1
|
Huo X, Zhou Z, Liu H, Wang G, Shi K. A PadR family transcriptional repressor regulates the transcription of chromate efflux transporter in Enterobacter sp. Z1. J Microbiol 2024; 62:355-365. [PMID: 38587592 DOI: 10.1007/s12275-024-00117-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/10/2024] [Accepted: 01/23/2024] [Indexed: 04/09/2024]
Abstract
Chromium is a prevalent toxic heavy metal, and chromate [Cr(VI)] exhibits high mutagenicity and carcinogenicity. The presence of the Cr(VI) efflux protein ChrA has been identified in strains exhibiting resistance to Cr(VI). Nevertheless, certain strains of bacteria that are resistant to Cr(VI) lack the presence of ChrB, a known regulatory factor. Here, a PadR family transcriptional repressor, ChrN, has been identified as a regulator in the response of Enterobacter sp. Z1(CCTCC NO: M 2019147) to Cr(VI). The chrN gene is cotranscribed with the chrA gene, and the transcriptional expression of this operon is induced by Cr(VI). The binding capacity of the ChrN protein to Cr(VI) was demonstrated by both the tryptophan fluorescence assay and Ni-NTA purification assay. The interaction between ChrN and the chrAN operon promoter was validated by reporter gene assay and electrophoretic mobility shift assay. Mutation of the conserved histidine residues His14 and His50 resulted in loss of ChrN binding with the promoter of the chrAN operon. This observation implies that these residues are crucial for establishing a DNA-binding site. These findings demonstrate that ChrN functions as a transcriptional repressor, modulating the cellular response of strain Z1 to Cr(VI) exposure.
Collapse
Affiliation(s)
- Xueqi Huo
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zijie Zhou
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hongliang Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, Shandong Province, People's Republic of China
| | - Gejiao Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kaixiang Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
2
|
Chun I, Kim HJ, Hong S, Kim YG, Kim MS. Structural basis of DNA binding by the NAC transcription factor ORE1, a master regulator of plant senescence. PLANT COMMUNICATIONS 2023; 4:100510. [PMID: 36564947 DOI: 10.1016/j.xplc.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/11/2023]
Abstract
Plants use sophisticated mechanisms of gene expression to control senescence in response to environmental stress or aging. ORE1 (Arabidopsis thaliana NAC092) is a master regulator of senescence that belongs to the plant-specific NAC transcription factor protein family. ORE1 has been reported to bind to multiple DNA targets to orchestrate leaf senescence, yet the mechanistic basis for recognition of the cognate gene sequence remains unclear. Here, we report the crystal structure of the ORE1-NAC domain alone and its DNA-binding form. The structure of DNA-bound ORE1-NAC revealed the molecular basis for nucleobase recognition and phosphate backbone interactions. We show that local versatility in the DNA-binding site, in combination with domain flexibility of the ORE-NAC homodimer, is crucial for the maintenance of binding to intrinsically flexible DNA. Our results provide a platform for understanding other plant-specific NAC protein-DNA interactions as well as insight into the structural basis of NAC regulators in plants of agronomic and scientific importance.
Collapse
Affiliation(s)
- Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Sunghyun Hong
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
3
|
Hu Y, Li YV. Expression of SSEA-4 and Oct-4 from somatic cells in primary mouse gastric cell culture induced by brief strong acid. Mol Cell Biochem 2021; 476:2813-2821. [PMID: 33733429 DOI: 10.1007/s11010-021-04124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/26/2021] [Indexed: 11/29/2022]
Abstract
Environmental changes can stress and alter biology at the molecular and cellular level. For example, metal-protein interaction is a classic physic and biological property of nature, which is fundamentally influenced by acidity. Here, we report a unique cellular reprogramming phenomenon in that a brief strong acid treatment induced the expression of pluripotent stem cell (PSC) markers. We used strong acid to briefly challenge mix-cultured gastric cells, and then subcultured survived cells in a normal cell culture medium. We found that survival acid-treated cells expressed PSC markers detected by commonly used pluripotent antibodies such as SSEA-4 and Oct4. In addition, we observed that the survived cells from the acid challenge grew faster during the second and third weeks of subculture and had a relative short doubling time (DT) than the controls. PSC marker-labeled 'older' cells also presented immature cell-like morphology with some having marker Oct4 in the nucleus. Finally, the expression of the markers appeared to be sensitive to metal ion chelation. Removal of the metals during a brief acid treatment reduced pluripotent marker-positive cells, suggesting the dissociation of metals from metal-binding proteins may be a factor involved in the induction of stem cell markers. Our findings reveal that somatic cells appear to possess a plasticity feature to express pluripotent marker proteins or to select cell subpopulations that express pluripotent marker proteins when cells are transiently exposed to strong acid. It opens new directions for understanding conserved regulatory mechanisms involved in cellular survival under stressful stimulation.
Collapse
Affiliation(s)
- Yuli Hu
- Molecular & Cellular Biology Graduate Program, Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, 45701, USA
| | - Yang V Li
- Molecular & Cellular Biology Graduate Program, Departments of Biological Sciences and Biomedical Sciences, Ohio University, Athens, OH, 45701, USA. .,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, 346 Irvine Hall, Athens, OH, 45701, USA.
| |
Collapse
|
4
|
Yao X, Chen C, Wang Y, Dong S, Liu YJ, Li Y, Cui Z, Gong W, Perrett S, Yao L, Lamed R, Bayer EA, Cui Q, Feng Y. Discovery and mechanism of a pH-dependent dual-binding-site switch in the interaction of a pair of protein modules. SCIENCE ADVANCES 2020; 6:6/43/eabd7182. [PMID: 33097546 PMCID: PMC7608827 DOI: 10.1126/sciadv.abd7182] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/08/2020] [Indexed: 05/23/2023]
Abstract
Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.
Collapse
Affiliation(s)
- Xingzhe Yao
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Chen
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yefei Wang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Yifei Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Zhenling Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Perrett
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lishan Yao
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 8499000, Israel
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Nagpal S, Luong TDN, Sadqi M, Muñoz V. Downhill (Un)Folding Coupled to Binding as a Mechanism for Engineering Broadband Protein Conformational Transducers. ACS Synth Biol 2020; 9:2427-2439. [PMID: 32822536 DOI: 10.1021/acssynbio.0c00190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Canonical proteins fold and function as conformational switches that toggle between their folded (on) and unfolded (off) states, a mechanism that also provides the basis for engineering transducers for biosensor applications. One of the limitations of such transducers, however, is their relatively narrow operational range, limited to ligand concentrations 20-fold below or above their C50. Previously, we discovered that certain fast-folding proteins lose/gain structure gradually (downhill folding), which led us to postulate their operation as conformational rheostats capable of processing inputs/outputs in analog fashion. Conformational rheostats could make transducers with extended sensitivity. Here we investigate this hypothesis by engineering pH transducing into the naturally pH insensitive, downhill folding protein gpW. Particularly, we engineered histidine grafts into its hydrophobic core to induce unfolding via histidine ionization. We designed and tested the effects of ionization via computational modeling and studied experimentally the four most promising single grafts and two double grafts. All tested mutants become reversible pH transducers in the 4-9 range, and their response increases proportionally to how buried the histidine graft is. Importantly, the pH-dependent reversible (un)folding occurs in rheostatic fashion, so the engineered transducers can detect up to 6 orders of magnitude in [H+] for single grafts, and even more for double grafts. Our results demonstrate that downhill (un)folding coupled to binding produces the gradual, analog responses to the ligand (here H+) that are expected of conformational rheostats, and which make them a powerful mechanism for engineering transducers with sensitivity over many orders of magnitude in ligand concentration (broadband).
Collapse
Affiliation(s)
- Suhani Nagpal
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
| | - Thinh D. N. Luong
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
| | - Mourad Sadqi
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| | - Victor Muñoz
- Bioengineering Graduate Program, University of California at Merced, Merced, 95343 California, United States
- NSF-CREST Center for Cellular and Biomolecular Machines (CCBM), University of California at Merced, Merced, 95343 California, United States
- Chemistry and Chemical Biology Graduate Program, University of California at Merced, Merced, 95343 California, United States
- Department of Bioengineering, University of California at Merced, Merced, 95343 California, United States
| |
Collapse
|
6
|
Crack JC, Amara P, Volbeda A, Mouesca JM, Rohac R, Pellicer Martinez MT, Huang CY, Gigarel O, Rinaldi C, Le Brun NE, Fontecilla-Camps JC. Electron and Proton Transfers Modulate DNA Binding by the Transcription Regulator RsrR. J Am Chem Soc 2020; 142:5104-5116. [PMID: 32078310 DOI: 10.1021/jacs.9b12250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [Fe2S2]-RsrR gene transcription regulator senses the redox status in bacteria by modulating DNA binding, while its cluster cycles between +1 and +2 states-only the latter binds DNA. We have previously shown that RsrR can undergo remarkable conformational changes involving a 100° rotation of tryptophan 9 between exposed (Out) and buried (In) states. Here, we have used the chemical modification of Trp9, site-directed mutagenesis, and crystallographic and computational chemical studies to show that (i) the Out and In states correspond to oxidized and reduced RsrR, respectively, (ii) His33 is protonated in the In state due to a change in its pKa caused by cluster reduction, and (iii) Trp9 rotation is conditioned by the response of its dipole moment to environmental electrostatic changes. Our findings illustrate a novel function of protonation resulting from electron transfer.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Patricia Amara
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Anne Volbeda
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Jean-Marie Mouesca
- Université Grenoble Alpes, CEA, CNRS, IRIG-DIESE-SyMMES-CAMPE, 38000 Grenoble, France
| | - Roman Rohac
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Ma Teresa Pellicer Martinez
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Chia-Ying Huang
- Macromolecular Crystallography, Swiss Light Source, Paul Scherrer Institute, 5232 Villigen, PSI, Switzerland
| | - Océane Gigarel
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Clara Rinaldi
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| | - Nick E Le Brun
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Juan C Fontecilla-Camps
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, Metalloproteins Unit, F-38044 Grenoble, France
| |
Collapse
|
7
|
Deochand DK, Pande A, Meariman JK, Grove A. Redox Sensing by PecS from the Plant Pathogen Pectobacterium atrosepticum and Its Effect on Gene Expression and the Conformation of PecS-Bound Promoter DNA. Biochemistry 2019; 58:2564-2575. [PMID: 31046241 DOI: 10.1021/acs.biochem.9b00288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The plant pathogen Pectobacterium atrosepticum encounters a stressful environment when it colonizes the plant apoplast. Chief among the stressors are the reactive oxygen species (ROS) that are produced by the host as a first line of defense. Bacterial transcription factors in turn use these signals as cues to upregulate expression of virulence-associated genes. We have previously shown that the transcription factor PecS from P. atrosepticum binds the promoters that drive expression of pecS and pecM, which encodes an efflux pump, to repress gene expression. We show here that addition of oxidant relieves repression in vivo and in vitro. While reduced PecS distorts promoter DNA on binding, oxidized PecS does not, as evidenced by DNaseI footprinting. PecS oxidation is reversible, as shown by an oxidant-dependent quenching of the intrinsic tryptophan fluorescence that is completely reversed upon addition of a reducing agent. Cysteine 45 positioned at the PecS dimer interface is the redox sensor. Reduced PecS-C45A causes less DNA distortion on binding compared to wild-type PecS; addition of an oxidant has no effect on binding, and PecS-C45A cannot repress gene expression. Our data suggest that reduced PecS distorts its cognate DNA on binding, perhaps inducing a conformation in which promoter elements are suboptimally aligned for RNA polymerase binding, resulting in transcriptional repression. In contrast, oxidized PecS binds promoter DNA such that RNA polymerase may successfully compete with PecS for binding, allowing gene expression. This mode of regulation would facilitate induction of the PecS regulon when the bacteria encounter host-derived ROS in the plant apoplast.
Collapse
Affiliation(s)
- Dinesh K Deochand
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Anuja Pande
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Jacob K Meariman
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| | - Anne Grove
- Department of Biological Sciences , Louisiana State University , Baton Rouge , Louisiana 70803 , United States
| |
Collapse
|
8
|
Sabrin A, Gioe BW, Gupta A, Grove A. An EmrB multidrug efflux pump in Burkholderia thailandensis with unexpected roles in antibiotic resistance. J Biol Chem 2018; 294:1891-1903. [PMID: 30545940 DOI: 10.1074/jbc.ra118.006638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/12/2018] [Indexed: 01/28/2023] Open
Abstract
The antibiotic trimethoprim is frequently used to manage Burkholderia infections, and members of the resistance-nodulation-division (RND) family of efflux pumps have been implicated in multidrug resistance of this species complex. We show here that a member of the distinct Escherichia coli multidrug resistance B (EmrB) family is a primary exporter of trimethoprim in Burkholderia thailandensis, as evidenced by increased trimethoprim sensitivity after inactivation of emrB, the gene that encodes EmrB. We also found that the emrB gene is up-regulated following the addition of gentamicin and that this up-regulation is due to repression of the gene encoding OstR, a member of the multiple antibiotic resistance regulator (MarR) family. The addition of the oxidants H2O2 and CuCl2 to B. thailandensis cultures resulted in OstR-dependent differential emrB expression, as determined by qRT-PCR analysis. Specifically, OstR functions as a rheostat that optimizes emrB expression under oxidizing conditions, and it senses oxidants by a unique mechanism involving two vicinal cysteines and one distant cysteine (Cys3, Cys4, and Cys169) per monomer. Paradoxically, emrB inactivation increased resistance of B. thailandensis to tetracycline, a phenomenon that correlated with up-regulation of an RND efflux pump. These observations highlight the intricate mechanisms by which expression of genes that encode efflux pumps is optimized depending on cellular concentrations of antibiotics and oxidants.
Collapse
Affiliation(s)
- Afsana Sabrin
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Brennan W Gioe
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Ashish Gupta
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| | - Anne Grove
- From the Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
9
|
Cross Talk between MarR-Like Transcription Factors Coordinates the Regulation of Motility in Uropathogenic Escherichia coli. Infect Immun 2018; 86:IAI.00338-18. [PMID: 30275009 PMCID: PMC6246914 DOI: 10.1128/iai.00338-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/16/2018] [Indexed: 01/19/2023] Open
Abstract
The MarR-like protein PapX represses the transcription of the flagellar master regulator genes flhDC in uropathogenic Escherichia coli (UPEC), the primary cause of uncomplicated urinary tract infections (UTIs). PapX is encoded by the pap operon, which also encodes the adherence factors termed P fimbriae. The MarR-like protein PapX represses the transcription of the flagellar master regulator genes flhDC in uropathogenic Escherichia coli (UPEC), the primary cause of uncomplicated urinary tract infections (UTIs). PapX is encoded by the pap operon, which also encodes the adherence factors termed P fimbriae. Both adherence and motility are critical for productive colonization of the urinary tract. However, the mechanisms involved in coordinating the transition between adherence and motility are not well characterized. UPEC strain CFT073 carries both papX and a homolog, focX, located in the foc operon encoding F1C fimbriae. In this study, we characterized the dose effects of “X” genes on flagellar gene expression and cross talk between focX and papX. We found that both FocX and PapX repress flhD transcription. However, we determined that the ΔpapX mutant was hypermotile, while the loss of focX did not affect motility. We further investigated this phenotype and found that FocX functions as a repressor of papX. Additionally, we identified a proximal independent promoter upstream of both focX and papX and assessed the expression of focX and papX during culture in human urine and on LB agar plates compared to LB medium. Finally, we characterized the contributions of PapX and FocX to fitness in the ascending murine model of UTI and observed a subtle, but not statistically significant, fitness defect in colonization of the kidneys. Altogether, these results expand our understanding of the impact of carrying multiple X genes on the coordinated regulation of motility and adherence in UPEC.
Collapse
|
10
|
Capdevila DA, Huerta F, Edmonds KA, Le MT, Wu H, Giedroc DP. Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. eLife 2018; 7:37268. [PMID: 30328810 PMCID: PMC6224198 DOI: 10.7554/elife.37268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/16/2018] [Indexed: 11/25/2022] Open
Abstract
MarR (multiple antibiotic resistance repressor) family proteins are bacterial repressors that regulate transcription in response to a wide range of chemical signals. Although specific features of MarR family function have been described, the role of atomic motions in MarRs remains unexplored thus limiting insights into the evolution of allostery in this ubiquitous family of repressors. Here, we provide the first experimental evidence that internal dynamics play a crucial functional role in MarR proteins. Streptococcus pneumoniae AdcR (adhesin-competence repressor) regulates ZnII homeostasis and ZnII functions as an allosteric activator of DNA binding. ZnII coordination triggers a transition from somewhat independent domains to a more compact structure. We identify residues that impact allosteric activation on the basis of ZnII-induced perturbations of atomic motions over a wide range of timescales. These findings appear to reconcile the distinct allosteric mechanisms proposed for other MarRs and highlight the importance of conformational dynamics in biological regulation.
Collapse
Affiliation(s)
| | - Fidel Huerta
- Department of Chemistry, Indiana University, Bloomington, United States.,Graduate Program in Biochemistry, Indiana University, Bloomington, United States
| | | | - My Tra Le
- Department of Chemistry, Indiana University, Bloomington, United States
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, United States.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
11
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
12
|
Sivapragasam S, Deochand DK, Meariman JK, Grove A. The Stringent Response Induced by Phosphate Limitation Promotes Purine Salvage in Agrobacterium fabrum. Biochemistry 2017; 56:5831-5843. [DOI: 10.1021/acs.biochem.7b00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Smitha Sivapragasam
- Department of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Dinesh K. Deochand
- Department of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Jacob K. Meariman
- Department of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department of Biological
Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
13
|
Deochand DK, Grove A. MarR family transcription factors: dynamic variations on a common scaffold. Crit Rev Biochem Mol Biol 2017; 52:595-613. [PMID: 28670937 DOI: 10.1080/10409238.2017.1344612] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Members of the multiple antibiotic resistance regulator (MarR) family of transcription factors are critical for bacterial cells to respond to chemical signals and to convert such signals into changes in gene activity. Obligate dimers belonging to the winged helix-turn-helix protein family, they are critical for regulation of a variety of functions, including degradation of organic compounds and control of virulence gene expression. The conventional regulatory paradigm is based on a genomic locus in which the gene encoding the MarR protein is divergently oriented from a gene under its control; MarR binding to the intergenic region controls expression of both genes by changing the interaction of RNA polymerase with gene promoters. MarR protein oxidation or binding of a small molecule ligand adversely affects DNA binding, resulting in altered expression of the divergent genes. The generality of this simple paradigm, including the regulation of Escherichia coli MarR by direct binding of antibiotics, has been challenged by reports published in recent years. In addition, structural and biochemical analyses of ligand binding to numerous MarR homologs are converging to identify a shared ligand-binding "hot-spot". This review highlights recent research advances that point to shared features, yet at the same time highlights the remarkable flexibility with which members of this protein family implement responses to inducing signals. A more comprehensive understanding of protein function will pave the way towards the development of both antibacterial agents and biosensors that are based on MarR family proteins.
Collapse
Affiliation(s)
- Dinesh K Deochand
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| | - Anne Grove
- a Department of Biological Sciences , Louisiana State University , Baton Rouge , LA , USA
| |
Collapse
|
14
|
Grove A. Regulation of Metabolic Pathways by MarR Family Transcription Factors. Comput Struct Biotechnol J 2017; 15:366-371. [PMID: 28694934 PMCID: PMC5487221 DOI: 10.1016/j.csbj.2017.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 06/08/2017] [Indexed: 01/24/2023] Open
Abstract
Bacteria have evolved sophisticated mechanisms for regulation of metabolic pathways. Such regulatory circuits ensure that anabolic pathways remain repressed unless final products are in short supply and that catabolic enzymes are not produced in absence of their substrates. The precisely tuned gene activity underlying such circuits is in the purview of transcription factors that may bind pathway intermediates, which in turn modulate transcription factor function and therefore gene expression. This review focuses on the role of ligand-responsive MarR family transcription factors in controlling expression of genes encoding metabolic enzymes and the mechanisms by which such control is exerted. Prospects for exploiting these transcription factors for optimization of gene expression for metabolic engineering and for the development of biosensors are considered.
Collapse
Affiliation(s)
- Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Metallochaperones and metalloregulation in bacteria. Essays Biochem 2017; 61:177-200. [PMID: 28487396 DOI: 10.1042/ebc20160076] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 12/21/2022]
Abstract
Bacterial transition metal homoeostasis or simply 'metallostasis' describes the process by which cells control the intracellular availability of functionally required metal cofactors, from manganese (Mn) to zinc (Zn), avoiding both metal deprivation and toxicity. Metallostasis is an emerging aspect of the vertebrate host-pathogen interface that is defined by a 'tug-of-war' for biologically essential metals and provides the motivation for much recent work in this area. The host employs a number of strategies to starve the microbial pathogen of essential metals, while for others attempts to limit bacterial infections by leveraging highly competitive metals. Bacteria must be capable of adapting to these efforts to remodel the transition metal landscape and employ highly specialized metal sensing transcriptional regulators, termed metalloregulatory proteins,and metallochaperones, that allocate metals to specific destinations, to mediate this adaptive response. In this essay, we discuss recent progress in our understanding of the structural mechanisms and metal specificity of this adaptive response, focusing on energy-requiring metallochaperones that play roles in the metallocofactor active site assembly in metalloenzymes and metallosensors, which govern the systems-level response to metal limitation and intoxication.
Collapse
|
16
|
Gupta A, Fuentes SM, Grove A. Redox-Sensitive MarR Homologue BifR from Burkholderia thailandensis Regulates Biofilm Formation. Biochemistry 2017; 56:2315-2327. [PMID: 28406615 DOI: 10.1021/acs.biochem.7b00103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biofilm formation by pathogenic Burkholderia species is a serious complication as it renders the bacteria resistant to antibiotics and host defenses. Using B. thailandensis, we report here a novel redox-sensitive member of the multiple antibiotic resistance regulator (MarR) protein family, BifR, which represses biofilm formation. BifR is encoded as part of the emrB-bifR operon; emrB-bifR is divergent to ecsC, which encodes a putative LasA protease. In Pseudomonas aeruginosa, LasA has been implicated in virulence by contributing to cleavage of elastase. BifR repressed the expression of ecsC and emrB-bifR, and expression was further repressed under oxidizing conditions. BifR bound two sites in the intergenic region between ecsC and emrB-bifR with nanomolar affinity under both reducing and oxidizing conditions; however, oxidized BifR formed a disulfide-linked dimer-of-dimers, a covalent linkage that was absent in BifR-C104A in which the redox-active cysteine was replaced with alanine. BifR also repressed an operon encoding enzymes required for synthesis of phenazine antibiotics, which function as alternate respiratory electron receptors, and inactivation of bifR resulted in enhanced biofilm formation. Taken together, our data suggest that BifR functions to control LasA production and expression of genes involved in biofilm formation, in part by regulating synthesis of alternate electron acceptors that promote survival in the oxygen-limiting environment of a biofilm. The correlation between increased repression of emrB-bifR under oxidative conditions and the formation of a covalently linked BifR dimer-of-dimers suggests that BifR may modulate gene activity in response to cellular redox state.
Collapse
Affiliation(s)
- Ashish Gupta
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Stanley M Fuentes
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|