1
|
Fan X, Ma M, Liu P, Deng X, Zhang J. Hydroxyl Radical-Induced Oxidation on the Properties of Cathepsin H and Its Influence in Myofibrillar Proteins Degradation of Coregonus peled In Vitro. Foods 2024; 13:2531. [PMID: 39200458 PMCID: PMC11354168 DOI: 10.3390/foods13162531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/28/2024] [Accepted: 07/28/2024] [Indexed: 09/02/2024] Open
Abstract
The most frequently occurring protein modification in fish postmortem is oxidization, which further affects meat quality through multiple biochemical pathways. To investigate how hydroxyl radicals affect the structure of cathepsin H and its ability to break down myofibrillar proteins in Coregonus peled, cathepsin H was oxidized with 0, 0.1, 0.5, 1, 5, and 10 mM H2O2 and subsequently incubated with isolated myofibrillar proteins. The results showed that as the H2O2 concentration increased, the carbonyl and sulfhydryl contents of cathepsin H significantly increased and decreased, respectively. There were noticeable changes in the α-helix structures and a gradual reduction in UV absorbance and fluorescence intensity, indicating that oxidation can induce the cross-linking and aggregation of cathepsin H. These structural changes further reduced the activity of cathepsin H, reaching its lowest at 10 mM H2O2, which was 53.63% of the activity at 0 mM H2O2. Moreover, desmin and troponin-T all degraded at faster rates when cathepsin H and myofibrillar proteins were oxidized concurrently as opposed to when cathepsin H was oxidized alone. These findings provide vital insights into the interaction mechanism between oxidation, cathepsin H, as well as myofibrillar protein degradation, laying a groundwork for understanding the molecular mechanisms underlying changes in fish meat quality after slaughter and during processing.
Collapse
Affiliation(s)
- Xuemei Fan
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Mengjie Ma
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, China; (X.F.); (M.M.); (P.L.); (X.D.)
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Xie Q, Xu K, Sang Z, Luo D, Chen C, Fu W, Xue W. Allergenicity Modulation of Casein with the Modifications of Linearization, Cross-Linking, and Glycation via the Regulation of Th1/Th2 Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10031-10045. [PMID: 38629959 DOI: 10.1021/acs.jafc.3c09962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Casein (CN) is the primary allergenic protein in cow's milk, contributing to the worldwide escalating prevalence of food allergies. However, there remains limited knowledge regarding the effect of structural modifications on CN allergenicity. Herein, we prepared three modified CNs (mCN), including sodium dodecyl sulfate and dithiothreitol-induced linear CN (LCN), transglutaminase-cross-linked CN (TCN), and glucose-glycated CN (GCN). The electrophoresis results indicated widespread protein aggregation among mCN, causing variations in their molecular weights. The unique internal and external structural characteristics of mCN were substantiated by disparities in surface microstructure, alterations in the secondary structure, variations in free amino acid contents, and modifications in functional molecular groups. Despite the lower digestibility of TCN and GCN compared to LCN, they significantly suppressed IL-8 production in Caco-2 cells without significantly promoting their proliferation. Moreover, GCN showed the weakest capacity to induce LAD2 cell degranulation. Despite the therapeutic effect of TCN, GCN-treated mice displayed the most prominent attenuation of allergic reactions and a remarkably restored Th1/Th2 imbalance, while LCN administration resulted in severe allergic phenotypes and endotypes in both cellular and murine models. This study highlighted the detrimental effect of linear modifications and underscored the significance of glycation in relation to CN allergenicity.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Ke Xu
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, Zhejiang Province 311200, P. R. China
| | - Ziqing Sang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Dan Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Chen Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| | - Wenhui Fu
- School of Medicine, Nankai University, Tianjin 300071, P. R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100089, P. R. China
| |
Collapse
|
3
|
Qiu H, Duan W, Hu W, Wei S, Liu Y, Sun Q, Wang Z, Han Z, Liu Y, Liu S. Insight into the allergenicity and structure changes of parvalbumin from Trachinotus ovatus induced by dense-phase carbon dioxide. Int J Biol Macromol 2024; 260:129582. [PMID: 38246469 DOI: 10.1016/j.ijbiomac.2024.129582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/31/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.
Collapse
Affiliation(s)
- Hui Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Weiwen Duan
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Weicheng Hu
- College of Medicine, Yangzhou University, Yangzhou 225109, China
| | - Shuai Wei
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| | - Yanan Liu
- College of Medicine, Yangzhou University, Yangzhou 225109, China
| | - Qinxiu Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zefu Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zongyuan Han
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yang Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Shucheng Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Key Laboratory of Advanced Processing of Aquatic Product of Guangdong Higher Education Institution, Zhanjiang 524088, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Wang R, Guo F, Zhao J, Feng C. Myofibril degradation and structural changes in myofibrillar proteins of porcine longissimus muscles during frozen storage. Food Chem 2024; 435:137671. [PMID: 37813022 DOI: 10.1016/j.foodchem.2023.137671] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
The effect of frozen time and the temperature on myofibril degradation and the structure of myofibrillar proteins of porcine longissimus muscles were investigated. With extended frozen time and increased temperature, the muscle fibres became broken; the muscle cells became irregularly arranged; and the fragmentation index value, number of ionic bonds, and number of hydrogen bonds of the samples significantly decreased. Meanwhile, the myofibril fragmentation index value, number of hydrophobic interactions, and number of disulphide bonds significantly increased (P < 0.05). After 12 months of storage, the intensities of I760/I1003, I850/I830, I1450/I1003, and I2945/I1003 in the samples frozen at -8 °C were reduced by 4.36 %, 1.28 %, 1.86 %, and 0.74 %, respectively. A reduction in the maximum absorption peak and a red shift were observed in the ultraviolet spectrum. Therefore, frozen storage resulted in significant damage to the tissue microstructureand caused accelerated protein degradation, and the loss of protein structural integrity.
Collapse
Affiliation(s)
- Rui Wang
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Fang Guo
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Jianying Zhao
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Caiping Feng
- Department of Life Sciences, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
5
|
Chu Y, Ding Z, Xie J. The application of ice glazing containing D-sodium erythorbate combined with vacuum packaging to maintain the physicochemical quality and sweet/umami non-volatile flavor compounds of frozen stored large yellow croaker (Pseudosciaena crocea). Food Res Int 2024; 175:113657. [PMID: 38129018 DOI: 10.1016/j.foodres.2023.113657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 12/23/2023]
Abstract
Ice glazing containing 0.3 % D-sodium erythorbate (DSE), combined with vacuum packaging, was used as a method to maintain the quality of large yellow croaker during frozen storage. This study aimed to assess various aspects, including water properties (water holding capacity and moisture distribution), protein-related characteristics (secondary and tertiary structure of myofibrillar protein), freshness indicators (K value and total volatile base nitrogen (TVB-N)), and non-volatile flavor compounds (free amino acids (FAAs) and nucleotides) in samples stored for 300 days at -23 °C. The results showed that vacuum packaging had a significant inhibitory effect on the growth of ice crystal. Notably, it successfully maintained the cross-sectional area of nearly all ice crystals below 20,000 μm2, effectively curtailing water loss. Simultaneously, the combination of vacuum packaging with the complex ice glaze effectively mitigated the degradation of IMP and free amino acids, maintaining low levels of K value (12.85 %) and TVB-N (11.28 mg N/100 g) throughout the 300-day frozen storage, retaining first-class freshness. Among the various treatment modalities assessed, the combined application of vacuum packaging and 0.3 % DSE-infused ice glazing emerged as the most effective in terms of preservation outcomes. This efficacious combination shows promising potential for the frozen storage of aquatic products and is therefore recommended for practical implementation.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|
6
|
Shen M, Yang X, Wang Z, Sha X, Zhang X, Sun J. The Impact of AAPH-Induced Oxidation on the Functional and Structural Properties, and Proteomics of Arachin. Molecules 2023; 28:6277. [PMID: 37687106 PMCID: PMC10489151 DOI: 10.3390/molecules28176277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to investigate the effect of 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidation on the functional, structural properties and proteomic information of arachin. The results showed that moderate oxidation improved the water/oil holding capacity of proteins and increased the emulsifying stability, while excessive oxidation increased the carbonyl content, reduced the thiol content, altered the structure and thermal stability, and reduced most of the physicochemical properties. Through LC-QE-MS analysis, it was observed that oxidation leads to various modifications in arachin, including carbamylation, oxidation, and reduction, among others. In addition, 15 differentially expressed proteins were identified. Through gene ontology (GO) analysis, these proteins primarily affected the cellular and metabolic processes in the biological process category. Further Kyoto encyclopedia of genes and genomes (KEGG) analysis revealed that the "proteasome; protein processing in the endoplasmic reticulum (PPER)" pathway was the most significantly enriched signaling pathway during the oxidation process of arachin. In conclusion, this study demonstrated that AAPH-induced oxidation can alter the conformation and proteome of arachin, thereby affecting its corresponding functional properties. The findings of this study can potentially serve as a theoretical basis and foundational reference for the management of peanut processing and storage.
Collapse
Affiliation(s)
- Mingjuan Shen
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Xi Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Zhenxing Wang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
| | - Xiaomei Sha
- National R&D Center for Freshwater Fish Processing, College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Xuechun Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Life Science, Southwest Forestry University, Kunming 650224, China; (M.S.); (X.Y.); (Z.W.)
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Sun
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
7
|
Zhang Y, Liu G, Xie Q, Wang Y, Yu J, Ma X. Physicochemical and structural changes of myofibrillar proteins in muscle foods during thawing: Occurrence, consequences, evidence, and implications. Compr Rev Food Sci Food Saf 2023; 22:3444-3477. [PMID: 37306543 DOI: 10.1111/1541-4337.13194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Myofibrillar protein (MP) endows muscle foods with texture and important functional properties, such as water-holding capacity (WHC) and emulsifying and gel-forming abilities. However, thawing deteriorates the physicochemical and structural properties of MPs, significantly affecting the WHC, texture, flavor, and nutritional value of muscle foods. Thawing-induced physicochemical and structural changes in MPs need further investigation and consideration in the scientific development of muscle foods. In this study, we reviewed the literature for the thawing effects on the physicochemical and structural characters of MPs to identify potential associations between MPs and the quality of muscle-based foods. Physicochemical and structural changes of MPs in muscle foods occur because of physical changes during thawing and microenvironmental changes, including heat transfer and phase transformation, moisture activation and migration, microbial activation, and alterations in pH and ionic strength. These changes are not only essential inducements for changes in spatial conformation, surface hydrophobicity, solubility, Ca2+ -ATPase activity, intermolecular interaction, gel properties, and emulsifying properties of MPs but also factors causing MP oxidation, characterized by thiols, carbonyl compounds, free amino groups, dityrosine content, cross-linking, and MP aggregates. Additionally, the WHC, texture, flavor, and nutritional value of muscle foods are closely related to MPs. This review encourages additional work to explore the potential of tempering techniques, as well as the synergistic effects of traditional and innovative thawing technologies, in reducing the oxidation and denaturation of MPs and maintaining the quality of muscle foods.
Collapse
Affiliation(s)
- Yuanlv Zhang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Guishan Liu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Qiwen Xie
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Yanyao Wang
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Jia Yu
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| | - Xiaoju Ma
- College of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Ma M, Liu P, Wang C, Deng X, Zhang L, Zhang J. Oxidation of Cathepsin D by Hydroxy Radical: Its Effect on Enzyme Structure and Activity against Myofibrillar Proteins Extracted from Coregonus peled. Molecules 2023; 28:5117. [PMID: 37446781 DOI: 10.3390/molecules28135117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, cathepsin D was oxidized in vitro with different concentrations of H2O2, and the activity, structure, and extent of myofibrillar protein degradation by oxidized cathepsin D were evaluated. The sulfhydryl content of cathepsin D decreased to 9.20% after oxidation, while the carbonyl content increased to 100.06%. The β-sheet in the secondary structure altered due to oxidation as well. The changes in the intrinsic fluorescence and UV absorption spectra indicated that oxidation could cause swelling and aggregation of cathepsin D molecules. The structure of cathepsin D could change its activity, and the activity was highest under 1 mM H2O2. Cathepsin D could degrade myofibrillar proteins in different treatment groups, and the degree of degradation is various. Therefore, this study could provide a scientific basis for the mechanism of interaction among hydroxyl radical oxidation, cathepsin D, and MP degradation.
Collapse
Affiliation(s)
- Mengjie Ma
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Food Nutrition and Safety Control of Xinjiang Production and Construction Crops, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Pingping Liu
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Food Nutrition and Safety Control of Xinjiang Production and Construction Crops, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Chaoye Wang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Food Nutrition and Safety Control of Xinjiang Production and Construction Crops, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xiaorong Deng
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Food Nutrition and Safety Control of Xinjiang Production and Construction Crops, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Jian Zhang
- Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-Construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi 832003, China
- Key Laboratory of Food Nutrition and Safety Control of Xinjiang Production and Construction Crops, School of Food Science and Technology, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Chu Y, Ding Z, Yang D, Xie J. Evaluation on the effect of ice glazing with different compound additives on the quality of frozen stored (-23 °C) large yellow croaker (Pseudosciaena crocea). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:349-360. [PMID: 35892290 DOI: 10.1002/jsfa.12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Compounded ice glazing has been used in large yellow croaker to improve its quality during frozen storage. The ice glazing liquid is prepared by compound use of trehalose and tea polyphenols, and the moisture, protein-related properties and freshness of the fish have been evaluated during 300 days of frozen storage. RESULTS The results showed that the addition of trehalose effectively reduced the loss of water. At the same time, it was difficult for ice crystals to grow under the action of trehalose, the average diameter could still be maintained at 111.25-119.85 μm. The combination with tea polyphenols could effectively maintain the protein structure and keep the total volatile base nitrogen (TVB-N) and K value within 11.84 mg/100 g and 13.18%, so that the freshness of the fish was always at the first level. CONCLUSION In a word, the ice glazing with 5% trehalose and 8% tea polyphenols had the best preservation effect, which was recommended for the frozen storage. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Dazhang Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
10
|
Wang FQ, Cheng JH, Keener KM. Changing the IgE Binding Capacity of Tropomyosin in Shrimp through Structural Modification Induced by Cold Plasma and Glycation Treatment. Foods 2023; 12:foods12010206. [PMID: 36613421 PMCID: PMC9819036 DOI: 10.3390/foods12010206] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tropomyosin (TM) is the major allergen of shrimp (Penaeus chinensis). Previous studies showed that separate cold plasma or glycation have their drawback in reducing allergenicity of TM, including effectiveness and reliability. In the current study, a new processing combining cold plasma (CP) and glycation was proposed and its effect on changing IgE binding capacity of TM from shrimp was investigated. Obtained results showed the IgE binding capacity of TM was reduced by up to 40% after CP (dielectric barrier discharge, 60 kV, 1.0 A) combined with glycation treatment (4 h, 80 °C), compared with the less than 5% reduction after single CP or glycation treatment. Notably, in contrast to the general way of CP prompting glycation, this study devised a new mode of glycation with ribose after CP pretreatment. The structural changes of TM were explored to explain the decreased IgE binding reactivity. The results of multi-spectroscopies showed that the secondary and tertiary structures of TM were further destroyed after combined treatment, including the transformation of 50% α-helix to β-sheet and random coils, the modification and exposure of aromatic amino acids, and the increase of surface hydrophobicity. The morphology analysis using atomic force microscope revealed that the combined processing made the distribution of TM particles tend to disperse circularly, while it would aggregate after either processing treatment alone. These findings confirmed the unfolding and reaggregation of TM during combined processing treatment, which may result in the remarkable reduction of IgE binding ability. Therefore, the processing of CP pretreatment combined with glycation has the potential to reduce or even eliminate the allergenicity of seafood.
Collapse
Affiliation(s)
- Feng-Qi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Correspondence:
| | - Kevin M. Keener
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON NIG 2W1, Canada
| |
Collapse
|
11
|
Li F, Wu X, Liang Y, Wu W. Potential implications of oxidative modification on dietary protein nutritional value: A review. Compr Rev Food Sci Food Saf 2023; 22:714-751. [PMID: 36527316 DOI: 10.1111/1541-4337.13090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
During food processing and storage, proteins are sensitive to oxidative modification, changing the structural characteristics and functional properties. Recently, the impact of dietary protein oxidation on body health has drawn increasing attention. However, few reviews summarized and highlighted the impact of oxidative modification on the nutritional value of dietary proteins and related mechanisms. Therefore, this review seeks to give an updated discussion of the effects of oxidative modification on the structural characteristics and nutritional value of dietary proteins, and elucidate the interaction with gut microbiota, intestinal tissues, and organs. Additionally, the specific mechanisms related to pathological conditions are also characterized. Dietary protein oxidation during food processing and storage change protein structure, which further influences the in vitro digestion properties of proteins. In vivo research demonstrates that oxidized dietary proteins threaten body health via complicated pathways and affect the intestinal microenvironment via gut microbiota, metabolites, and intestinal morphology. This review highlights the influence of oxidative modification on the nutritional value of dietary proteins based on organs and the intestinal tract, and illustrates the necessity of appropriate experimental design for comprehensively exploring the health consequences of oxidized dietary proteins.
Collapse
Affiliation(s)
- Fang Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Xiaojuan Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Ying Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| | - Wei Wu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, P. R. China.,National Engineering Research Center of Rice and Byproduct Deep Processing, Changsha, Hunan, P. R. China
| |
Collapse
|
12
|
Zhao J, Li Y, Xu L, Zeng J, Liu Y, Timira V, Zhang Z, Lin H, Li Z. Thermal induced the structural alterations, increased IgG/IgE binding capacity and reduced immunodetection recovery of tropomyosin from shrimp (Litopenaeus vannamei). Food Chem 2022; 391:133215. [DOI: 10.1016/j.foodchem.2022.133215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
|
13
|
Comprehensive Analysis of the Structure and Allergenicity Changes of Seafood Allergens Induced by Non-Thermal Processing: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185857. [PMID: 36144594 PMCID: PMC9505237 DOI: 10.3390/molecules27185857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Seafood allergy, mainly induced by fish, shrimp, crab, and shellfish, is a food safety problem worldwide. The non-thermal processing technology provides a new method in reducing seafood allergenicity. Based on the structural and antigenic properties of allergenic proteins, this review introduces current methods for a comprehensive analysis of the allergenicity changes of seafood allergens induced by non-thermal processing. The IgE-binding capacities/immunoreactivity of seafood allergens are reduced by the loss of conformation during non-thermal processing. Concretely, the destruction of native structure includes degradation, aggregation, uncoiling, unfolding, folding, and exposure, leading to masking of the epitopes. Moreover, most studies rely on IgE-mediated assays to evaluate the allergenic potential of seafood protein. This is not convincing enough to assess the effect of novel food processing techniques. Thus, further studies must be conducted with functional assays, in vivo assays, animal trials, simulated digestion, and intestinal microflora to strengthen the evidence. It also enables us to better identify the effects of non-thermal processing treatment, which would help further analyze its mechanism.
Collapse
|
14
|
Lv L, Ye L, Lin X, Li L, Chen J, Yue W, Wu X. Functional and Allergenic Properties Assessment of Conalbumin (Ovotransferrin) after Oxidation. Foods 2022; 11:foods11152308. [PMID: 35954072 PMCID: PMC9367811 DOI: 10.3390/foods11152308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
Conalbumin (CA) is an iron-binding egg protein that has various bioactivities and causes major allergenicity in humans. This study investigated how oxidation affects the multiple functional properties of CA. The lipid peroxidation method was used to prepare treated CA [2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH)-CA and acrolein-CA] complexes. CA induced structural changes through oxidation. These changes enhanced the digestibility, rate of endocytosis in dendritic cells, and emulsifying and foaming properties of CA. ELISA and immunoblot analysis showed that the complexes reduced the IgE-binding ability of CA through lipid oxidation. KU812 cell assays showed that modification by AAPH and acrolein caused the release of IL-4 and histamine to decline. In conclusion, oxidation treatment modified the functional and structural properties of CA, reducing allergenicity during processing and preservation.
Collapse
|
15
|
Effect of Peroxyl Radical-Induced Oxidation on Functional and Structural Characteristics of Walnut Protein Isolates Revealed by High-Resolution Mass Spectrometry. Foods 2022; 11:foods11030385. [PMID: 35159534 PMCID: PMC8834345 DOI: 10.3390/foods11030385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022] Open
Abstract
The present study aims to investigate the structural and functional properties of oxidated walnut protein isolates (WPI) by 2,2′-azobis (2-amidinopropane) dihydrochloride (AAPH). The oxidation degree, changes in structural characteristics, processing properties, and protein modifications of WPI were measured. The results showed that oxidation significantly induced structural changes, mainly reflected by the increasing carbonyl content, and decreasing sulfhydryl and free amino groups. Moreover, the secondary structure of WPI was altered in response to oxidation, and large aggregates formed through disulfide cross-linking and hydrophobic interactions. Almost all the property indicators were significantly decreased by oxidation except the foaming property and water/oil holding capacity. Mass spectrometry analysis showed that 16 different modifications occurred in amino acid side chains, and most of the protein groups with higher numbers of modifications were found to be associated with allergies, which was further confirmed by the reduction in antigenicity of the major allergen (Jug r 1) in WPI. Meanwhile, we used oxidation-related proteins for gene ontology (GO) enrichment analyses, and the results indicated that 115, 204 and 59 GO terms were enriched in terms of biological process, molecular function, and cellular component, respectively. In conclusion, oxidation altered the groups and conformation of WPI, which in turn caused modification in the functional properties correspondingly. These findings might provide a reference for processing and storage of walnut protein foods.
Collapse
|
16
|
Effects of magnetic nanometer combined with radio frequency or microwave thawing on physicochemical properties of myofibrillary protein in sea bass. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
The Effect of Salt on the Gelling Properties and Protein Phosphorylation of Surimi-Crabmeat Mixed Gels. Gels 2021; 8:gels8010010. [PMID: 35049545 PMCID: PMC8774505 DOI: 10.3390/gels8010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of different salt additions (1.0%, 1.5%, 2.0%, 2.5%, 3.0%, and 3.5%) on the gelling properties and protein phosphorylation of the mixed gels (MG) formed by silver carp (Hypophthalmichthys molitrix) surimi with 10% crabmeat were investigated. The MG's breaking force, deformation, gel strength, and water-holding capacity (WHC) increased as the salt concentration increased. The intrinsic fluorescence intensity of the samples initially decreased and then increased, reaching the lowest when the NaCl concentration was 2.5%. The result of SDS-polyacrylamide gel electrophoresis indicated that large aggregates were formed by protein-protein interaction in the MG containing 2.5% or 3.0% NaCl, decreasing the protein band intensity. It was also found that with the addition of NaCl, the phosphorus content initially increased and then decreased, reaching the maximum when the NaCl concentration was 2% or 2.5%, which was similar to the changing trend of actin band intensity reported in the results of Western blot. These results revealed that the amount of salt used had a significant effect on the degree of phosphorylation of the MG protein. The increase in phosphorylation was linked to improved gelling properties, which could lead to new ideas for manufacturing low-salt surimi products in the future.
Collapse
|
18
|
Huang Y, Li Z, Wu Y, Guo Y, Pavase TR, Chen G, Zhang Z, Lin H. Comparison of immunological properties of recombinant and natural turbot (Scophthalmus maximus) parvalbumin. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03771-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Lv L, He K, Sun F, Lin X, Ye L, Lyu Y, Liu L, Wang L, Liu Z, Wu X. Reducing the Allergenicity of α-Lactalbumin after Lipid Peroxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5725-5733. [PMID: 33974424 DOI: 10.1021/acs.jafc.1c00559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study analyzed the effect of lipid peroxidation using 2,2'-azobis(2-amidinopropane)dihydrochloride (AAPH) and acrolein on the in vitro and in vivo allergenicity of α-lactalbumin (α-La). The structure of oxidized α-La was evaluated by sodium dodecyl sulfate polyacrylamide gel electrophoresis, fluorescence spectroscopy, and circular dichroism, whereas the changes in the allergenic properties were evaluated. Lipid peroxidation induced changes to the structural properties that might destroy and/or mask α-La epitopes. In comparison to native α-La, oxidation complexes caused a decrease in the immunoglobulin E (IgE) binding capacity, as observed via immunoblotting. Moreover, the capacity to release mediators and cytokines from KU812 cells was also greatly reduced. In vivo, oxidation with AAPH and acrolein caused a significant reduction in IgE, IgG, IgG1, mast cell protease 1, and plasma histamine, along with the reduction of mast surface c-Kit+ and FcεRI+ expression. Therefore, these results indicate that oxidation via AAPH and acrolein can potentially reduce the allergenicity of α-La, which can help with the better understanding of the changes in allergenicity of milk allergen by lipid peroxidation.
Collapse
Affiliation(s)
- Liangtao Lv
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Respiratory & Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518020, People's Republic of China
| | - Kan He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Fan Sun
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Liying Ye
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Yansi Lyu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Obstetricians and Gynaecologists, Shenzhen University General Hospital, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lizhong Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Linlin Wang
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
- Department of Digestion, Shenzhen University General Hospital, Shenzhen, Guangdong 518060, People's Republic of China
| | - Zhigang Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xuli Wu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
20
|
Liu P, Zhang Z, Guo X, Zhu X, Mao X, Guo X, Deng X, Zhang J. μ-Calpain oxidation and proteolytic changes on myofibrillar proteins from Coregonus Peled in vitro. Food Chem 2021; 361:130100. [PMID: 34044215 DOI: 10.1016/j.foodchem.2021.130100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/21/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the structural properties of μ-calpain induced by hydroxyl radical oxidation and its effect on the degradation of myofibrillar protein (MP) from the dorsal muscles of Coregonus peled. The carbonyl and sulfhydryl content of μ-calpain changed significantly after oxidation. The content of α-helix in the secondary structure decreased from 0.825 to 0.232 and the changes in intrinsic fluorescence and ultraviolet (UV) absorption spectra indicated that oxidation could cause the expansion and aggregation of µ-calpain molecules. Changes in µ-calpain structure could improve the activity of µ-calpain, reaching the highest value at 0.5 mM H2O2. The highest µ-calpain activity facilitate the degradation of unoxidized MP, while the degradation of oxidized MP was facilitated at the 1 mM H2O2. Thus, our results provide a scientific basis for the interaction mechanism among hydroxyl radical oxidation, µ-calpain, and MP degradation.
Collapse
Affiliation(s)
- Pingping Liu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Zhiwei Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaoying Mao
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
21
|
Effect of different extent of protein oxidation on the frozen storage stability of muscle protein in obscure pufferfish (Takifugu obscurus). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110416] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens? Clin Rev Allergy Immunol 2021; 62:1-36. [DOI: 10.1007/s12016-020-08826-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 12/31/2022]
|
23
|
Luo C, Chen G, Ahmed I, Sun L, Li W, Pavase TR, Li Z. Immunostimulatory and allergenic properties of emulsified and non-emulsified digestion products of parvalbumin ( Scophthalmus maximus) in RBL-2H3 cells and BALB/c mouse models. Food Funct 2021; 12:5351-5360. [PMID: 33982680 DOI: 10.1039/d1fo00575h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present study, the influence of lipid emulsion on the allergenicity of digestion products of fish parvalbumin (PV) was investigated, which was initially subjected to simulated gastric/intestinal digestion both under emulsified and non-emulsified conditions. The release of β-hexosaminidase (β-hex), histamine (His), tryptase (TPS), interleukin 4 (IL-4), and IL-13 in RBL cells was decreased by 79.32, 26.19, 41.67, 53.95 and 54.40%, respectively, following stimulation with the gastric digestion products of PV. Whereas, lipid emulsified digestion products of PV (e-PV) significantly enhanced the release of active mediators and cytokines. The digestion products of emulsified PV at 180 min resulted in a higher release of β-hex (197.60%), His (12.18%), TPS (38.85%), IL-4 (48.19%) and IL-13 (59.40%), as compared to that of PV. However, no obvious differences in the release of active substances and cytokines were noted between intestinal digestion products of PV and intestinal digestion products of emulsified PV. In the mouse model studies, digested PV products reduced the anaphylactic scores, whereas e-PV manifested a higher level of allergic symptoms. Moreover, mice treated with 50% e-PV had significantly higher levels of specific IgE (32.56%), total IgE (16.67%) and total IgG1 (5.15%) than those treated with 50% PV. Mice treated with 50% e-PV had significantly higher levels of His (8.50%) and TPS (10.07%) compared with mice treated with 50% PV. Lipid emulsions altered the digestibility of PV in gastrointestinal digestion and enhanced the allergenicity of PV digestion products at the cellular levels, subsequently posing a higher risk of allergic reactions in susceptible individuals.
Collapse
Affiliation(s)
- Chen Luo
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Guanzhi Chen
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Ishfaq Ahmed
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Lirui Sun
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Wenjie Li
- Qingdao Women & Children Hospital, Clinical Laboratory, Qingdao, Shandong Province 266003, PR China
| | - Tushar Ramesh Pavase
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China.
| | - Zhenxing Li
- Department of Dermatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, PR China. and College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
24
|
Walayat N, Xiong Z, Xiong H, Moreno HM, Nawaz A, Niaz N, Hu C, Taj MI, Mushtaq BS, Khalifa I. The effect of egg white protein and β-cyclodextrin mixture on structural and functional properties of silver carp myofibrillar proteins during frozen storage. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.109975] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Jiang Y, Li D, Tu J, Zhong Y, Zhang D, Wang Z, Tao X. Mechanisms of change in gel water-holding capacity of myofibrillar proteins affected by lipid oxidation: The role of protein unfolding and cross-linking. Food Chem 2020; 344:128587. [PMID: 33191014 DOI: 10.1016/j.foodchem.2020.128587] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/03/2020] [Accepted: 11/04/2020] [Indexed: 01/18/2023]
Abstract
This work explored the effects of protein unfolding and cross-linking induced by lipid oxidation (linoleic acid, OLA) on the gel water-holding capacity (WHC) of beef myofibrillar proteins (MP). Medium concentration of OLA (≤6 mM) caused the increase of gel WHC from 55.2% to 65.1%, while relative high OLA concentration (>6 mM) decreased the gel WHC. When the OLA concentrations increased from 0 to 10 mM, the population of immobile water of gel decreased from 92.91% to 78.97%, whereas that of free water increased from 6.13% to 19.80%, suggesting that OLA treatment regardless concentration was harmful for gel WHC. However, medium OLA concentrations (≤6 mM) caused the shifting of α-helixes to β-sheets in MP gel, exerting positive effect on gel WHC. Protein unfolding and cross-linking jointly determined the increased gel WHC at moderate oxidative modification. Additionally, the protein aggregation at high OLA concentration resulted in decreased gel WHC.
Collapse
Affiliation(s)
- Yi Jiang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dahu Li
- School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Juncai Tu
- Department of Wine, Food and Molecular Biosciences, Lincoln University, P O Box 84, Lincoln 7647, Christchurch, New Zealand
| | - Yujie Zhong
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Dong Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Zhaoming Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230009, China.
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Ahmed I, Lin H, Li Z, Xu L, Qazi IM, Luo C, Gao X, Khan MU, Iqbal A, Guo Y, Pavase TR, Sun L. Tyrosinase/caffeic acid cross-linking alleviated shrimp (Metapenaeus ensis) tropomyosin-induced allergic responses by modulating the Th1/Th2 immunobalance. Food Chem 2020; 340:127948. [PMID: 32896779 DOI: 10.1016/j.foodchem.2020.127948] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 08/25/2020] [Indexed: 01/01/2023]
Abstract
In this study, the effect of enzymatic cross-linking of shrimp tropomyosin (TM) with tyrosinase and caffeic acid (TM-Tyr/CA) on the allergic response were assessed using in vitro and in vivo models. The RBL-2H3 and KU812 cell lines were employed to evaluate the changes in the stimulation abilities of TM-Tyr/CA that showed significant inhibition of mediators and cytokines. The digestibility of cross-linked TM was improved and the recognitions of IgG/IgE were markedly reduced, as revealed by western blotting. TM-Tyr/CA decreased anaphylactic symptoms, and hindered the levels of IgG1, IgE, histamine, tryptase and mouse mast-cell protease-1 (mMCP-1) in mice sera. Cross-linked TM downregulated the production of interleukin (IL)-4, IL-5, and IL-13 by 51.36, 12.24 and 20.55%, respectively, whereas, IL-10 and IFN-γ were upregulated by 20.71 and 19.0%. TM-Tyr/CA showed reduced allergenicity and may have preventive effect in relieving TM induced allergic response via immunosuppression and positive modulation of T-helper (Th)1/Th2 immunobalance.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China.
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Ihsan Mabood Qazi
- Department of Food Science and Technology, The University of Agriculture Peshawar-Pakistan, Peshawar, Pakistan
| | - Chen Luo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Xiang Gao
- Department of Allergy, The Affiliated Hospital of Medical College of Qingdao University, Qingdao, Shandong Province 266003, PR China
| | - Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Amjad Iqbal
- Department of Agriculture, Garden Campus, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Yuman Guo
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Tushar Ramesh Pavase
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province, 266003, PR China
| |
Collapse
|
27
|
Effect of in vitro oxidation on the water retention mechanism of myofibrillar proteins gel from pork muscles. Food Chem 2020; 315:126226. [DOI: 10.1016/j.foodchem.2020.126226] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
|
28
|
Xu LL, Lin H, Li ZX, Ahmed I, Pramod S, Lin H, Lv LT, Tian SL, Yu ZW. Influence of nonthermal extraction technique and allergenicity characteristics of tropomyosin from fish (Larimichthys crocea) in comparison with shrimp (Litopenaeus vannamei) and clam (Ruditapes philippinarum). Food Chem 2020; 309:125575. [DOI: 10.1016/j.foodchem.2019.125575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/16/2019] [Accepted: 09/20/2019] [Indexed: 02/09/2023]
|
29
|
Faisal M, Dargahi N, Vasiljevic T, Donkor ON. Immunomodulatory properties of selectively processed prawn protein fractions assessed using human peripheral blood mononuclear cells. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Md Faisal
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Narges Dargahi
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Todor Vasiljevic
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| | - Osaana N. Donkor
- Advanced Food Systems Research Unit Institute of Sustainable Industries & Liveable Cities and College of Health and Biomedicine Victoria University Werribee Campus PO Box 14428 Melbourne Victoria 8001 Australia
| |
Collapse
|
30
|
Ahmed I, Ma J, Li Z, Lin H, Xu L, Sun L, Tian S. Effect of tyrosinase and caffeic acid crosslinking of turbot parvalbumin on the digestibility, and release of mediators and cytokines from activated RBL-2H3 cells. Food Chem 2019; 300:125209. [PMID: 31344629 DOI: 10.1016/j.foodchem.2019.125209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 07/16/2019] [Accepted: 07/19/2019] [Indexed: 02/03/2023]
Abstract
Turbot can induce allergy in susceptible individuals due to the presence of parvalbumin (PV), a major fish allergen. This study aimed at evaluating the digestibility and the ability of PV to elicit the release of cellular degranulation, following treatment with tyrosinase (PV-Tyr), caffeic acid (PV-CA) and in combination (PV-Tyr/CA), using in vitro digestion and RBL-2H3 (passive rat basophil leukemia) cell line. The digestion assay products revealed that the stability of PV in simulated gastric fluid (SGF) was stronger, while in simulated intestinal fluid (SIF) was rather weak. Western blot analysis revealed that the IgG-binding abilities of the cross-linked PV were markedly reduced. Moreover, crosslinking hampered the release of cellular degranulation process in RBL-2H3 cell lines. PV-Tyr/CA showed highly significant reduction in the release rate of β-hexosaminidase (66.02%), histamine (35.01%), tryptase (29.25%), cysteinyl leukotrienes (29.72%), prostaglandin D2 (34.96%), IL-4 (43.99%) and IL-13 (38.93%) and shown potential in developing hypoallergenic fish products.
Collapse
Affiliation(s)
- Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Jiaju Ma
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China.
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lili Xu
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Lirui Sun
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| | - Shenglan Tian
- College of Food Science and Engineering, Ocean University of China, No. 5, Yushan Road, Qingdao, Shandong Province 266003, PR China
| |
Collapse
|
31
|
Tian S, Ma J, Ahmed I, Lv L, Li Z, Lin H. Effect of tyrosinase-catalyzed crosslinking on the structure and allergenicity of turbot parvalbumin mediated by caffeic acid. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3501-3508. [PMID: 30623428 DOI: 10.1002/jsfa.9569] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Enzymatic treatment of allergenic protein can alter their functional properties under a mild reaction condition due to specificity of enzymes. Phenolic compounds act as mediators and enhance the crosslinking reactions. The study aimed to assess the changes in the structure and immunoglobulin G (IgG) binding capacity of turbot parvalbumin (PV) upon crosslinking with tyrosinase (Tyr) in the absence and presence of caffeic acid. RESULTS Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed the appearance of higher molecular weight bands (24, 36 kDa) in the crosslinked PV. The secondary structure of crosslinked PV became loosened and disordered. The results of intrinsic fluorescence and ultraviolet absorption spectral analyses, as well as surface hydrophobicity and free amino group analyses also revealed structural changes. As observed by western blot analysis, the intensity of the PV bands reduced upon Tyr treatment, indicating reduced binding of specific IgG to PV. Moreover, the indirect ELISA (enzyme-linked immunosorbent assay) analysis confirmed that the IgG binding ability of crosslinked PV was reduced 34.94%. CONCLUSION Enzymatic treatment mitigated the allergenicity of fish PV, which was closely related to the alterations in the conformational structure. This treatment showed potential for developing hypoallergenic fish products under mild reaction conditions. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shenglan Tian
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| | - Jiaju Ma
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| | - Ishfaq Ahmed
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| | - Liangtao Lv
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| | - Zhenxing Li
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Ocean University of China, Qingdao, PR China
| |
Collapse
|
32
|
Lv L, Lin H, Li Z, Nayak B, Ahmed I, Tian S, Chen G, Lin H, Zhao J. Structural changes of 2,2′-azobis(2-amidinopropane) dihydrochloride (AAPH) treated shrimp tropomyosin decrease allergenicity. Food Chem 2019; 274:547-557. [DOI: 10.1016/j.foodchem.2018.09.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/01/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023]
|
33
|
Wang Y, Ni S, Wang C, Li X, Fu L. Cross-linking of shrimp tropomyosin catalyzed by transglutaminase and tyrosinase produces hypoallergens for potential immunotherapy. Food Funct 2019; 10:1609-1618. [DOI: 10.1039/c9fo00046a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transglutaminase or tyrosinase treatment reduces tropomyosin allergenicity and produces potential hypoallergens for immunotherapy.
Collapse
Affiliation(s)
- Yanbo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing
- P.R. China
- Food Safety Key Laboratory of Zhejiang Province
| | - Saiqiao Ni
- Food Safety Key Laboratory of Zhejiang Province
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Chong Wang
- Food Safety Key Laboratory of Zhejiang Province
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- Beijing Technology and Business University
- Beijing
- P.R. China
| | - Linglin Fu
- Food Safety Key Laboratory of Zhejiang Province
- School of Food Science and Biotechnology
- Zhejiang Gongshang University
- Hangzhou
- P.R. China
| |
Collapse
|
34
|
Yuan F, Ahmed I, Lv L, Li Z, Li Z, Lin H, Lin H, Zhao J, Tian S, Ma J. Impacts of glycation and transglutaminase-catalyzed glycosylation with glucosamine on the conformational structure and allergenicity of bovine β-lactoglobulin. Food Funct 2018; 9:3944-3955. [PMID: 29974110 DOI: 10.1039/c8fo00909k] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
β-Lactoglobulin (β-LG) is recognized as the major milk allergen. In this study, the effects of transglutaminase (TGase) and glucosamine (GlcN)-catalyzed glycosylation and glycation on the conformational structure and allergenicity of β-LG were investigated. The formations of cross-linked peptides were demonstrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and GlcN-conjugated modification was identified using matrix-assisted laser desorption ionization-time of flight-mass spectrometry (MALDI-TOF-MS). Structural analysis revealed that glycosylation and glycation of β-LG induced unfolding of the primary protein structure followed by a loss of the secondary structure. As revealed by circular dichroism (CD) spectroscopy, glycosylated β-LG exhibited the highest increase in the β-sheets from 32.6% to 40.4% (25 °C) and 44.2% (37 °C), and the percentage of α-helices decreased from 17.7% to 14.4% (25 °C) and 12.3% (37 °C), respectively. The tertiary and quaternary structures of β-LG also changed significantly during glycosylation and glycation, along with reduced free amino groups and variation in surface hydrophobicity. Immunoblotting and indirect enzyme-linked immuno sorbent assay (ELISA) analyses demonstrated that the lowest IgG- and IgE-binding capacities of β-LG were obtained following glycosylation at 37 °C, which were 52.7% and 56.3% lower than that of the native protein, respectively. The reduction in the antigenicity and potential allergenicity of glycosylated β-LG was more pronounced compared to TGase treated- and glycated β-LG, which correlated well with the structural changes. These results suggest that TGase-catalyzed glycosylation has more potential compared to glycation for mitigating the allergenic potential of milk products.
Collapse
Affiliation(s)
- Fangzhou Yuan
- State Key laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai 200436, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lv L, Lin H, Li Z, Ahmed I, Mi N, Chen G. Allergenicity of acrolein-treated shrimp tropomyosin evaluated using RBL-2H3 cell and mouse model. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4374-4378. [PMID: 29427351 DOI: 10.1002/jsfa.8954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/10/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Food processing effects can modify protein functional properties. However, protein was oxidized inevitably by lipid peroxidation during food processing. Acrolein, a primary by-product of lipid peroxidation, can modify the structural and functional properties of protein. The aim of the research was to analyze the effect of acrolein on allergenicity of TM, a major allergen in shrimp. RESULTS The overall allergenic effects of acrolein-treated TM were evaluated using female BALB/c mice and a mediator-releasing RBL-2H3 cell line. Acrolein-treated TM significantly decreased TM-specific immunoglobulin E/G1 levels, and histamine and mMCP-1 release in mouse serum. Release of inflammatory mediators such as β-hexosaminidase, histamine, cysteinyl leukotriene and prostaglandin D2 was clearly suppressed after acrolein treatment. CONCLUSION These results indicate that acrolein-induced tropomyosin modification can decrease the allergenicity of TM. This reduction contributes to allergenic potential changes in shrimp during processing and preservation. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liangtao Lv
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Zhenxing Li
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Ishfaq Ahmed
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Nasha Mi
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, PR China
| | - Guanzhi Chen
- The Affiliated Hospital of Qingdao University, Qingdao, PR China
| |
Collapse
|
36
|
Wang Z, He Z, Gan X, Li H. The Effects of Lipid Oxidation Product Acrolein on the Structure and Gel Properties of Rabbit Meat Myofibrillar Proteins. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9543-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Wang Z, He Z, Gan X, Li H. Effect of peroxyl radicals on the structure and gel properties of isolated rabbit meat myofibrillar proteins. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13878] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhaoming Wang
- Chongqing Engineering Research Center of Regional Food; Chongqing China
- College of Food Science; Southwest University; No.2 Tiansheng Road, BeiBei District Chongqing 400715 China
| | - Zhifei He
- Chongqing Engineering Research Center of Regional Food; Chongqing China
- College of Food Science; Southwest University; No.2 Tiansheng Road, BeiBei District Chongqing 400715 China
| | - Xiao Gan
- Chongqing Engineering Research Center of Regional Food; Chongqing China
- College of Food Science; Southwest University; No.2 Tiansheng Road, BeiBei District Chongqing 400715 China
| | - Hongjun Li
- Chongqing Engineering Research Center of Regional Food; Chongqing China
- College of Food Science; Southwest University; No.2 Tiansheng Road, BeiBei District Chongqing 400715 China
| |
Collapse
|
38
|
Khan MU, Ahmed I, Lin H, Li Z, Costa J, Mafra I, Chen Y, Wu YN. Potential efficacy of processing technologies for mitigating crustacean allergenicity. Crit Rev Food Sci Nutr 2018; 59:2807-2830. [DOI: 10.1080/10408398.2018.1471658] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mati Ullah Khan
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Ishfaq Ahmed
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Hong Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Zhenxing Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong Province, P.R. China
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, Porto, Portugal
| | - Yan Chen
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| | - Yong-Ning Wu
- China National Center for Food Safety Risk Assessment, Chaoyang, Beijing, P.R. China
| |
Collapse
|
39
|
Ahmed I, Lv L, Lin H, Li Z, Ma J, Guanzhi C, Sun L, Xu L. Effect of tyrosinase-aided crosslinking on the IgE binding potential and conformational structure of shrimp ( Metapenaeus ensis ) tropomyosin. Food Chem 2018; 248:287-295. [DOI: 10.1016/j.foodchem.2017.12.071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/07/2017] [Accepted: 12/19/2017] [Indexed: 12/15/2022]
|