1
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
2
|
Lv Y, Mi P, Babon JJ, Fan G, Qi J, Cao L, Lang J, Zhang J, Wang F, Kobe B. Small molecule drug discovery targeting the JAK-STAT pathway. Pharmacol Res 2024; 204:107217. [PMID: 38777110 DOI: 10.1016/j.phrs.2024.107217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China; Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai 201112, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, China
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Faming Wang
- Center for Molecular Biosciences and Non-Communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
3
|
Jensen LT, Attfield KE, Feldmann M, Fugger L. Allosteric TYK2 inhibition: redefining autoimmune disease therapy beyond JAK1-3 inhibitors. EBioMedicine 2023; 97:104840. [PMID: 37863021 PMCID: PMC10589750 DOI: 10.1016/j.ebiom.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
JAK inhibitors impact multiple cytokine pathways simultaneously, enabling high efficacy in treating complex diseases such as cancers and immune-mediated disorders. However, their broad reach also poses safety concerns, which have fuelled a demand for increasingly selective JAK inhibitors. Deucravacitinib, a first-in-class allosteric TYK2 inhibitor, represents a remarkable advancement in the field. Rather than competing at kinase domain catalytic sites as classical JAK1-3 inhibitors, deucravacitinib targets the regulatory pseudokinase domain of TYK2. It strikingly mirrors the functional effect of an evolutionary conserved naturally occurring TYK2 variant, P1104A, known to protect against multiple autoimmune diseases yet provide sufficient TYK2-mediated cytokine signalling required to prevent immune deficiency. The unprecedentedly high functional selectivity and efficacy-safety profile of deucravacitinib, initially demonstrated in psoriasis, combined with genetic support, and promising outcomes in early SLE clinical trials make this inhibitor ripe for exploration in other autoimmune diseases for which better, safe, and efficacious treatments are urgently needed.
Collapse
Affiliation(s)
- Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Kathrine E Attfield
- Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Feldmann
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, The Kennedy Institute for Rheumatology, Botnar Research Institute, University of Oxford, Oxford OX3 7LD, UK
| | - Lars Fugger
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus 8200, Denmark; Nuffield Department of Clinical Neurosciences, Oxford Centre for Neuroinflammation, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
4
|
Henry SP, Jorgensen WL. Progress on the Pharmacological Targeting of Janus Pseudokinases. J Med Chem 2023; 66:10959-10990. [PMID: 37578217 DOI: 10.1021/acs.jmedchem.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The Janus kinases (JAKs) are key components of the JAK-STAT signaling pathway and are involved in myriad physiological processes. Though they are the molecular targets of many FDA-approved drugs, these drugs manifest adverse effects due in part to their inhibition of the requisite JAK kinase activity. However, the JAKs uniquely possess an integrated pseudokinase domain (JH2) that regulates the adjacent kinase domain (JH1). The therapeutic targeting of JH2 domains has been less thoroughly explored and may present an avenue to modulate the JAKs without the adverse effects associated with targeting the adjacent JH1 domain. The potential of this strategy was recently demonstrated with the FDA approval of the TYK2 JH2 ligand deucravacitinib for treating plaque psoriasis. In this light, the structure and targetability of the JAK pseudokinases are discussed, in conjunction with the state of development of ligands that bind to these domains.
Collapse
Affiliation(s)
- Sean P Henry
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - William L Jorgensen
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
5
|
Leit S, Greenwood J, Carriero S, Mondal S, Abel R, Ashwell M, Blanchette H, Boyles NA, Cartwright M, Collis A, Feng S, Ghanakota P, Harriman GC, Hosagrahara V, Kaila N, Kapeller R, Rafi SB, Romero DL, Tarantino PM, Timaniya J, Toms AV, Wester RT, Westlin W, Srivastava B, Miao W, Tummino P, McElwee JJ, Edmondson SD, Masse CE. Discovery of a Potent and Selective Tyrosine Kinase 2 Inhibitor: TAK-279. J Med Chem 2023; 66:10473-10496. [PMID: 37427891 DOI: 10.1021/acs.jmedchem.3c00600] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
TYK2 is a key mediator of IL12, IL23, and type I interferon signaling, and these cytokines have been implicated in the pathogenesis of multiple inflammatory and autoimmune diseases such as psoriasis, rheumatoid arthritis, lupus, and inflammatory bowel diseases. Supported by compelling data from human genome-wide association studies and clinical results, TYK2 inhibition through small molecules is an attractive therapeutic strategy to treat these diseases. Herein, we report the discovery of a series of highly selective pseudokinase (Janus homology 2, JH2) domain inhibitors of TYK2 enzymatic activity. A computationally enabled design strategy, including the use of FEP+, was instrumental in identifying a pyrazolo-pyrimidine core. We highlight the utility of computational physics-based predictions used to optimize this series of molecules to identify the development candidate 30, a potent, exquisitely selective cellular TYK2 inhibitor that is currently in Phase 2 clinical trials for the treatment of psoriasis and psoriatic arthritis.
Collapse
Affiliation(s)
- Silvana Leit
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Jeremy Greenwood
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Samantha Carriero
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Sayan Mondal
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Mark Ashwell
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Heather Blanchette
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Nicholas A Boyles
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Mark Cartwright
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Alan Collis
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Shulu Feng
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Phani Ghanakota
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Geraldine C Harriman
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Vinayak Hosagrahara
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Neelu Kaila
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Rosanna Kapeller
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Salma B Rafi
- Schrödinger, Inc., 1540 Broadway, New York, New York 10036, United States
| | - Donna L Romero
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Paul M Tarantino
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Jignesh Timaniya
- Piramal Pharma Solutions, Plot No. 18, Pharmez, Ahmedabad 382215, Gujarat, India
| | - Angela V Toms
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Ronald T Wester
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - William Westlin
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Bhaskar Srivastava
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Wenyan Miao
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Peter Tummino
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Joshua J McElwee
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Scott D Edmondson
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| | - Craig E Masse
- Nimbus Therapeutics, 22 Boston Wharf Road, Floor 9, Boston, Massachusetts 02210, United States
| |
Collapse
|
6
|
Mujafarkani N, Bassey V, Tokono JJ, Ahamed AJ, Benjamin I, Agurokpon DC, Waliya YJ, Louis H. Synthesis, characterization, and molecular modeling of phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF) as potent anti-inflammatory agent. Heliyon 2023; 9:e18067. [PMID: 37483726 PMCID: PMC10362139 DOI: 10.1016/j.heliyon.2023.e18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Inflammation, a characteristic physiological response to infections and tissue damage, commences with processes involving tissue repair and pathogen elimination, contributing to the restoration of homeostasis at affected sites. Hence, this study presents a comprehensive analysis addressing diverse aspects associated with this phenomenon. The investigation encompasses the synthesis, spectral characterizations (FT-IR, 1H NMR, and 13C NMR), and molecular modeling of p-phenylenediamine-phenylhydrazine-formaldehyde terpolymer (PPHF), a potent agent in promoting inflammation. To explore the reactivity, bonding nature, and spectroscopy, as well as perform molecular docking for in-silico biological evaluation, density functional theory (DFT) utilizing the def2svp/B3LYP-D3BJ method was employed. The results reveal significant biological activity of the tested compound in relation to anti-inflammatory proteins, specifically 6JD8, 5TKB, and 4CYF. Notably, upon interaction between PPHF and 6JD8, a binding affinity of -4.5 kcal/mol was observed. Likewise, the interaction with 5TKB demonstrated an affinity of -7.8 kcal/mol. Furthermore, a bonding affinity of -8.1 kcal/mol was observed for the interaction with 4CYF. Importantly, these values closely correspond to those obtained from the interaction between the proteins and the standard drug ibuprofen (IBF), which exhibited binding affinities of -5.9 kcal/mol, -7.0 kcal/mol, and -6.1 kcal/mol, respectively. Thus, these results provide compelling evidence affirming the tremendous potential of p-phenylenediamine-phenylhydrazine-formaldehyde (PPHF) as a highly promising anti-inflammatory agent, owing to the presence of nitrogen-a heteroatom within the compound.
Collapse
Affiliation(s)
- N. Mujafarkani
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, 620020, Tamilnadu, India
| | - Victoria Bassey
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Jumbo J. Tokono
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - A. Jafar Ahamed
- PG and Research Department of Chemistry, Jamal Mohamed College (Autonomous), (Affiliated to Bharathidasan University), Tiruchirappalli, 620020, Tamilnadu, India
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Daniel C. Agurokpon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Microbiology, University of Cross River State, Calabar Nigeria
| | - Yohanna J. Waliya
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| |
Collapse
|
7
|
Meanwell NA. The pyridazine heterocycle in molecular recognition and drug discovery. Med Chem Res 2023; 32:1-69. [PMID: 37362319 PMCID: PMC10015555 DOI: 10.1007/s00044-023-03035-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
The pyridazine ring is endowed with unique physicochemical properties, characterized by weak basicity, a high dipole moment that subtends π-π stacking interactions and robust, dual hydrogen-bonding capacity that can be of importance in drug-target interactions. These properties contribute to unique applications in molecular recognition while the inherent polarity, low cytochrome P450 inhibitory effects and potential to reduce interaction of a molecule with the cardiac hERG potassium channel add additional value in drug discovery and development. The recent approvals of the gonadotropin-releasing hormone receptor antagonist relugolix (24) and the allosteric tyrosine kinase 2 inhibitor deucravacitinib (25) represent the first examples of FDA-approved drugs that incorporate a pyridazine ring. In this review, the properties of the pyridazine ring are summarized in comparison to the other azines and its potential in drug discovery is illustrated through vignettes that explore applications that take advantage of the inherent physicochemical properties as an approach to solving challenges associated with candidate optimization. Graphical Abstract
Collapse
|
8
|
Liu F, Wang B, Liu Y, Shi W, Hu Z, Chang X, Tang X, Zhang Y, Xu H, He Y. Design, synthesis and biological evaluation of novel N-(methyl-d 3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Bioorg Med Chem Lett 2023; 86:129235. [PMID: 36907336 DOI: 10.1016/j.bmcl.2023.129235] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
As a mediator of pro-inflammatory cytokines, TYK2 is an attractive target to treat autoimmunity diseases. Herein, we reported the design, synthesis, and structure-activity relationships (SARs) of N-(methyl-d3) pyridazine-3-carboxamide derivatives as TYK2 inhibitors. Among them, compound 24 exhibited acceptable inhibition activity against STAT3 phosphorylation. Furthermore, 24 showed satisfactory selectivities toward other members of JAK family and performed a good stability profile in liver microsomal assay. Pharmacokinetics (PK) study indicated that compound 24 has reasonable PK exposures. In anti-CD40-induced colitis models, compound 24 was orally highly effective with no significant hERG and CYP isozymes inhibition. These results indicated that compound 24 was worthy of further investigation for the development of anti-autoimmunity diseases agents.
Collapse
Affiliation(s)
- Fei Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Bin Wang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yanlong Liu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wei Shi
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Zhongyuan Hu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiayun Chang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xujing Tang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Ying Zhang
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hongjiang Xu
- R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Liu F, Wang B, Liu Y, Shi W, Tang X, Wang X, Hu Z, Zhang Y, Guo Y, Chang X, He X, Xu H, He Y. Novel TYK2 Inhibitors with an N-(Methyl- d 3)pyridazine-3-carboxamide Skeleton for the Treatment of Autoimmune Diseases. ACS Med Chem Lett 2022; 13:1730-1738. [PMID: 36385928 PMCID: PMC9661719 DOI: 10.1021/acsmedchemlett.2c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/03/2022] [Indexed: 11/28/2022] Open
Abstract
Tyrosine kinase 2 (TYK2) mediates the interleukin-23 (IL-23), IL-12, and type I interferon (IFN)-driven signal responses that are critical in autoimmune diseases. Here, a series of novel derivatives with an N-(methyl-d 3)pyridazine-3-carboxamide skeleton that bind to the TYK2 pseudokinase domain were designed, synthesized, and evaluated. Among them, compound 30 demonstrated more excellent inhibitory potency against STAT3 phosphorylation than the positive control deucravacitinib. In addition to JAK isoform selectivity, compound 30 exhibited good in vivo and in vitro pharmacokinetic properties. Furthermore, compound 30 was orally highly effective in both IL-23-driven acanthosis and anti-CD40-induced colitis models. Together, these findings support compound 30 as a promising candidate for therapeutic applications in autoimmune diseases.
Collapse
Affiliation(s)
- Fei Liu
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Bin Wang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Yanlong Liu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Wei Shi
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xujing Tang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiaojin Wang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Zhongyuan Hu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Ying Zhang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Yahui Guo
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiayun Chang
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Xiangyi He
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Hongjiang Xu
- R&D
Institute, Chia Tai Tianqing Pharmaceutical
Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing 211122, China
| | - Ying He
- School
of Chemistry and Chemical Engineering, Nanjing
University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
10
|
Locke GA, Muckelbauer J, Tokarski JS, Barbieri CM, Belić S, Falk B, Tredup J, Wang YK. Identification and characterization of TYK2 pseudokinase domain stabilizers that allosterically inhibit TYK2 signaling. Methods Enzymol 2022; 667:685-727. [PMID: 35525559 DOI: 10.1016/bs.mie.2022.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kinase inhibition continues to be a major focus of pharmaceutical research and discovery due to the central role of these proteins in the regulation of cellular processes. One family of kinases of pharmacological interest, due to its role in activation of immunostimulatory pathways, is the Janus kinase family. Small molecule inhibitors targeting the individual kinase proteins within this family have long been sought-after therapies. High sequence and structural similarity of the family members makes selective inhibitors difficult to identify but critical because of their inter-related multiple cellular regulatory pathways. Herein, we describe the identification of inhibitors of the important Janus kinase, TYK2, a regulator of type I interferon response. In addition, the biochemical and structural confirmation of the direct interaction of these small molecules with the TYK2 pseudokinase domain is described and a potential mechanism of allosteric regulation of TYK2 activity through stabilization of the pseudokinase domain is proposed.
Collapse
Affiliation(s)
- Gregory A Locke
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States.
| | - Jodi Muckelbauer
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - John S Tokarski
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Christopher M Barbieri
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Stefan Belić
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Bradley Falk
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Jeffrey Tredup
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| | - Ying-Kai Wang
- Leads Discovery and Optimization, Mechanistic Pharmacology, Bristol Myers Squib, Lawrenceville, NJ, United States
| |
Collapse
|
11
|
Early Use of Low-Dose Ruxolitinib: A Promising Strategy for the Treatment of Acute and Chronic GVHD. Pharmaceuticals (Basel) 2022; 15:ph15030374. [PMID: 35337171 PMCID: PMC8955311 DOI: 10.3390/ph15030374] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023] Open
Abstract
Janus kinases (JAK) are a family of tyrosine kinases (JAK1, JAK2, JAK3, and TYK2) that transduce cytokine-mediated signals through the JAK–STAT metabolic pathway. These kinases act by regulating the transcription of specific genes capable of inducing biological responses in several immune cell subsets. Inhibition of Janus kinases interferes with the JAK–STAT signaling pathway. Besides being used in the treatment of cancer and inflammatory diseases, in recent years, they have also been used to treat inflammatory conditions, such as graft-versus-host disease (GVHD) and cytokine release syndrome as complications of allogeneic hematopoietic stem cell transplantation and cell therapy. Recently, the FDA approved the use of ruxolitinib, a JAK1/2 inhibitor, in the treatment of acute steroid-refractory GVHD (SR-aGVHD), highlighting the role of JAK inhibition in this immune deregulation. Ruxolitinib was initially used to treat myelofibrosis and true polycythemia in a high-dose treatment and caused hematological toxicity. Since a lower dosage often could not be effective, the use of ruxolitinib was suspended. Subsequently, ruxolitinib was evaluated in adult patients with SR-aGVHD and was found to achieve a rapid and effective response. In addition, its early low-dose use in pediatric patients affected by GVHD has proved effective, safe, and reasonably preventive. The review aims to describe the potential properties of ruxolitinib to identify new therapeutic strategies.
Collapse
|
12
|
Imidazo[1,2-b]pyridazine as privileged scaffold in medicinal chemistry: An extensive review. Eur J Med Chem 2021; 226:113867. [PMID: 34607244 DOI: 10.1016/j.ejmech.2021.113867] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
Imidazo[1,2-b]pyridazine scaffold represents an important class of heterocyclic nucleus which provides various bioactives molecules. Among them, the successful kinase inhibitor ponatinib led to a resurgence of interest in exploring new imidazo[1,2-b]pyridazine-containing derivatives for their putative therapeutic applications in medicine. This present review intends to provide a state-of-the-art of this framework in medicinal chemistry from 1966 to nowadays, unveiling different aspects of its structure-activity relationships (SAR). This extensive literature surveil may guide medicinal chemists for the quest of novel imidazo[1,2-b]pyridazine compounds with enhanced pharmacokinetics profile and efficiency.
Collapse
|
13
|
AKKURT B. On the Biological Importance, Preparation, and Uses of Imidazo[1,2-b]pyridazine-Based Compounds. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.1000771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
El Akkaoui A, Koubachi J, Guillaumet G, El Kazzouli S. Synthesis and Functionalization of Imidazo[1,2‐
b
]Pyridazine by Means of Metal‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ahmed El Akkaoui
- Laboratory of Analytical and Molecular Chemistry (LCAM) Polydisciplinary Faculty of Safi Cadi Ayyad University, Sidi Bouzid, B.P. 4162 46000 Safi Morocco
| | - Jamal Koubachi
- Polydisciplinary Faculty of Taroudant Laboratory of Applied and Environmental Chemistry (LACAPE) Faculty of Sciences Ibn Zohr University of Agadir, B.P 271 83000 Taroudant Morocco
| | - Gérald Guillaumet
- Institute of Organic and Analytical Chemistry University of Orleans, UMR CNRS 7311, BP 6759 45067 Orleans Cedex 2 France
- Euromed Research Centre School of Engineering in Biomedical and Biotechnology Euromed University of Fes (UEMF) Route de Meknès 30000 Fez Morocco
| | - Saïd El Kazzouli
- Euromed Research Centre School of Engineering in Biomedical and Biotechnology Euromed University of Fes (UEMF) Route de Meknès 30000 Fez Morocco
| |
Collapse
|
15
|
Brkic S, Meyer SC. Challenges and Perspectives for Therapeutic Targeting of Myeloproliferative Neoplasms. Hemasphere 2021; 5:e516. [PMID: 33403355 PMCID: PMC7773330 DOI: 10.1097/hs9.0000000000000516] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are hematopoietic stem cell disorders with dysregulated myeloid blood cell production and propensity for transformation to acute myeloid leukemia, thrombosis, and bleeding. Acquired mutations in JAK2, MPL, and CALR converge on hyperactivation of Janus kinase 2 (JAK2) signaling as a central feature of MPN. Accordingly, JAK2 inhibitors have held promise for therapeutic targeting. After the JAK1/2 inhibitor ruxolitinib, similar JAK2 inhibitors as fedratinib are entering clinical use. While patients benefit with reduced splenomegaly and symptoms, disease-modifying effects on MPN clone size and clonal evolution are modest. Importantly, response to ruxolitinib may be lost upon treatment suggesting the MPN clone acquires resistance. Resistance mutations, as seen with other tyrosine kinase inhibitors, have not been described in MPN patients suggesting that functional processes reactivate JAK2 signaling. Compensatory signaling, which bypasses JAK2 inhibition, and other processes contribute to intrinsic resistance of MPN cells restricting efficacy of JAK2 inhibition overall. Combinations of JAK2 inhibition with pegylated interferon-α, a well-established therapy of MPN, B-cell lymphoma 2 inhibition, and others are in clinical development with the potential to enhance therapeutic efficacy. Novel single-agent approaches targeting other molecules than JAK2 are being investigated clinically. Special focus should be placed on myelofibrosis patients with anemia and thrombocytopenia, a delicate patient population at high need for options. The extending range of new treatment approaches will increase the therapeutic options for MPN patients. This calls for concomitant improvement of our insight into MPN biology to inform tailored therapeutic strategies for individual MPN patients.
Collapse
Affiliation(s)
- Sime Brkic
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Sara C. Meyer
- Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
- Division of Hematology, University Hospital Basel, Switzerland
| |
Collapse
|
16
|
Development of JAK inhibitors for the treatment of immune-mediated diseases: kinase-targeted inhibitors and pseudokinase-targeted inhibitors. Arch Pharm Res 2020; 43:1173-1186. [PMID: 33161563 DOI: 10.1007/s12272-020-01282-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2020] [Indexed: 12/16/2022]
Abstract
JAKs are a family of intracellular tyrosine kinases consisting of four members, JAK1, JAK2, JAK3, and TYK2. They are key components of the JAK-STAT pathway that transmit signals of many cytokines involved in the pathogenesis of numerous immune-mediated diseases and have been major molecular targets in developing new drugs for the treatment of such diseases. Some small-molecule inhibitors of JAKs have been approved by the FDA for rheumatoid arthritis, psoriatic arthritis, and inflammatory bowel disease. Now, newer JAK inhibitors with isoform-selectivity among the four different JAKs are being developed, with the aim of improving clinical outcomes compared with earlier developed drugs with pan-JAK inhibition. Most of these selective inhibitors target the kinase domains of JAKs, functioning through the traditional inhibition mode of kinases; but recently those that target their pseudokinase domains, allosterically inhibiting the enzymes, have been under development. In this review, key characteristics, efficacy, and safety of FDA-approved and representative drugs in late stages of development are briefly described in order to provide clinical implications with respect to JAK inhibitor selectivity and future development perspectives. The recent development of pseudokinase-targeted inhibitors of JAKs is also included.
Collapse
|
17
|
Allosterische Kinaseinhibitoren – Erwartungen und Chancen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Brosseau JP, Liao CP, Le LQ. Translating current basic research into future therapies for neurofibromatosis type 1. Br J Cancer 2020; 123:178-186. [PMID: 32439933 PMCID: PMC7374719 DOI: 10.1038/s41416-020-0903-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/25/2020] [Accepted: 05/01/2020] [Indexed: 12/12/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumour syndrome that predisposes to benign and malignant tumours originating from neural crest cells. Biallelic inactivation of the tumour-suppressor gene NF1 in glial cells in the skin, along a nerve plexus or in the brain results in the development of benign tumours: cutaneous neurofibroma, plexiform neurofibroma and glioma, respectively. Despite more than 40 years of research, only one medication was recently approved for treatment of plexiform neurofibroma and no drugs have been specifically approved for the management of other tumours. Work carried out over the past several years indicates that inhibiting different cellular signalling pathways (such as Hippo, Janus kinase/signal transducer and activator of transcription, mitogen-activated protein kinase and those mediated by sex hormones) in tumour cells or targeting cells in the microenvironment (nerve cells, macrophages, mast cells and T cells) might benefit NF1 patients. In this review, we outline previous strategies aimed at targeting these signalling pathways or cells in the microenvironment, agents that are currently in clinical trials, and the latest advances in basic research that could culminate in the development of novel therapeutics for patients with NF1.
Collapse
Affiliation(s)
- Jean-Philippe Brosseau
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Department of Biochemistry and Functional Genomics, University of Sherbrooke, Sherbrooke, QC, J1E 4K8, Canada.
| | - Chung-Ping Liao
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA
| | - Lu Q Le
- Department of Dermatology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- UTSW Comprehensive Neurofibromatosis Clinic, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390-9069, USA.
| |
Collapse
|
19
|
Lu X, Smaill JB, Ding K. New Promise and Opportunities for Allosteric Kinase Inhibitors. Angew Chem Int Ed Engl 2020; 59:13764-13776. [PMID: 31889388 DOI: 10.1002/anie.201914525] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Indexed: 12/27/2022]
Abstract
Drugs that function through allosteric inhibition of kinase signaling represent a promising approach for the targeted discovery of therapeutics. The majority of developed allosteric kinase inhibitors are characterized as type III and IV inhibitors that show good kinome selectivity but generally lack the subtype selectivity of same kinase family. Recently allosteric inhibitors have been developed that bind outside the catalytic kinase domain with high selectivity for specific kinase subtypes. Allosteric inhibitors that bind to the pseudokinase domain of pseudokinase or the extracellular domain of receptor tyrosine kinases are reviewed. We also review recent developments in the field of allosteric kinase inhibitors including examples of proteolysis targeting chimeras, and highlight the unique binding modes for each type of inhibitors and address future opportunities in this area.
Collapse
Affiliation(s)
- Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Jeff B Smaill
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of PR China, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| |
Collapse
|
20
|
Qin J, Shen X, Zhang J, Jia D. Allosteric inhibitors of the STAT3 signaling pathway. Eur J Med Chem 2020; 190:112122. [DOI: 10.1016/j.ejmech.2020.112122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
|
21
|
Abstract
Pseudokinases are members of the protein kinase superfamily but signal primarily through noncatalytic mechanisms. Many pseudokinases contribute to the pathologies of human diseases, yet they remain largely unexplored as drug targets owing to challenges associated with modulation of their biological functions. Our understanding of the structure and physiological roles of pseudokinases has improved substantially over the past decade, revealing intriguing similarities between pseudokinases and their catalytically active counterparts. Pseudokinases often adopt conformations that are analogous to those seen in catalytically active kinases and, in some cases, can also bind metal cations and/or nucleotides. Several clinically approved kinase inhibitors have been shown to influence the noncatalytic functions of active kinases, providing hope that similar properties in pseudokinases could be pharmacologically regulated. In this Review, we discuss known roles of pseudokinases in disease, their unique structural features and the progress that has been made towards developing pseudokinase-directed therapeutics.
Collapse
|
22
|
Raivola J, Haikarainen T, Silvennoinen O. Characterization of JAK1 Pseudokinase Domain in Cytokine Signaling. Cancers (Basel) 2019; 12:cancers12010078. [PMID: 31892268 PMCID: PMC7016850 DOI: 10.3390/cancers12010078] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/31/2022] Open
Abstract
The Janus kinase-signal transducer and activator of transcription protein (JAK-STAT) pathway mediates essential biological functions from immune responses to haematopoiesis. Deregulated JAK-STAT signaling causes myeloproliferative neoplasms, leukaemia, and lymphomas, as well as autoimmune diseases. Thereby JAKs have gained significant relevance as therapeutic targets. However, there is still a clinical need for better JAK inhibitors and novel strategies targeting regions outside the conserved kinase domain have gained interest. In-depth knowledge about the molecular details of JAK activation is required. For example, whether the function and regulation between receptors is conserved remains an open question. We used JAK-deficient cell-lines and structure-based mutagenesis to study the function of JAK1 and its pseudokinase domain (JH2) in cytokine signaling pathways that employ JAK1 with different JAK heterodimerization partner. In interleukin-2 (IL-2)-induced STAT5 activation JAK1 was dominant over JAK3 but in interferon-γ (IFNγ) and interferon-α (IFNα) signaling both JAK1 and heteromeric partner JAK2 or TYK2 were both indispensable for STAT1 activation. Moreover, IL-2 signaling was strictly dependent on both JAK1 JH1 and JH2 but in IFNγ signaling JAK1 JH2 rather than kinase activity was required for STAT1 activation. To investigate the regulatory function, we focused on two allosteric regions in JAK1 JH2, the ATP-binding pocket and the αC-helix. Mutating L633 at the αC reduced basal and cytokine induced activation of STAT in both JAK1 wild-type (WT) and constitutively activated mutant backgrounds. Moreover, biochemical characterization and comparison of JH2s let us depict differences in the JH2 ATP-binding and strengthen the hypothesis that de-stabilization of the domain disturbs the regulatory JH1-JH2 interaction. Collectively, our results bring mechanistic understanding about the function of JAK1 in different receptor complexes that likely have relevance for the design of specific JAK modulators.
Collapse
Affiliation(s)
- Juuli Raivola
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
| | - Teemu Haikarainen
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
| | - Olli Silvennoinen
- Faculty of Medicine and Life Sciences, Tampere University, 33014 Tampere, Finland; (J.R.); (T.H.)
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014 Helsinki, Finland
- Fimlab Laboratories, Fimlab, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
23
|
Wöss K, Simonović N, Strobl B, Macho-Maschler S, Müller M. TYK2: An Upstream Kinase of STATs in Cancer. Cancers (Basel) 2019; 11:E1728. [PMID: 31694222 PMCID: PMC6896190 DOI: 10.3390/cancers11111728] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
In this review we concentrate on the recent findings describing the oncogenic potential of the protein tyrosine kinase 2 (TYK2). The overview on the current understanding of TYK2 functions in cytokine responses and carcinogenesis focusses on the activation of the signal transducers and activators of transcription (STAT) 3 and 5. Insight gained from loss-of-function (LOF) gene-modified mice and human patients homozygous for Tyk2/TYK2-mutated alleles established the central role in immunological and inflammatory responses. For the description of physiological TYK2 structure/function relationships in cytokine signaling and of overarching molecular and pathologic properties in carcinogenesis, we mainly refer to the most recent reviews. Dysregulated TYK2 activation, aberrant TYK2 protein levels, and gain-of-function (GOF) TYK2 mutations are found in various cancers. We discuss the molecular consequences thereof and briefly describe the molecular means to counteract TYK2 activity under (patho-)physiological conditions by cellular effectors and by pharmacological intervention. For the role of TYK2 in tumor immune-surveillance we refer to the recent Special Issue of Cancers "JAK-STAT Signaling Pathway in Cancer".
Collapse
Affiliation(s)
| | | | | | | | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (K.W.); (N.S.); (B.S.); (S.M.-M.)
| |
Collapse
|
24
|
Wrobleski ST, Moslin R, Lin S, Zhang Y, Spergel S, Kempson J, Tokarski JS, Strnad J, Zupa-Fernandez A, Cheng L, Shuster D, Gillooly K, Yang X, Heimrich E, McIntyre KW, Chaudhry C, Khan J, Ruzanov M, Tredup J, Mulligan D, Xie D, Sun H, Huang C, D’Arienzo C, Aranibar N, Chiney M, Chimalakonda A, Pitts WJ, Lombardo L, Carter PH, Burke JR, Weinstein DS. Highly Selective Inhibition of Tyrosine Kinase 2 (TYK2) for the Treatment of Autoimmune Diseases: Discovery of the Allosteric Inhibitor BMS-986165. J Med Chem 2019; 62:8973-8995. [DOI: 10.1021/acs.jmedchem.9b00444] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Moslin R, Zhang Y, Wrobleski ST, Lin S, Mertzman M, Spergel S, Tokarski JS, Strnad J, Gillooly K, McIntyre KW, Zupa-Fernandez A, Cheng L, Sun H, Chaudhry C, Huang C, D'Arienzo C, Heimrich E, Yang X, Muckelbauer JK, Chang C, Tredup J, Mulligan D, Xie D, Aranibar N, Chiney M, Burke JR, Lombardo L, Carter PH, Weinstein DS. Identification of N-Methyl Nicotinamide and N-Methyl Pyridazine-3-Carboxamide Pseudokinase Domain Ligands as Highly Selective Allosteric Inhibitors of Tyrosine Kinase 2 (TYK2). J Med Chem 2019; 62:8953-8972. [PMID: 31314518 DOI: 10.1021/acs.jmedchem.9b00443] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As a member of the Janus (JAK) family of nonreceptor tyrosine kinases, TYK2 plays an important role in mediating the signaling of pro-inflammatory cytokines including IL-12, IL-23, and type 1 interferons. The nicotinamide 4, identified by a SPA-based high-throughput screen targeting the TYK2 pseudokinase domain, potently inhibits IL-23 and IFNα signaling in cellular assays. The described work details the optimization of this poorly selective hit (4) to potent and selective molecules such as 47 and 48. The discoveries described herein were critical to the eventual identification of the clinical TYK2 JH2 inhibitor (see following report in this issue). Compound 48 provided robust inhibition in a mouse IL-12-induced IFNγ pharmacodynamic model as well as efficacy in an IL-23 and IL-12-dependent mouse colitis model. These results demonstrate the ability of TYK2 JH2 domain binders to provide a highly selective alternative to conventional TYK2 orthosteric inhibitors.
Collapse
|
26
|
Al-Barghouthy EY, Abuhammad A, Taha MO. QSAR-guided pharmacophore modeling and subsequent virtual screening identify novel TYK2 inhibitor. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02377-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine 2019; 118:48-63. [DOI: 10.1016/j.cyto.2018.03.041] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 01/12/2023]
|
28
|
Discovery of an EGFR tyrosine kinase inhibitor from Ilex latifolia in breast cancer therapy. Bioorg Med Chem Lett 2019; 29:1282-1290. [PMID: 30962086 DOI: 10.1016/j.bmcl.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Deficient signaling of the EGFR and other receptor tyrosine kinases in humans is associated with diseases such as cancer. Some EGFR tyrosine kinase inhibitors have become a new class of targeted therapeutic agents in the last years. We found that 27-O-p-(E)-coumaroyl ursolic acid (27-CAUA) had a strong activity of apoptosis according to preparation by screening for a series of Ilex latifolia products. 27-CAUA inhibited EGFR kinase system to lead to inactivation of PI3K/AKT/mTOR and Ras-Raf-MEK-ERK signal pathways which implicated in the proliferation and survival of tumor cells. These findings suggested that 27-CAUA was an orally active, selective epidermal growth factor receptor-tyrosine kinase inhibitor which could lead to beneficial manifestations in the clinic.
Collapse
|
29
|
Liu C, Lin J, Moslin R, Tokarski JS, Muckelbauer J, Chang C, Tredup J, Xie D, Park H, Li P, Wu DR, Strnad J, Zupa-Fernandez A, Cheng L, Chaudhry C, Chen J, Chen C, Sun H, Elzinga P, D’arienzo C, Gillooly K, Taylor TL, McIntyre KW, Salter-Cid L, Lombardo LJ, Carter PH, Aranibar N, Burke JR, Weinstein DS. Identification of Imidazo[1,2- b]pyridazine Derivatives as Potent, Selective, and Orally Active Tyk2 JH2 Inhibitors. ACS Med Chem Lett 2019; 10:383-388. [PMID: 30891145 DOI: 10.1021/acsmedchemlett.9b00035] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/21/2019] [Indexed: 01/12/2023] Open
Abstract
In sharp contrast to a previously reported series of 6-anilino imidazopyridazine based Tyk2 JH2 ligands, 6-((2-oxo-N1-substituted-1,2-dihydropyridin-3-yl)amino)imidazo[1,2-b]pyridazine analogs were found to display dramatically improved metabolic stability. The N1-substituent on 2-oxo-1,2-dihydropyridine ring can be a variety of alkyl, aryl, and heteroaryl groups, but among them, 2-pyridyl provided much enhanced Caco-2 permeability, attributed to its ability to form intramolecular hydrogen bonds. Further structure-activity relationship studies at the C3 position led to the identification of highly potent and selective Tyk2 JH2 inhibitor 6, which proved to be highly effective in inhibiting IFNγ production in a rat pharmacodynamics model and fully efficacious in a rat adjuvant arthritis model.
Collapse
Affiliation(s)
- Chunjian Liu
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James Lin
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Ryan Moslin
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - John S. Tokarski
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jodi Muckelbauer
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - ChiehYing Chang
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey Tredup
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dianlin Xie
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Hyunsoo Park
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Peng Li
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Dauh-Rurng Wu
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Joann Strnad
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Adriana Zupa-Fernandez
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Lihong Cheng
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Charu Chaudhry
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jing Chen
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Cliff Chen
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Huadong Sun
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Paul Elzinga
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Celia D’arienzo
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kathleen Gillooly
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Tracy L. Taylor
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kim W. McIntyre
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Luisa Salter-Cid
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Louis J. Lombardo
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Percy H. Carter
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Nelly Aranibar
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - James R. Burke
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - David S. Weinstein
- Research & Development, Bristol-Myers Squibb, P.O. Box 5400, Princeton, New Jersey 08543, United States
| |
Collapse
|
30
|
Colombano G, Caldwell JJ, Matthews TP, Bhatia C, Joshi A, McHardy T, Mok NY, Newbatt Y, Pickard L, Strover J, Hedayat S, Walton MI, Myers SM, Jones AM, Saville H, McAndrew C, Burke R, Eccles SA, Davies FE, Bayliss R, Collins I. Binding to an Unusual Inactive Kinase Conformation by Highly Selective Inhibitors of Inositol-Requiring Enzyme 1α Kinase-Endoribonuclease. J Med Chem 2019; 62:2447-2465. [PMID: 30779566 PMCID: PMC6437697 DOI: 10.1021/acs.jmedchem.8b01721] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 12/19/2022]
Abstract
A series of imidazo[1,2- b]pyridazin-8-amine kinase inhibitors were discovered to allosterically inhibit the endoribonuclease function of the dual kinase-endoribonuclease inositol-requiring enzyme 1α (IRE1α), a key component of the unfolded protein response in mammalian cells and a potential drug target in multiple human diseases. Inhibitor optimization gave compounds with high kinome selectivity that prevented endoplasmic reticulum stress-induced IRE1α oligomerization and phosphorylation, and inhibited endoribonuclease activity in human cells. X-ray crystallography showed the inhibitors to bind to a previously unreported and unusually disordered conformation of the IRE1α kinase domain that would be incompatible with back-to-back dimerization of the IRE1α protein and activation of the endoribonuclease function. These findings increase the repertoire of known IRE1α protein conformations and can guide the discovery of highly selective ligands for the IRE1α kinase site that allosterically inhibit the endoribonuclease.
Collapse
Affiliation(s)
- Giampiero Colombano
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - John J. Caldwell
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Thomas P. Matthews
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Chitra Bhatia
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, U.K.
| | - Amar Joshi
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, U.K.
| | - Tatiana McHardy
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Ngai Yi Mok
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Yvette Newbatt
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Lisa Pickard
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Jade Strover
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Somaieh Hedayat
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Michael I. Walton
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Stephanie M. Myers
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Alan M. Jones
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Harry Saville
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Craig McAndrew
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Rosemary Burke
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Suzanne A. Eccles
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Faith E. Davies
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| | - Richard Bayliss
- Department
of Molecular and Cell Biology, University
of Leicester, Leicester LE1 7RH, U.K.
- School
of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Ian Collins
- Cancer
Research UK Cancer Therapeutics Unit and Division of Molecular Pathology, The Institute of Cancer Research, London SW7 3RP, U.K.
| |
Collapse
|
31
|
He X, Chen X, Zhang H, Xie T, Ye XY. Selective Tyk2 inhibitors as potential therapeutic agents: a patent review (2015-2018). Expert Opin Ther Pat 2019; 29:137-149. [PMID: 30621465 DOI: 10.1080/13543776.2019.1567713] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Tyrosine kinase 2 (Tyk2) is a non-receptor tyrosine-protein kinase, an enzyme that in humans is encoded by the TYK2 gene. Tyk2, together with three other family subtypes, namely, Jak1, Jak2, and Jak3, belong to the JAK family. Before 2014, far more publications and patents appeared in public domain attributing to the development of selective Jak2 and Jak3 inhibitors than those for selective Tyk2 and Jak1 inhibitors. AREAS COVERED This review sought to give an overview of patents related to small molecule selective Tyk2 inhibitors published from 2015 to 2018. The article also covers clinical activities of small molecule selective Tyk2 inhibitors in recent years. EXPERT OPINION As a key component of the JAK-STAT signaling pathway, Tyk2 regulates INFα, IL12, and IL23. Selective inhibition of Tyk2 can provide pharmacological benefits in the treatment of many diseases such as psoriasis, systemic lupus erythematosus (SLE), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), cancer, and diabetes. The selectivity against other Jak family subtypes (such as Jak2) is crucial in order to minimize the potential side effects and to maximize the desired pharmacological effects. In this context, this review of recent selective Tyk2 inhibitor patents may prove valid, interesting, and promising within the therapeutic paradigm.
Collapse
Affiliation(s)
- Xingrui He
- a Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,b Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,c Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine , Hangzhou Normal University , Hangzhou, Zhejiang , China
| | - Xiabin Chen
- a Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,b Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,c Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine , Hangzhou Normal University , Hangzhou, Zhejiang , China
| | - Hancheng Zhang
- d Drug Discovery , Hangzhou Innogate Pharma Co., Ltd , Hangzhou , Zhejiang Province , China
| | - Tian Xie
- a Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,b Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,c Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine , Hangzhou Normal University , Hangzhou, Zhejiang , China
| | - Xiang-Yang Ye
- a Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,b Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou Normal University , Hangzhou , Zhejiang Province , China.,c Holistic Integrative Pharmacy Institutes (HIPI), School of Medicine , Hangzhou Normal University , Hangzhou, Zhejiang , China
| |
Collapse
|
32
|
Raivola J, Hammarén HM, Virtanen AT, Bulleeraz V, Ward AC, Silvennoinen O. Hyperactivation of Oncogenic JAK3 Mutants Depend on ATP Binding to the Pseudokinase Domain. Front Oncol 2018; 8:560. [PMID: 30560087 PMCID: PMC6287396 DOI: 10.3389/fonc.2018.00560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 01/21/2023] Open
Abstract
Janus kinase 3 (JAK3) tyrosine kinase has a central role in the control of lymphopoiesis, and mutations in JAK3 can lead to either severe combined immunodeficiency or leukemia and lymphomas. JAK3 associates with the common gamma chain (γc) receptor and functions in a heteromeric signaling pair with JAK1. In IL-2 signaling JAK1 is the effector kinase for STAT5 phosphorylation but the precise molecular regulatory mechanisms of JAK1 and JAK3 and their individual domains are not known. The pseudokinase domain (JAK homology 2, JH2) of JAK3 is of particular interest as approximately half of clinical JAK3 mutations cluster into it. In this study, we investigated the role of JH2s of JAK1 and JAK3 in IL-2R signaling and show that STAT5 activation requires both JH1 and JH2 of JAK1, while both JH1 and JH2 in JAK3 are specifically required for the cytokine-induction of cellular signaling. Characterization of recombinant JAK3 JH2 in thermal shift assay shows an unstable protein domain, which is strongly stabilized by ATP binding. Unexpectedly, nucleotide binding to JAK3 JH2 was found to be cation-independent. JAK3 JH2 showed higher nucleotide binding affinity in MANT-ATP and fluorescent polarization competition assays compared to the other JAK JH2s. Analysis of the functional role of ATP binding in JAK3 JH2 in cells and in zebrafish showed that disruption of ATP binding suppresses ligand-independent activation of clinical JAK3 gain-of-function mutations residing in either JH2 or JH1 but does not inhibit constitutive activation of oncogenic JAK1. ATP-binding site mutations in JAK3 JH2 do not, however, abrogate normal IL-2 signaling making them distinct from JH2 deletion or kinase-deficient JAK3. These findings underline the importance of JAK3 JH2 for cellular signaling in both ligand-dependent and in gain-of-function mutation-induced activation. Furthermore, they identify the JH2 ATP-binding site as a key regulatory region for oncogenic JAK3 signaling, and thus a potential target for therapeutic modulation.
Collapse
Affiliation(s)
- Juuli Raivola
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Henrik M Hammarén
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Anniina T Virtanen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Vilasha Bulleeraz
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, VIC, Australia
| | - Olli Silvennoinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland.,Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
33
|
Bryan MC, Rajapaksa NS. Kinase Inhibitors for the Treatment of Immunological Disorders: Recent Advances. J Med Chem 2018; 61:9030-9058. [DOI: 10.1021/acs.jmedchem.8b00667] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marian C. Bryan
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Naomi S. Rajapaksa
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
34
|
Hubbard SR. Mechanistic Insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne) 2017; 8:361. [PMID: 29379470 PMCID: PMC5770812 DOI: 10.3389/fendo.2017.00361] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
JAK2 is a member of the Janus kinase (JAKs) family of non-receptor protein tyrosine kinases, which includes JAK1-3 and TYK2. JAKs serve as the cytoplasmic signaling components of cytokine receptors and are activated through cytokine-mediated trans-phosphorylation, which leads to receptor phosphorylation and recruitment and phosphorylation of signal transducer and activator of transcription (STAT) proteins. JAKs are unique among tyrosine kinases in that they possess a pseudokinase domain, which is just upstream of the C-terminal tyrosine kinase domain. A wealth of biochemical and clinical data have established that the pseudokinase domain of JAKs is crucial for maintaining a low basal (absence of cytokine) level of tyrosine kinase activity. In particular, gain-of-function mutations in the JAK genes, most frequently, V617F in the pseudokinase domain of JAK2, have been mapped in patients with blood disorders, including myeloproliferative neoplasms and leukemias. Recent structural and biochemical studies have begun to decipher the molecular mechanisms that maintain the basal, low-activity state of JAKs and that, via mutation, lead to constitutive activity and disease. This review will examine these mechanisms and describe how this knowledge could potentially inform drug development efforts aimed at obtaining a mutant (V617F)-selective inhibitor of JAK2.
Collapse
Affiliation(s)
- Stevan R. Hubbard
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, United States
- *Correspondence: Stevan R. Hubbard,
| |
Collapse
|