1
|
Wahab O, Baker LA. Spiers Memorial Lecture: New horizons in nanoelectrochemistry. Faraday Discuss 2024. [PMID: 39484676 DOI: 10.1039/d4fd00159a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
This introductory lecture prefaces the 2024 New Horizons in Nanoelectrochemistry Faraday Discussion. A broad view of the previous Discussions related to nanoelectrochemistry is taken. Big ideas or concepts discussed at these previous meetings are identified, along with specific examples in each area. Closing comments aimed at a high level and related to where we are today and what is needed to continue to drive nanoelectrochemistry towards the horizon are considered.
Collapse
Affiliation(s)
- Oluwasegun Wahab
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Lane A Baker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
2
|
Edgecomb J, Nguyen DT, Tan S, Murugesan V, Johnson GE, Prabhakaran V. Electrochemical Imaging of Precisely-Defined Redox and Reactive Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405846. [PMID: 38871656 DOI: 10.1002/anie.202405846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Understanding the diverse electrochemical reactions occurring at electrode-electrolyte interfaces (EEIs) is a critical challenge to developing more efficient energy conversion and storage technologies. Establishing a predictive molecular-level understanding of solid electrolyte interphases (SEIs) is challenging due to the presence of multiple intertwined chemical and electrochemical processes occurring at battery electrodes. Similarly, chemical conversions in reactive electrochemical systems are often influenced by the heterogeneous distribution of active sites, surface defects, and catalyst particle sizes. In this mini review, we highlight an emerging field of interfacial science that isolates the impact of specific chemical species by preparing precisely-defined EEIs and visualizing the reactivity of their individual components using single-entity characterization techniques. We highlight the broad applicability and versatility of these methods, along with current state-of-the-art instrumentation and future opportunities for these approaches to address key scientific challenges related to batteries, chemical separations, and fuel cells. We establish that controlled preparation of well-defined electrodes combined with single entity characterization will be crucial to filling key knowledge gaps and advancing the theories used to describe and predict chemical and physical processes occurring at EEIs and accelerating new materials discovery for energy applications.
Collapse
Affiliation(s)
- Joseph Edgecomb
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Shuai Tan
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | | - Grant E Johnson
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | | |
Collapse
|
3
|
Zhang L, Wahab OJ, Jallow AA, O’Dell ZJ, Pungsrisai T, Sridhar S, Vernon KL, Willets KA, Baker LA. Recent Developments in Single-Entity Electrochemistry. Anal Chem 2024; 96:8036-8055. [PMID: 38727715 PMCID: PMC11112546 DOI: 10.1021/acs.analchem.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Affiliation(s)
- L. Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - O. J. Wahab
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - A. A. Jallow
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Z. J. O’Dell
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - T. Pungsrisai
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - S. Sridhar
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - K. L. Vernon
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - K. A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - L. A. Baker
- Department
of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
4
|
Li X, Fu YH, Wei N, Yu RJ, Bhatti H, Zhang L, Yan F, Xia F, Ewing AG, Long YT, Ying YL. Emerging Data Processing Methods for Single-Entity Electrochemistry. Angew Chem Int Ed Engl 2024; 63:e202316551. [PMID: 38411372 DOI: 10.1002/anie.202316551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/12/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Single-entity electrochemistry is a powerful tool that enables the study of electrochemical processes at interfaces and provides insights into the intrinsic chemical and structural heterogeneities of individual entities. Signal processing is a critical aspect of single-entity electrochemical measurements and can be used for data recognition, classification, and interpretation. In this review, we summarize the recent five-year advances in signal processing techniques for single-entity electrochemistry and highlight their importance in obtaining high-quality data and extracting effective features from electrochemical signals, which are generally applicable in single-entity electrochemistry. Moreover, we shed light on electrochemical noise analysis to obtain single-molecule frequency fingerprint spectra that can provide rich information about the ion networks at the interface. By incorporating advanced data analysis tools and artificial intelligence algorithms, single-entity electrochemical measurements would revolutionize the field of single-entity analysis, leading to new fundamental discoveries.
Collapse
Affiliation(s)
- Xinyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ying-Huan Fu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Nannan Wei
- School of Electronic Science and Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, P. R. China
| | - Huma Bhatti
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Limin Zhang
- School of Electronic Science and Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Feng Yan
- School of Electronic Science and Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 430034, Wuhan, P. R. China
| | - Andrew G Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, 41296, Gothenburg, Sweden
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
5
|
Zhou X, Chieng A, Wang S. Label-Free Optical Imaging of Nanoscale Single Entities. ACS Sens 2024; 9:543-554. [PMID: 38346398 PMCID: PMC10990724 DOI: 10.1021/acssensors.3c02526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The advancement of optical microscopy technologies has achieved imaging of nanoscale objects, including nanomaterials, virions, organelles, and biological molecules, at the single entity level. Recently developed plasmonic and scattering based optical microscopy technologies have enabled label-free imaging of single entities with high spatial and temporal resolutions. These label-free methods eliminate the complexity of sample labeling and minimize the perturbation of the analyte native state. Additionally, these imaging-based methods can noninvasively probe the dynamics and functions of single entities with sufficient throughput for heterogeneity analysis. This perspective will review label-free single entity imaging technologies and discuss their principles, applications, and key challenges.
Collapse
Affiliation(s)
- Xinyu Zhou
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Andy Chieng
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Shaopeng Wang
- Biodesign Center for Bioelectronics and Biosensors, Arizona State University, Tempe, Arizona 85287, United States
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
6
|
Saqib M, Zafar M, Halawa MI, Murtaza S, Kamal GM, Xu G. Nanoscale Luminescence Imaging/Detection of Single Particles: State-of-the-Art and Future Prospects. ACS MEASUREMENT SCIENCE AU 2024; 4:3-24. [PMID: 38404493 PMCID: PMC10885340 DOI: 10.1021/acsmeasuresciau.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
Single-particle-level measurements, during the reaction, avoid averaging effects that are inherent limitations of conventional ensemble strategies. It allows revealing structure-activity relationships beyond averaged properties by considering crucial particle-selective descriptors including structure/morphology dynamics, intrinsic heterogeneity, and dynamic fluctuations in reactivity (kinetics, mechanisms). In recent years, numerous luminescence (optical) techniques such as chemiluminescence (CL), electrochemiluminescence (ECL), and fluorescence (FL) microscopies have been emerging as dominant tools to achieve such measurements, owing to their diversified spectroscopy principles, noninvasive nature, higher sensitivity, and sufficient spatiotemporal resolution. Correspondingly, state-of-the-art methodologies and tools are being used for probing (real-time, operando, in situ) diverse applications of single particles in sensing, medicine, and catalysis. Herein, we provide a concise and comprehensive perspective on luminescence-based detection and imaging of single particles by putting special emphasis on their basic principles, mechanistic pathways, advances, challenges, and key applications. This Perspective focuses on the development of emission intensities and imaging based individual particle detection. Moreover, several key examples in the areas of sensing, motion, catalysis, energy, materials, and emerging trends in related areas are documented. We finally conclude with the opportunities and remaining challenges to stimulate further developments in this field.
Collapse
Affiliation(s)
- Muhammad Saqib
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mariam Zafar
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohamed Ibrahim Halawa
- Department
of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Department
of Chemistry, College of Science, United
Arab Emirates University, Al Ain 15551, United Arab
Emirates
| | - Shahzad Murtaza
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Ghulam Mustafa Kamal
- Institute
of Chemistry, Khawaja Fareed University
of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Guobao Xu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, 5625 Renmin
Street, Changchun, Jilin 130022, China
- School
of Applied Chemistry and Engineering, University
of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Lu Y, Ma T, Lan Q, Liu B, Liang X. Single entity collision for inorganic water pollutants measurements: Insights and prospects. WATER RESEARCH 2024; 248:120874. [PMID: 37979571 DOI: 10.1016/j.watres.2023.120874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/20/2023]
Abstract
In the context of aquatic environmental issues, dynamic analysis of nano-sized inorganic water pollutants has been one of the key topics concerning their seriously amplified threat to natural ecosystems and life health. Its ultimate challenge is to reach a single-entity level of identification especially towards substantial amount of inorganic pollutants formed as natural or manufactured nanoparticles (NPs), which enter the water environments along with the potential release of constituents or other contaminating species that may have coprecipitated or adsorbed on the particles' surface. Here, we introduced a 'nano-impacts' approach-single entity collision electrochemistry (SECE) promising for in-situ characterization and quantification of nano-sized inorganic pollutants at single-entity level based on confinement-controlled electrochemistry. In comparison with ensemble analytical tools, advantages and features of SECE point at understanding 'individual' specific fate and effect under its free-motion condition, contributing to obtain more precise information for 'ensemble' nano-sized pollutants on assessing their mixture exposure and toxicity in the environment. This review gives a unique insight about the single-entity collision measurements of various inorganic water pollutants based on recent trends and directions of state-of-the-art single entity electrochemistry, the prospects for exploring nano-impacts in the field of inorganic water pollutants measurements were also put forward.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tingting Ma
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingwen Lan
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Boyi Liu
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Water Pollution Control and Environmental Security Technology, Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Vicente RA, Raju SP, Gomes HVN, Neckel IT, Tolentino HCN, Fernández PS. Development of Electrochemical Cells and Their Application for Spatially Resolved Analysis Using a Multitechnique Approach: From Conventional Experiments to X-Ray Nanoprobe Beamlines. Anal Chem 2023; 95:16144-16152. [PMID: 37883715 DOI: 10.1021/acs.analchem.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Real (electro)catalysts are often heterogeneous, and their activity and selectivity depend on the properties of specific active sites. Therefore, unveiling the so-called structure-activity relationship is essential for a rational search for better materials and, consequently, for the development of the field of (electro-)catalysis. Thus, spatially resolved techniques are powerful tools as they allow us to characterize and/or measure the activity and selectivity of different regions of heterogeneous catalysts. To take full advantage of that, we have developed spectroelectrochemical cells to perform spatially resolved analysis using X-ray nanoprobe synchrotron beamlines and conventional pieces of equipment. Here, we describe the techniques available at the Carnaúba beamline at the Sirius-LNLS storage ring, and then we show how our cells enable obtaining X-ray (XRF, XRD, XAS, etc.) and vibrational spectroscopy (FTIR and Raman) contrast images. Through some proof-of-concept experiments, we demonstrate how using a multi-technique approach could render a complete and detailed analysis of an (electro)catalyst overall performance.
Collapse
Affiliation(s)
- Rafael Alcides Vicente
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Swathi Patchaiammal Raju
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Heloisa Vampré Nascimento Gomes
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| | - Itamar Tomio Neckel
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), R. Giuseppe Máximo Scolfaro, 10000 - Bosque das Palmeiras, Campinas 13083-970, Brazil
| | - Pablo Sebastián Fernández
- Department of Physical-Chemistry, Universidade Estadual de Campinas (UNICAMP), R. Josué de Castro, s/n, Cidade Universitária, Campinas 13083-872, Brazil
- Center for Innovation on New Energies (CINE), R. Michel Debrun, s/n, Prédio Amarelo, Campinas 13083-084, Brazil
| |
Collapse
|
9
|
Kong N, He J, Yang W. Formation of Molecular Junctions by Single-Entity Collision Electrochemistry. J Phys Chem Lett 2023; 14:8513-8524. [PMID: 37722010 DOI: 10.1021/acs.jpclett.3c01955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Controlling and understanding the chemistry of molecular junctions is one of the major themes in various fields ranging from chemistry and nanotechnology to biotechnology and biology. Stochastic single-entity collision electrochemistry (SECE) provides powerful tools to study a single entity, such as single cells, single particles, and even single molecules, in a nanoconfined space. Molecular junctions formed by SECE collision show various potential applications in monitoring molecular dynamics with high spatial resolution and high temporal resolution and in feasible combination with hybrid techniques. This Perspective highlights the new breakthroughs, seminal studies, and trends in the area that have been most recently reported. In addition, future challenges for the study of molecular junction dynamics with SECE are discussed.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| | - Jin He
- Physics Department, Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Sustainable Bioproducts, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
10
|
Xu X, Valavanis D, Ciocci P, Confederat S, Marcuccio F, Lemineur JF, Actis P, Kanoufi F, Unwin PR. The New Era of High-Throughput Nanoelectrochemistry. Anal Chem 2023; 95:319-356. [PMID: 36625121 PMCID: PMC9835065 DOI: 10.1021/acs.analchem.2c05105] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 01/11/2023]
Affiliation(s)
- Xiangdong Xu
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | | | - Paolo Ciocci
- Université
Paris Cité, ITODYS, CNRS, F-75013 Paris, France
| | - Samuel Confederat
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | - Fabio Marcuccio
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
- Faculty
of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Paolo Actis
- School
of Electronic and Electrical Engineering and Pollard Institute, University of Leeds, Leeds LS2 9JT, U.K.
- Bragg
Centre for Materials Research, University
of Leeds, Leeds LS2 9JT, U.K.
| | | | - Patrick R. Unwin
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
11
|
Takahashi K, Nakano H, Sato H. Accelerated constant-voltage quantum mechanical/molecular mechanical method for molecular systems at electrochemical interfaces. J Chem Phys 2022; 157:234107. [PMID: 36550044 DOI: 10.1063/5.0128358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The structure and electronic properties of a molecule at an electrochemical interface are changed by interactions with the electrode surface and the electrolyte solution, which can be significantly modulated by an applied voltage. We present an efficient self-consistent quantum mechanics/molecular mechanics (QM/MM) approach to study a physisorbed molecule at a metal electrode-electrolyte interface under the constant-voltage condition. The approach employs a classical polarizable double electrode model, which enables us to study the QM/MM system in the constant-voltage ensemble. A mean-field embedding approximation is further introduced in order to overcome the difficulties associated with statistical sampling of the electrolyte configurations. The results of applying the method to a test system indicate that the adsorbed molecule is no less or slightly more polarized at the interface than in the bulk electrolyte solution. The geometry of the horizontally adsorbed molecule is modulated by their electrostatic interactions with the polarizable electrode surfaces and also the interactions with cations attracted toward the interface when the adsorbate is reduced. We also demonstrate that the approach can be used to quantitatively evaluate the reorganization energy of a one electron reduction reaction of a molecule in an electrochemical cell.
Collapse
Affiliation(s)
- Ken Takahashi
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| | - Hiroshi Nakano
- CD-FMat, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Kyoto University, Kyoto Daigaku Katsura, Kyoto 615-8246, Japan
| |
Collapse
|
12
|
Sciurti E, Biscaglia F, Prontera C, Giampetruzzi L, Blasi L, Francioso L. Nanoelectrodes for Intracellular and Intercellular electrochemical detection: working principles, fabrication techniques and applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Abstract
Understanding the structure-activity relationship at electrochemical interfaces is crucial in improving the performance of practical electrochemical devices, ranging from fuel cells, electrolyzers, and batteries to electrochemical sensors. However, functional electrochemical interfaces are often complex and contain various surface structures, creating heterogeneity in electrochemical activity. In this Perspective, we highlight the role of heterogeneity in electrochemistry, especially in the context of electrocatalysis. Current methods for revealing the heterogeneity at electrochemical interfaces, including nanoelectrochemistry tools and single-entity approaches, are discussed. Lastly, we provide perspectives on what one can learn by studying heterogeneity and how one can use heterogeneity to design more efficient electrochemical devices.
Collapse
Affiliation(s)
- C Hyun Ryu
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyein Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Heekwon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hang Ren
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Jing C, Long Y. Observing electrochemistry on single plasmonic nanoparticles. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Chao Jing
- Department of Hydrogen Technique Chinese Academy of Sciences Shanghai Institute of Applied Physics Shanghai P. R. China
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing P. R. China
| |
Collapse
|
15
|
Chen Q, Zhao J, Deng X, Shan Y, Peng Y. Single-Entity Electrochemistry of Nano- and Microbubbles in Electrolytic Gas Evolution. J Phys Chem Lett 2022; 13:6153-6163. [PMID: 35762985 DOI: 10.1021/acs.jpclett.2c01388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Gas bubbles are found in diverse electrochemical processes, ranging from electrolytic water splitting to chlor-alkali electrolysis, as well as photoelectrochemical processes. Understanding the intricate influence of bubble evolution on the electrode processes and mass transport is key to the rational design of efficient devices for electrolytic energy conversion and thus requires precise measurement and analysis of individual gas bubbles. In this Perspective, we review the latest advances in single-entity measurement of gas bubbles on electrodes, covering the approaches of voltammetric and galvanostatic studies based on nanoelectrodes, probing bubble evolution using scanning probe electrochemistry with spatial information, and monitoring the transient nature of nanobubble formation and dynamics with opto-electrochemical imaging. We emphasize the intrinsic and quantitative physicochemical interpretation of single gas bubbles from electrochemical data, highlighting the fundamental understanding of the heterogeneous nucleation, dynamic state of the three-phase boundary, and the correlation between electrolytic bubble dynamics and nanocatalyst activities. In addition, a brief discussion of future perspectives is presented.
Collapse
Affiliation(s)
- Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Jiao Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoli Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yun Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Yu Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
16
|
He Q, Tang L. Sub-5 nm nanogap electrodes towards single-molecular biosensing. Biosens Bioelectron 2022; 213:114486. [PMID: 35749816 DOI: 10.1016/j.bios.2022.114486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 11/02/2022]
Abstract
Nanogap electrodes (NGEs) with sub-5 nm gap has been widely used in single-molecule sensing and sequencing, with the characteristics of label-free, high sensitivity, rapid detection and low-cost. However, the fabrication of sub-5 nm gap electrodes with high controllability and reproducibility still remains a great challenge that impedes the experimental research and the commercialization of the nanogap device. Here, we review the common currently used fabrication methods of nanogap electrodes, such as gap narrowing deposition, mechanical controllable break junctions and the fabrication methods combined with nanopore or nanochannel. We then highlight the typical applications of nanogap electrodes in biological/chemical sensing fields, including single molecule recognition, single molecule sequencing and chemical kinetics analysis. Finally, the challenges of nanogap electrodes in single molecule sensing/sequencing are outlined and the future directions for sensing perspectives are suggested.
Collapse
Affiliation(s)
- Qiuxiang He
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Longhua Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
17
|
Lemineur JF, Wang H, Wang W, Kanoufi F. Emerging Optical Microscopy Techniques for Electrochemistry. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:57-82. [PMID: 35216529 DOI: 10.1146/annurev-anchem-061020-015943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An optical microscope is probably the most intuitive, simple, and commonly used instrument to observe objects and discuss behaviors through images. Although the idea of imaging electrochemical processes operando by optical microscopy was initiated 40 years ago, it was not until significant progress was made in the last two decades in advanced optical microscopy or plasmonics that it could become a mainstream electroanalytical strategy. This review illustrates the potential of different optical microscopies to visualize and quantify local electrochemical processes with unprecedented temporal and spatial resolution (below the diffraction limit), up to the single object level with subnanoparticle or single-molecule sensitivity. Developed through optically and electrochemically active model systems, optical microscopy is now shifting to materials and configurations focused on real-world electrochemical applications.
Collapse
Affiliation(s)
| | - Hui Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | - Wei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China;
| | | |
Collapse
|
18
|
Bandarenka A, Haimerl F, Sabawa JP, Dao TA. Spatially Resolved Electrochemical Impedance Spectroscopy of Automotive PEM Fuel Cells. ChemElectroChem 2022. [DOI: 10.1002/celc.202200069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aliaksandr Bandarenka
- Technical University of Munich: Technische Universitat Munchen Physik-Department James-Franck-Str. 1 85748 Garching GERMANY
| | - Felix Haimerl
- Technical University Munich: Technische Universitat Munchen Physics James-Franck-Str. 1 Garching GERMANY
| | - Jarek P. Sabawa
- TUM: Technische Universitat Munchen Physics James-Franck-Str.1 Garching GERMANY
| | - Tuan A. Dao
- BMW AG: Bayerische Motoren Werke AG - Petuelring 130 Munich GERMANY
| |
Collapse
|
19
|
Ahmadinasab N, Stockmann TJ. Single entity electrochemical detection of as‐prepared metallic and dielectric nanoparticle stochastic impacts in a phosphonium ionic liquid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nazanin Ahmadinasab
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| | - Talia Jane Stockmann
- Memorial University of Newfoundland Chemistry 1 Arctic Ave A1C 5S7 St. John's CANADA
| |
Collapse
|
20
|
Wu Y, Jamali S, Tilley RD, Gooding JJ. Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discuss 2022; 233:10-32. [PMID: 34874385 DOI: 10.1039/d1fd00088h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nanoelectrochemistry, where electrochemical processes are controlled and investigated with nanoscale resolution, is gaining more and more attention because of the many potential applications in energy and sensing and the fact that there is much to learn about fundamental electrochemical processes when we explore them at the nanoscale. The development of instrumental methods that can explore the heterogeneity of electrochemistry occurring across an electrode surface, monitoring single molecules or many single nanoparticles on a surface simultaneously, have been pivotal in giving us new insights into nanoscale electrochemistry. Equally important has been the ability to synthesise or fabricate nanoscale entities with a high degree of control that allows us to develop nanoscale devices. Central to the latter has been the incredible advances in nanomaterial synthesis where electrode materials with atomic control over electrochemically active sites can be achieved. After introducing nanoelectrochemistry, this paper focuses on recent developments in two major application areas of nanoelectrochemistry; electrocatalysis and using single entities in sensing. Discussion of the developments in these two application fields highlights some of the advances in the fundamental understanding of nanoelectrochemical systems really driving these applications forward. Looking into our nanocrystal ball, this paper then highlights: the need to understand the impact of nanoconfinement on electrochemical processes, the need to measure many single entities, the need to develop more sophisticated ways of treating the potentially large data sets from measuring such many single entities, the need for more new methods for characterising nanoelectrochemical systems as they operate and the need for material synthesis to become more reproducible as well as possess more nanoscale control.
Collapse
Affiliation(s)
- Yanfang Wu
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Sina Jamali
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| | - Richard D Tilley
- School of Chemistry and Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, The University of New South Wales, Sydney, New South Wales 2052, Australia.
| |
Collapse
|
21
|
Elliott JR, Compton RG. Local diffusion indicators: a new tool for analysis of electrochemical mass transport. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Ma W, Alpuche-Aviles MA, Chen Q, Hill CM. Editorial: Single-Entity Electrochemistry. Front Chem 2021; 9:812273. [PMID: 34957058 PMCID: PMC8703224 DOI: 10.3389/fchem.2021.812273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | | | - Qianjin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Caleb M Hill
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
23
|
Zhong CB, Ma H, Wang JJ, Zhang LL, Ying YL, Wang R, Wan YJ, Long YT. An ultra-low noise amplifier array system for high throughput single entity analysis. Faraday Discuss 2021; 233:33-43. [PMID: 34913454 DOI: 10.1039/d1fd00055a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical measurements at the single entity level provide ultra-sensitive tools for the precise diagnosis and understanding of basic biological and chemical processes. By decoding current signatures, single-entity electrochemistry provides abundant information on charges, sizes, shapes, catalytic performances and compositions. The accuracy of single-entity electrochemistry highly relies on advanced instrumentation to achieve the amperometric resolution at the sub-picoampere level and the temporal resolution at the sub-microsecond level. Currently, it is still a challenge for paralleling amplifiers to allow low-noise and high bandwidth single-entity electrochemical measurements. Herein, we developed a low-noise four-channel electrochemical instrumentation that integrates an Au electrode array with amplifiers in the circuit board. With this amplifier array, we achieved a high bandwidth (>100 kHz) electrochemical measurement. The further practical experiments proved the capability of this amplifier array system in acquiring transient signals from both single-molecule detection with an aerolysin nanopore and single Pt nanoparticle catalysis during the dynamic collision process. Paired with appropriate microfluidic array systems, our instrumentation will enable an extraordinarily high-throughput feature for single-entity sensing.
Collapse
Affiliation(s)
- Cheng-Bing Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Jia-Jun Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Lin-Lin Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Rong Wang
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
24
|
Valavanis D, Ciocci P, Meloni GN, Morris P, Lemineur JF, McPherson IJ, Kanoufi F, Unwin PR. Hybrid scanning electrochemical cell microscopy-interference reflection microscopy (SECCM-IRM): tracking phase formation on surfaces in small volumes. Faraday Discuss 2021; 233:122-148. [PMID: 34909815 DOI: 10.1039/d1fd00063b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We describe the combination of scanning electrochemical cell microscopy (SECCM) and interference reflection microscopy (IRM) to produce a compelling technique for the study of interfacial processes and to track the SECCM meniscus status in real-time. SECCM allows reactions to be confined to well defined nm-to-μm-sized regions of a surface, and for experiments to be repeated quickly and easily at multiple locations. IRM is a highly surface-sensitive technique which reveals processes happening (very) close to a substrate with temporal and spatial resolution commensurate with typical electrochemical techniques. By using thin transparent conductive layers on glass as substrates, IRM can be coupled to SECCM, to allow real-time in situ optical monitoring of the SECCM meniscus and of processes that occur within it at the electrode/electrolyte interface. We first use the technique to assess the stability of the SECCM meniscus during voltammetry at an indium tin oxide (ITO) electrode at close to neutral pH, demonstrating that the meniscus contact area is rather stable over a large potential window and reproducible, varying by only ca. 5% over different SECCM approaches. At high cathodic potentials, subtle electrowetting is easily detected and quantified. We also look inside the meniscus to reveal surface changes at extreme cathodic potentials, assigned to the possible formation of indium nanoparticles. Finally, we examine the effect of meniscus size and driving potential on CaCO3 precipitation at the ITO electrode as a result of electrochemically-generated pH swings. We are able to track the number, spatial distribution and morphology of material with high spatiotemporal resolution and rationalise some of the observed deposition patterns with finite element method modelling of reactive-transport. Growth of solid phases on surfaces from solution is an important pathway to functional materials and SECCM-IRM provides a means for in situ or in operando visualisation and tracking of these processes with improved fidelity. We anticipate that this technique will be particularly powerful for the study of phase formation processes, especially as the high throughput nature of SECCM-IRM (where each spot is a separate experiment) will allow for the creation of large datasets, exploring a wide experimental parameter landscape.
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | - Gabriel N Meloni
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Peter Morris
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Ian J McPherson
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | | | - Patrick R Unwin
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
25
|
Quast T, Varhade S, Saddeler S, Chen YT, Andronescu C, Schulz S, Schuhmann W. Single Particle Nanoelectrochemistry Reveals the Catalytic Oxygen Evolution Reaction Activity of Co 3 O 4 Nanocubes. Angew Chem Int Ed Engl 2021; 60:23444-23450. [PMID: 34411401 PMCID: PMC8596605 DOI: 10.1002/anie.202109201] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Indexed: 01/24/2023]
Abstract
Co3O4 nanocubes are evaluated concerning their intrinsic electrocatalytic activity towards the oxygen evolution reaction (OER) by means of single‐entity electrochemistry. Scanning electrochemical cell microscopy (SECCM) provides data on the electrocatalytic OER activity from several individual measurement areas covering one Co3O4 nanocube of a comparatively high number of individual particles with sufficient statistical reproducibility. Single‐particle‐on‐nanoelectrode measurements of Co3O4 nanocubes provide an accelerated stress test at highly alkaline conditions with current densities of up to 5.5 A cm−2, and allows to derive TOF values of up to 2.8×104 s−1 at 1.92 V vs. RHE for surface Co atoms of a single cubic nanoparticle. Obtaining such high current densities combined with identical‐location transmission electron microscopy allows monitoring the formation of an oxy(hydroxide) surface layer during electrocatalysis. Combining two independent single‐entity electrochemistry techniques provides the basis for elucidating structure–activity relations of single electrocatalyst nanoparticles with well‐defined surface structure.
Collapse
Affiliation(s)
- Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Swapnil Varhade
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Sascha Saddeler
- Inorganic Chemistry, Faculty of Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Yen-Ting Chen
- Center for Solvation Science (ZEMOS), Ruhr University Bochum, Universitätsstr. 150, 44801, Bochum, Germany
| | - Corina Andronescu
- Chemical Technology III, Faculty of Chemistry and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Carl-Benz-Strasse 199, 47057, Duisburg, Germany
| | - Stephan Schulz
- Inorganic Chemistry, Faculty of Chemistry, Center for Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 7, 45141, Essen, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
26
|
Quast T, Varhade S, Saddeler S, Chen Y, Andronescu C, Schulz S, Schuhmann W. Einzelpartikel‐Nanoelektrochemie für die Untersuchung der Aktivität der elektrokatalytischen Sauerstoffentwicklungsreaktion an Co
3
O
4
Nanowürfeln. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| | - Swapnil Varhade
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| | - Sascha Saddeler
- Inorganic Chemistry Faculty of Chemistry Center for Nanointegration (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Deutschland
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS) Ruhr University Bochum Universitätsstr. 150 44801 Bochum Deutschland
| | - Corina Andronescu
- Chemical Technology III Faculty of Chemistry and Center for Nanointegration (CENIDE) University of Duisburg-Essen Carl-Benz-Strasse 199 47057 Duisburg Deutschland
| | - Stephan Schulz
- Inorganic Chemistry Faculty of Chemistry Center for Nanointegration (CENIDE) University of Duisburg-Essen Universitätsstr. 7 45141 Essen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstr. 150 D-44780 Bochum Deutschland
| |
Collapse
|
27
|
Jagdale GS, Choi MH, Siepser NP, Jeong S, Wang Y, Skalla RX, Huang K, Ye X, Baker LA. Electrospray deposition for single nanoparticle studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4105-4113. [PMID: 34554166 DOI: 10.1039/d1ay01295a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single entity electrochemical (SEE) studies that can probe activities and heterogeneity in activities at nanoscale require samples that contain single and isolated particles. Single, isolated nanoparticles are achieved here with electrospray deposition of colloidal nanoparticle solutions, with simple instrumentation. Role of three electrospray (ES) parameters, viz. spray distance (emitter tip-to-substrate distance), ES current and emitter tip diameter, in the ES deposition of single Au nano-octahedra (Au ODs) is examined. The ES deposition of single, isolated Au ODs are analyzed in terms of percentage of single NPs and local surface density of deposition. The local surface density of ES deposition of single Au ODs was found to increase with decrease in spray distance and emitter tip diameter, and increase in ES current. While the percentage of single particle ES deposition increased with increase in spray distance and decrease in emitter tip size. No significant change in the single Au ODs ES deposition percentage was observed with change in ES current values included in this study. The most favourable conditions in the ES deposition of Au ODs in this study resulted in the local surface density of 0.26 ± 0.05 single particles per μm2 and observation of 96.3% single Au OD deposition.
Collapse
Affiliation(s)
- Gargi S Jagdale
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Myung-Hoon Choi
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Soojin Jeong
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Yi Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, IN 47408, USA.
| |
Collapse
|
28
|
Pan S, Li X, Yadav J. Single-nanoparticle spectroelectrochemistry studies enabled by localized surface plasmon resonance. Phys Chem Chem Phys 2021; 23:19120-19129. [PMID: 34524292 DOI: 10.1039/d1cp02801d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This review describes recent progress of spectroelectrochemistry (SEC) analysis of single metallic nanoparticles (NPs) which have strong surface plasmon resonance properties. Dark-field scattering (DFS), photoluminescence (PL), and electrogenerated chemiluminescence (ECL) are three commonly used optical methods to detect individual NPs and investigate their local redox activities in an electrochemical cell. These SEC methods are highly dependent on a strong light-scattering cross-section of plasmonic metals and their electrocatalytic characteristics. The surface chemistry and the catalyzed reaction mechanism of single NPs and their chemical transformations can be studied using these SEC methods. Recent progress in the experimental design and fundamental understanding of single-NP electrochemistry and catalyzed reactions using DFS, PL, and ECL is described along with selected examples from recent publications in this field. Perspectives on the challenges and possible solutions for these SEC methods and potential new directions are discussed.
Collapse
Affiliation(s)
- Shanlin Pan
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Xiao Li
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | - Jeetika Yadav
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
29
|
Kong N, Guo J, Chang S, Pan J, Wang J, Zhou J, Liu J, Zhou H, Pfeffer FM, Liu J, Barrow CJ, He J, Yang W. Direct Observation of Amide Bond Formation in a Plasmonic Nanocavity Triggered by Single Nanoparticle Collisions. J Am Chem Soc 2021; 143:9781-9790. [PMID: 34164979 DOI: 10.1021/jacs.1c02426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The real-time observation of chemical bond formation at the single-molecule level is one of the great challenges in the fields of organic and biomolecular chemistry. Valuable information can be gleaned that is not accessible using ensemble-average measurements. Although remarkably sophisticated techniques for monitoring chemical reactions have been developed, the ability to detect the specific formation of a chemical bond in situ at the single-molecule level has remained an elusive goal. Amide bonds are routinely formed from the aminolysis of N-hydroxysuccinimide (NHS) esters by primary amines, and the protocol is widely used for the synthesis, cross-linking, and labeling of peptides and proteins. Herein, a plasmonic nanocavity was applied to study aminolysis reaction for amide bond formation, which was initiated by single nanoparticle collision events between suitably functionalized free-moving gold nanoparticles and a gold nanoelectrode in an aqueous buffer. By means of simultaneous surface enhanced Raman spectroscopy (SERS) and single-entity electrochemistry (EC) measurements, we have probed the dynamic evolution of amide bond formation in the aminolysis reaction with 10 s of millisecond time resolution. Hence, we demonstrate that single-entity EC-SERS is a valuable and sensitive technique by which chemical reactions can be studied at the single-molecule level.
Collapse
Affiliation(s)
- Na Kong
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jing Guo
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, the Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jie Pan
- Department of Physics, Florida International University, Miami, Florida 33199, United States
| | - Jianmei Wang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jianghao Zhou
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Jing Liu
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Linyi University, Linyi, Shandong 276005, P. R. China
| | - Hong Zhou
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia.,Shandong Province Key Laboratory of Detection Technology for Tumor Markers, Linyi University, Linyi, Shandong 276005, P. R. China
| | - Frederick M Pfeffer
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jingquan Liu
- College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Colin J Barrow
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, United States.,Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| | - Wenrong Yang
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
30
|
Djoumer R, Chovin A, Demaille C, Dejous C, Hallil H. Real‐time Conversion of Electrochemical Currents into Fluorescence Signals Using 8‐Hydroxypyrene‐1,3,6‐trisulfonic Acid (HPTS) and Amplex Red as Fluorogenic Reporters. ChemElectroChem 2021. [DOI: 10.1002/celc.202100517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rabia Djoumer
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Arnaud Chovin
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Christophe Demaille
- Laboratoire d'Electrochimie Moléculaire Université de Paris CNRS UMR 7591 75006 Paris France
| | - Corinne Dejous
- Laboratoire IMS Université de Bordeaux Bordeaux INP CNRS UMR5218 33405 Talence France
| | - Hamida Hallil
- Laboratoire IMS Université de Bordeaux Bordeaux INP CNRS UMR5218 33405 Talence France
| |
Collapse
|
31
|
Zhao H, Ma J, Zuo X, Li F. Electrochemical Analysis for Multiscale Single Entities on the Confined Interface
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haipei Zhao
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Jinliang Ma
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Xiaolei Zuo
- School of Chemistry and Chemical Engineering, and Institute of Translational Medicine Shanghai Jiao Tong University Shanghai 200240 China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine Shanghai Jiao Tong University Shanghai 200127 China
| |
Collapse
|
32
|
Zhao W, Chen HY, Xu JJ. Electrogenerated chemiluminescence detection of single entities. Chem Sci 2021; 12:5720-5736. [PMID: 34168801 PMCID: PMC8179668 DOI: 10.1039/d0sc07085h] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/23/2021] [Indexed: 12/22/2022] Open
Abstract
Electrogenerated chemiluminescence, also known as electrochemiluminescence (ECL), is an electrochemically induced production of light by excited luminophores generated during redox reactions. It can be used to sense the charge transfer and related processes at electrodes via a simple visual readout; hence, ECL is an outstanding tool in analytical sensing. The traditional ECL approach measures averaged electrochemical quantities of a large ensemble of individual entities, including molecules, microstructures and ions. However, as a real system is usually heterogeneous, the study of single entities holds great potential in elucidating new truths of nature which are averaged out in ensemble assays or hidden in complex systems. We would like to review the development of ECL intensity and imaging based single entity detection and place emphasis on the assays of small entities including single molecules, micro/nanoparticles and cells. The current challenges for and perspectives on ECL detection of single entities are also discussed.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China +86-25-89687294 +86-25-89687294
| |
Collapse
|
33
|
Pandey P, Ghimire G, Garcia J, Rubfiaro A, Wang X, Tomitaka A, Nair M, Kaushik A, He J. Single-Entity Approach to Investigate Surface Charge Enhancement in Magnetoelectric Nanoparticles Induced by AC Magnetic Field Stimulation. ACS Sens 2021; 6:340-347. [PMID: 32449356 DOI: 10.1021/acssensors.0c00664] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Magneto-electric nanoparticles (MENPs), composed of a piezoelectric shell and a ferromagnetic core, exhibited enhanced cell uptake and controlled drug release due to the enhanced localized electric field (surface charge/potential) and the generation of acoustics, respectively, upon applying alternating current (AC) magnetic (B)-field stimulation. This research, for the first time, implements an electrochemical single-entity approach to probe AC B-field induced strain mediated surface potential enhancement on MENP surface. The surface potential changes at the single-NP level can be probed by the open circuit potential changes of the floating carbon nanoelectrode (CNE) during the MENP-CNE collision events. The results confirmed that the AC B-field (60 Oe) stimulation caused localized surface potential enhancement of MENP. This observation is associated with the presence of a piezoelectric shell, whereas magnetic nanoparticles were found unaffected under identical stimulation.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Govinda Ghimire
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Javier Garcia
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Alberto Rubfiaro
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Xuewen Wang
- Physics Department, Florida International University, Miami, Florida 33199, United States
| | - Asahi Tomitaka
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Madhavan Nair
- Department of Immunology and Nanomedicine, Institute of Neuroimmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, Florida 33805, United States
| | - Jin He
- Physics Department, Florida International University, Miami, Florida 33199, United States
- Biomolecular Science Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
34
|
Lemineur JF, Ciocci P, Noël JM, Ge H, Combellas C, Kanoufi F. Imaging and Quantifying the Formation of Single Nanobubbles at Single Platinum Nanoparticles during the Hydrogen Evolution Reaction. ACS NANO 2021; 15:2643-2653. [PMID: 33523639 DOI: 10.1021/acsnano.0c07674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While numerous efforts have been made toward the design of sustainable and efficient nanocatalysts of the hydrogen evolution reaction, there is a need for the operando observation and quantification of the formation of gas nanobubbles (NBs) involved in this electrochemical reaction. It is achieved herein through interference reflection microscopy coupled to electrochemistry and optical modeling. In addition to analyzing the geometry and growth rate of individual NBs at single nanocatalysts, the toolbox offered by superlocalization and quantitative label-free optical microscopy allows analyzing the geometry (contact angle and footprint with surface) of individual NBs and their growth rate. It turns out that, after a few seconds, NBs are steadily growing while they are fully covering the Pt nanoparticles that allowed their nucleation and their pinning on the electrode surface. It then raises relevant questions related to gas evolution catalysts, such as, for example, does the evaluation of NB growth at the single nanocatalyst really reflect its electrochemical activity?
Collapse
Affiliation(s)
| | - Paolo Ciocci
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | - Hongxin Ge
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France
| | | | | |
Collapse
|
35
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Single-Entity Electrocatalysis of Individual "Picked-and-Dropped" Co 3 O 4 Nanoparticles on the Tip of a Carbon Nanoelectrode. Angew Chem Int Ed Engl 2021; 60:3576-3580. [PMID: 33210797 PMCID: PMC7898714 DOI: 10.1002/anie.202014384] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Indexed: 12/01/2022]
Abstract
Nano-electrochemical tools to assess individual catalyst entities are critical to comprehend single-entity measurements. The intrinsic electrocatalytic activity of an individual well-defined Co3 O4 nanoparticle supported on a carbon-based nanoelectrode is determined by employing an efficient SEM-controlled robotic technique for picking and placing a single catalyst particle onto a modified carbon nanoelectrode surface. The stable nanoassembly is microscopically investigated and subsequently electrochemically characterized. The hexagonal-shaped Co3 O4 nanoparticles demonstrate size-dependent electrochemical activity and exhibit very high catalytic activity with a current density of up to 11.5 A cm-2 at 1.92 V (vs. RHE), and a turnover frequency of 532±100 s-1 at 1.92 V (vs. RHE) towards catalyzing the oxygen evolution reaction.
Collapse
Affiliation(s)
- Thomas Quast
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Harshitha Barike Aiyappa
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Sascha Saddeler
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Patrick Wilde
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS)Ruhr University BochumUniversitätsstrasse 15044801BochumGermany
| | - Stephan Schulz
- Inorganic ChemistryFaculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide)University of Duisburg-EssenUniversitätsstasse 745141EssenGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry—Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University BochumUniversitätsstrasse 15044780BochumGermany
| |
Collapse
|
36
|
Ren H, Edwards MA. Stochasticity in Single-Entity Electrochemistry. CURRENT OPINION IN ELECTROCHEMISTRY 2021; 25:100632. [PMID: 33102927 PMCID: PMC7584144 DOI: 10.1016/j.coelec.2020.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Most electrochemical processes are stochastic and discrete in nature. Yet experimental observables, e.g., i vs E, are typically smooth and deterministic, due to many events/processes, e.g., electron transfers, being averaged together. However, when the number of entities measured approaches a few or even one, stochasticity frequently emerges. Yet all is not lost! Probabilistic and statistical interpretation can generate insights matching or superseding those from macroscale/ensemble measurements, revealing phenomena that were hitherto averaged over. Herein, we review recent literature examples of stochastic processes in single-entity electrochemistry, highlighting strategies for interpreting stochasticity, contrasting them with macroscale measurements, and describing the insights generated.
Collapse
Affiliation(s)
- Hang Ren
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056
| | - Martin A Edwards
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
37
|
Quast T, Aiyappa HB, Saddeler S, Wilde P, Chen Y, Schulz S, Schuhmann W. Elektrokatalyse einzelner, auf der Spitze einer Kohlenstoff‐Nanoelektrode platzierter Co
3
O
4
‐Nanopartikel. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202014384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Harshitha Barike Aiyappa
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Sascha Saddeler
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Patrick Wilde
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| | - Yen‐Ting Chen
- Center for Solvation Science (ZEMOS) Ruhr University Bochum Universitätsstraße 150 44801 Bochum Deutschland
| | - Stephan Schulz
- Inorganic Chemistry Faculty of Chemistry and Center for Nanointegration Duisburg-Essen (Cenide) University of Duisburg-Essen Universitätsstaße 7 45141 Essen Deutschland
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES) Faculty of Chemistry and Biochemistry Ruhr University Bochum Universitätsstraße 150 44780 Bochum Deutschland
| |
Collapse
|
38
|
Edgecomb J, Xie X, Shao Y, El-Khoury PZ, Johnson GE, Prabhakaran V. Mapping Localized Peroxyl Radical Generation on a PEM Fuel Cell Catalyst Using Integrated Scanning Electrochemical Cell Microspectroscopy. Front Chem 2020; 8:572563. [PMID: 33195059 PMCID: PMC7609508 DOI: 10.3389/fchem.2020.572563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding molecular-level transformations resulting from electrochemical reactions is important in designing efficient and reliable energy technologies. In this work, a novel integrated scanning electrochemical cell microspectroscopy (iSECCMS) capability is developed by combining a high spatial resolution electrochemical scanning probe with in situ fluorescence spectroscopy. Using 6-carboxyfluorescein as a fluorescent probe, the iSECCMS platform is employed to measure the effect of the detrimental generation of reactive oxygen species (ROS) formed at the active sites of oxygen reduction reaction (ORR) catalysts. Carbon-supported tantalum-doped titanium oxide (TaTiOx) catalysts, a potential Pt-group-metal-free (PGM-free) cathode material explored for low temperature polymer electrolyte fuel cells (PEFCs), is used as a representative model ORR system, where generation of intermediate H2O2 instead of fully oxidized H2O is a major concern. We establish that the iSECCMS platform provides a novel and versatile capability for spatially resolved mapping of in situ ROS generation and activity during the kinetically-limited ORR and may, therefore, aid the future characterization and development of high-performance PGM-free PEFC cathodes.
Collapse
Affiliation(s)
| | | | | | | | - Grant E. Johnson
- Pacific Northwest National Laboratory, Richland, WA, United States
| | | |
Collapse
|
39
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: From single to ensemble nanoparticles inspection. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Lemineur JF, Noël JM, Combellas C, Kanoufi F. Revealing the sub-50 ms electrochemical conversion of silver halide nanocolloids by stochastic electrochemistry and optical microscopy. NANOSCALE 2020; 12:15128-15136. [PMID: 32657309 DOI: 10.1039/d0nr03799k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silver based ionic crystal nanoparticles (NPs) are interesting nanomaterials for energy storage and conversion, e.g. their colloidal solutions could be used as a reversible redox nanofluid in semi-solid redox flow cells. In this context, the reductive transformation of Brownian silver halide, AgX, NPs into silver NPs is probed by single NP electrochemistry, complemented by operando high resolution monitoring. However, their light sensitivity and poor conductivity make the operando monitoring of their chemical activity challenging. The electrochemical collisions of single AgX NPs onto a negatively biased electrode evidence a full conversion through multiple reduction steps within 3-10 ms. This is further corroborated by simulation of the conversion process and operando through a high resolution optical microscopy technique (Backside Absorbing Layer Microscopy, BALM). Both techniques are interesting strategies to infer at the single NP level the intrinsic charge capacity and charging rate of redox active Brownian nanomaterials, demonstrating the interest of the fast and reversible AgX/Ag system as a redox nanofluid.
Collapse
Affiliation(s)
| | - Jean-Marc Noël
- Université de Paris, ITODYS, CNRS, F-75006 Paris, France.
| | | | | |
Collapse
|
41
|
Ma J, Yang M, Batchelor-McAuley C, Compton RG. Visualising electrochemical reaction layers: mediated vs. direct oxidation. Phys Chem Chem Phys 2020; 22:12422-12433. [PMID: 32459226 DOI: 10.1039/d0cp01904f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical treatments are widely used for 'clean up' in which toxic metals and organic compounds are removed using direct or mediated electrolysis. Herein we report novel studies offering proof of concept that spectrofluorometric electrochemistry can provide important mechanistic detail into these processes. A thin layer opto-electrochemical cell, with a carbon fibre (radius 3.5 μm) working electrode, is used to visualise the optical responses of the oxidative destruction of a fluorophore either directly, on an electrode, or via the indirect reaction of the analyte with an electrochemically formed species which 'mediates' the destruction. The optical responses of these two reaction mechanisms are first predicted by numerical simulation followed by experimental validation of each using two fluorescent probes, a redox inactive (in the electrochemical window) 1,3,6,8-pyrenetetrasulfonic acid and the redox-active derivative 8-hydroxypyrene-1,3,6-trisulfonic acid. In the vicinity of a carbon electrode held at different oxidative potentials, the contrast between indirect electro-destruction, chlorination, and direct oxidation is very obvious. Excellent agreement is seen between the numerically predicted fluorescence intensity profiles and experiment.
Collapse
Affiliation(s)
- Junling Ma
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
42
|
Fu K, Kwon SR, Han D, Bohn PW. Single Entity Electrochemistry in Nanopore Electrode Arrays: Ion Transport Meets Electron Transfer in Confined Geometries. Acc Chem Res 2020; 53:719-728. [PMID: 31990518 PMCID: PMC8020881 DOI: 10.1021/acs.accounts.9b00543] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Electrochemical measurements conducted in confined volumes provide a powerful and direct means to address scientific questions at the nexus of nanoscience, biotechnology, and chemical analysis. How are electron transfer and ion transport coupled in confined volumes and how does understanding them require moving beyond macroscopic theories? Also, how do these coupled processes impact electrochemical detection and processing? We address these questions by studying a special type of confined-volume architecture, the nanopore electrode array, or NEA, which is designed to be commensurate in size with physical scaling lengths, such as the Debye length, a concordance that offers performance characteristics not available in larger scale structures.The experiments described here depend critically on carefully constructed nanoscale architectures that can usefully control molecular transport and electrochemical reactivity. We begin by considering the experimental constraints that guide the design and fabrication of zero-dimensional nanopore arrays with multiple embedded electrodes. These zero-dimensional structures are nearly ideal for exploring how permselectivity and unscreened ion migration can be combined to amplify signals and improve selectivity by enabling highly efficient redox cycling. Our studies also highlight the benefits of arrays, in that molecules escaping from a single nanopore are efficiently captured by neighboring pores and returned to the population of active redox species being measured, benefits that arise from coupling ion accumulation and migration. These tools for manipulating redox species are well-positioned to explore single molecule and single particle electron transfer events through spectroelectrochemistry, studies which are enabled by the electrochemical zero-mode waveguide (ZMW), a special hybrid nanophotonic/nanoelectronic architecture in which the lower ring electrode of an NEA nanopore functions both as a working electrode to initiate electron transfer reactions and as the optical cladding layer of a ZMW. While the work described here is largely exploratory and fundamental, we believe that the development of NEAs will enable important applications that emerge directly from the unique coupled transport and electron-transfer capabilities of NEAs, including in situ molecular separation and detection with external stimuli, redox-based electrochemical rectification in individually encapsulated nanopores, and coupled sorters and analyzers for nanoparticles.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, CA, 94306
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94306
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
| | - Donghoon Han
- Department of Chemistry, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662 Republic of Korea
| | - Paul W. Bohn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
43
|
|
44
|
Chang M, Morgan G, Bedier F, Chieng A, Gomez P, Raminani S, Wang Y. Review-Recent Advances in Nanosensors Built with Pre-Pulled Glass Nanopipettes and Their Applications in Chemical and Biological Sensing. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037533. [PMID: 34326553 PMCID: PMC8317590 DOI: 10.1149/1945-7111/ab64be] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanosensors built with pre-pulled glass nanopipettes, including bare or chemically modified nanopipettes and fully or partially filled solid nanoelectrodes, have found applications in chemical and biological sensing via resistive-pulse, current rectification, and electrochemical sensing. These nanosensors are easily fabricated and provide advantages through their needle-like geometry with nanometer-sized tips, making them highly sensitive and suitable for local measurements in extremely small samples. The variety in the geometry and layout have extended sensing capabilities. In this review, we will outline the fundamentals in fabrication, modification, and characterization of those pre-pulled glass nanopipette based nanosensors and highlight the most recent progress in their development and applications in real-time monitoring of biological processes, chemical ion sensing, and single entity analysis.
Collapse
|
45
|
Pandey P, Garcia J, Guo J, Wang X, Yang D, He J. Differentiation of metallic and dielectric nanoparticles in solution by single-nanoparticle collision events at the nanoelectrode. NANOTECHNOLOGY 2020; 31:015503. [PMID: 31519013 DOI: 10.1088/1361-6528/ab4445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we demonstrate a highly effective method to generate and detect single-nanoparticle (NP) collision events on a nanoelectrode in aqueous solutions. The nanoelectrode of a nanopore-nanoelectrode nanopipette is first employed to accumulate NPs in solution by dielectrophoresis (DEP). Instead of using amperometric methods, the continuous individual NP collision events on the nanoelectrode are sensitively detected by monitoring the open-circuit potential changes of the nanoelectrode. Metallic gold NPs (GNPs) and insulating polystyrene (PS) NPs with various sizes are used as the model NPs. Due to the higher conductivity and polarizability of GNPs, the collision motion of a GNP is different from that of a PS NP. The difference is distinct in the shape of the transient potential change and its first time derivative detected by the nanoelectrode. Therefore, the collision events by metallic and insulating NPs on a nanoelectrode can be differentiated based on their polarizability. DEP induced NP separation and cluster formation can also be probed in detail in the concentrated mixture of PS NPs and GNPs.
Collapse
Affiliation(s)
- Popular Pandey
- Physics Department, biomolecular Science Institute, Florida International University, Miami, 33199, United States of America
| | | | | | | | | | | |
Collapse
|
46
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
47
|
Optical methods for studying local electrochemical reactions with spatial resolution: A critical review. Anal Chim Acta 2019; 1074:1-15. [DOI: 10.1016/j.aca.2019.02.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022]
|
48
|
|
49
|
Edwards MA, Robinson DA, Ren H, Cheyne CG, Tan CS, White HS. Nanoscale electrochemical kinetics & dynamics: the challenges and opportunities of single-entity measurements. Faraday Discuss 2019; 210:9-28. [PMID: 30264833 DOI: 10.1039/c8fd00134k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of nanoscale electrochemistry since the mid-1980s has been predominately coupled with steady-state voltammetric (i-E) methods. This research has been driven by the desire to understand the mechanisms of very fast electrochemical reactions, by electroanalytical measurements in small volumes and unusual media, including in vivo measurements, and by research on correlating electrocatalytic activity, e.g., O2 reduction reaction, with nanoparticle size and structure. Exploration of the behavior of nanoelectrochemical structures (nanoelectrodes, nanoparticles, nanogap cells, etc.) of a characteristic dimension λ using steady-state i-E methods generally relies on the well-known relationship, λ2 ∼ Dt, which relates diffusional lengths to time, t, through the coefficient, D. Decreasing λ, by performing measurements at a nanometric length scales, results in a decrease in the effective timescale of the measurement, and provides a direct means to probe the kinetics of steps associated with very rapid electrochemical reactions. For instance, steady-state voltammetry using a nanogap twin-electrode cell of characteristic width, λ ∼ 10 nm, allows investigations of events occurring at timescales on the order of ∼100 ns. Among many other advantages, decreasing λ also increases spatial resolution in electrochemical imaging, e.g., in scanning electrochemical microscopy, and allows probing of the electric double layer. This Introductory Lecture traces the evolution and driving forces behind the "λ2 ∼ Dt" steady-state approach to nanoscale electrochemistry, beginning in the late 1950s with the introduction of the rotating ring-disk electrode and twin-electrode thin-layer cells, and evolving to current-day investigations using nanoelectrodes, scanning nanocells for imaging, nanopores, and nanoparticles. The recent focus on so-called "single-entity" electrochemistry, in which individual and very short redox events are probed, is a significant departure from the steady-state approach, but provides new opportunities to probe reaction dynamics. The stochastic nature of very fast single-entity events challenges current electrochemical methods and modern electronics, as illustrated using recent experiments from the authors' laboratory.
Collapse
Affiliation(s)
- M A Edwards
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Xiong T, Zhang K, Jiang Y, Yu P, Mao L. Ion current rectification: from nanoscale to microscale. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9526-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|