka He
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, 1025 E. 7th Street, Bloomington, IN, 47405, USA.
| |
Collapse
|
8
|
Grandjean P, Prins GS, Weihe P. Development priority. Basic Clin Pharmacol Toxicol 2019; 125 Suppl 3:3-4. [PMID: 31077551 PMCID: PMC6713582 DOI: 10.1111/bcpt.13249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/06/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Gail S. Prins
- Chicago Center for Health and Environment (CACHET), University of Illinois at Chicago, Chicago, IL, USA
| | - Pal Weihe
- Department of Public Health and Occupational Medicine, Tórshavn, Faroe Islands
| |
Collapse
|
9
|
Reppas-Chrysovitsinos E, Sobek A, MacLeod M. In Silico Screening-Level Prioritization of 8468 Chemicals Produced in OECD Countries to Identify Potential Planetary Boundary Threats. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:134-146. [PMID: 29285590 PMCID: PMC5775374 DOI: 10.1007/s00128-017-2253-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
Legislation such as the Stockholm Convention and REACH aim to identify and regulate the production and use of chemicals that qualify as persistent organic pollutants (POPs) and very persistent and very bioaccumulative (vPvB) chemicals, respectively. Recently, a series of studies on planetary boundary threats proposed seven chemical hazard profiles that are distinct from the POP and vPvB profiles. We previously defined two exposure-based hazard profiles; airborne persistent contaminants (APCs) and waterborne persistent contaminants (WPCs) that correspond to two profiles of chemicals that are planetary boundary threats. Here, we extend our method to screen a database of chemicals consisting of 8648 substances produced within the OECD countries. We propose a new scoring scheme to disentangle the POP, vPvB, APC and WPC profiles by focusing on the spatial range of exposure potential, discuss the relationship between high exposure hazard and elemental composition of chemicals, and identify chemicals with high exposure hazard potential.
Collapse
Affiliation(s)
| | - Anna Sobek
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691, Stockholm, Sweden
| | - Matthew MacLeod
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|
10
|
Munthe J, Brorström-Lundén E, Rahmberg M, Posthuma L, Altenburger R, Brack W, Bunke D, Engelen G, Gawlik BM, van Gils J, Herráez DL, Rydberg T, Slobodnik J, van Wezel A. An expanded conceptual framework for solution-focused management of chemical pollution in European waters. ENVIRONMENTAL SCIENCES EUROPE 2017; 29:13. [PMID: 28337403 PMCID: PMC5344934 DOI: 10.1186/s12302-017-0112-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/22/2017] [Indexed: 05/05/2023]
Abstract
BACKGROUND This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. METHODS The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. RESULTS The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. CONCLUSIONS The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.
Collapse
Affiliation(s)
- John Munthe
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Eva Brorström-Lundén
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Magnus Rahmberg
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | - Leo Posthuma
- RIVM-National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rolf Altenburger
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Werner Brack
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
- Institute for Environmental Research (Biology V), RWTH Aachen University, Aachen, Germany
| | - Dirk Bunke
- OEKO-Institute for Applied Ecology, Postfach 17 71, 79017 Freiburg, Germany
| | - Guy Engelen
- VITO-Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Bernd Manfred Gawlik
- Unit H 01-Water Resources Unit, DG Joint Research Centre, Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Jos van Gils
- Deltares, Postbus 177, 2600 MH Delft, The Netherlands
| | - David López Herráez
- UFZ-Helmholtz Centre for Environmental Research GmbH, Permoserstraße 15, 04318 Leipzig, Germany
| | - Tomas Rydberg
- IVL Swedish Environmental Research Institute, PO Box 53021, 40014 Gothenburg, Sweden
| | | | - Annemarie van Wezel
- KWR-Watercycle Research Institute, Nieuwegein, The Netherlands
- Copernicus Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|