1
|
Zou W, Zhang Y, Zhang X, Zhang G, Li X, Jin C, Cao Z. Interactions of monolayer molybdenum disulfide sheets with metalloid antimony in aquatic environment: Adsorption, transformation, and joint toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171937. [PMID: 38527534 DOI: 10.1016/j.scitotenv.2024.171937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The tremendous application potentiality of transitional metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS2) nanosheets, will unavoidably lead to increasing release into the environment, which could influence the fate and toxicity of co-existed contaminants. The present study discovered that 59.8 % of trivalent antimony [Sb(III)] was transformed by MoS2 to pentavalent Sb [Sb(V)] in aqueous solutions under light illumination, which was due to hole oxidation on the nanosheet surfaces. A synergistic toxicity between MoS2 and Sb(III, V) to algae (Chlorella vulgaris) was observed, as demonstrated by the lower median-effect concentrations of MoS2 + Sb(III)/Sb(V) (13.1 and 20.9 mg/L, respectively) than Sb(III)/Sb(V) (38.8 and 92.5 mg/L, respectively) alone. Particularly, MoS2 at noncytotoxic doses notably increased the bioaccumulation of Sb(III, V) in algae, causing aggravated oxidative damage, photosynthetic inhibition, and structural alterations. Metabolomics indicated that oxidative stress and membrane permeabilization were primarily associated with down-regulated amino acids involved in glutathione biosynthesis and unsaturated fatty acids. MoS2 co-exposure remarkably decreased the levels of thiol antidotes (glutathione and phytochelatins) and aggravated the inhibition on energy metabolism and ATP synthesis, compromising the Sb(III, V) detoxification and efflux. Additionally, extracellular P was captured by the nanosheets, also contributing to the uptake of Sb(V). Our findings emphasized the nonignorability of TMDs even at environmental levels in affecting the ecological hazard of metalloids, providing insight into comprehensive safety assessment of TMDs.
Collapse
Affiliation(s)
- Wei Zou
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Yu Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xingli Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China.
| | - Guoqing Zhang
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Xiaokang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Caixia Jin
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Barber-Lluch E, Nieto-Cid M, Santos-Echeandía J, Sánchez-Marín P. Effect of dissolved organic matter on copper bioavailability to a coastal dinoflagellate at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165989. [PMID: 37536593 DOI: 10.1016/j.scitotenv.2023.165989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
The speciation and bioavailability of copper (Cu) in the marine environment are affected by the presence of dissolved organic matter (DOM). Previous studies conducted at dissolved Cu concentrations >100 nM confirmed that Cu bioavailability depends on the concentration of labile Cu, as measured by anodic stripping voltammetry (ASV), which aligns with the expectations of the biotic ligand model (BLM). However, ambient Cu concentrations in coastal waters are generally lower, ranging between 1 and 80 nM, and the effect of DOM on the bioavailability of Cu to marine organisms has not been tested within that range of Cu concentrations. The present study aims to assess the impact of two types of DOM, a commercially available fulvic acid, and marine DOM extracted by ultrafiltration, on Cu bioavailability to phytoplankton using short-term 65Cu internalisation by the marine dinoflagellate Prorocentrum micans. Results showed that Cu internalisation decreases with DOM additions as expected according to the BLM and in agreement with ASV measurements of labile Cu, at the highest tested Cu concentration (100 nM). On the contrary, at a lower Cu concentration (20 nM), organic complexes appear to be partially bioavailable, thereby challenging the general applicability of the BLM model at environmentally relevant concentrations in coastal areas.
Collapse
Affiliation(s)
- Esther Barber-Lluch
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, s/n, 36390 Vigo, Spain
| | - Mar Nieto-Cid
- Centro Oceanográfico de A Coruña, Instituto Español de Oceanografía (IEO-CSIC), Paseo marítimo alcalde Francisco Vázquez, 10, 15001 A Coruña, Spain; Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Juan Santos-Echeandía
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, s/n, 36390 Vigo, Spain
| | - Paula Sánchez-Marín
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Subida a Radio Faro, s/n, 36390 Vigo, Spain.
| |
Collapse
|
3
|
Kochoni E, Aharchaou I, Ohlund L, Rosabal M, Sleno L, Fortin C. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition. Metallomics 2022; 14:6582230. [PMID: 35524697 DOI: 10.1093/mtomcs/mfac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 04/14/2022] [Indexed: 11/13/2022]
Abstract
Copper (Cu) is a redox-active transition element critical to various metabolic processes. These functions are accomplished in tandem with Cu binding ligands, mainly proteins. The main goal of this work was to understand the mechanisms that govern the intracellular fate of Cu in the freshwater green alga, Chlamydomonas reinhardtii, and more specifically to understand the mechanisms underlying Cu detoxification by algal cells in low-Fe conditions. We show that Cu accumulation was up to 51-fold greater for algae exposed to Cu in low-Fe medium as compared to the replete-Fe growth medium. Using the stable isotope 65Cu as a tracer, we studied the subcellular distribution of Cu within the various cell compartments of C. reinhardtii. These data were coupled with metallomic and proteomic approaches to identify potential Cu-binding ligands in the heat-stable protein and peptide fractions of the cytosol. Cu was mostly found in the organelles (78%), and in the heat-stable proteins and peptides (21%) fractions. The organelle fraction appeared to also be the main target compartment of Cu accumulation in Fe-depleted cells. As Fe levels in the medium were shown to influence Cu homeostasis, we found that C. reinhardtii can cope with this additional stress by utilizing different Cu-binding ligands. Indeed, in addition to expected Cu-binding ligands such as glutathione and phytochelatins, 25 proteins were detected that may also play a role in the Cu detoxification processes in C. reinhardtii. Our results shed new light on the coping mechanisms of C. reinhardtii when exposed to environmental conditions that induce high rates of Cu accumulation.
Collapse
Affiliation(s)
- Emeric Kochoni
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Imad Aharchaou
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Leanne Ohlund
- Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Maikel Rosabal
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département des Sciences biologiques, Université du Québec à Montréal (UQAM), 141 Avenue du Président-Kennedy, Montréal, QC, H2×1Y4, Canada
| | - Lekha Sleno
- EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,Département de Chimie, Université du Québec à Montréal (UQAM), 2101, rue Jeanne-Mance, Montréal, QC, H2×2J6, Canada
| | - Claude Fortin
- Institut national de la recherche scientifique, Centre Eau Terre Environnement, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada.,EcotoQ, 490, rue de la Couronne, Québec, QC, G1K 9A9, Canada
| |
Collapse
|
4
|
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. THE NEW PHYTOLOGIST 2021; 230:601-611. [PMID: 33449358 PMCID: PMC8048539 DOI: 10.1111/nph.17190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/23/2020] [Indexed: 05/12/2023]
Abstract
The (maximum) growth rate (µmax ) hypothesis predicts that cellular and tissue phosphorus (P) concentrations should increase with increasing growth rate, and RNA should also increase as most of the P is required to make ribosomes. Using published data, we show that though there is a strong positive relationship between the µmax of all photosynthetic organisms and their P content (% dry weight), leading to a relatively constant P productivity, the relationship with RNA content is more complex. In eukaryotes there is a strong positive relationship between µmax and RNA content expressed as % dry weight, and RNA constitutes a relatively constant 25% of total P. In prokaryotes the rRNA operon copy number is the important determinant of the amount of RNA present in the cell. The amount of phospholipid expressed as % dry weight increases with increasing µmax in microalgae. The relative proportions of each of the five major P-containing constituents is remarkably constant, except that the proportion of RNA is greater and phospholipids smaller in prokaryotic than eukaryotic photosynthetic organisms. The effect of temperature differences between studies was minor. The evidence for and against P-containing constituents other than RNA being involved with ribosome synthesis and functioning is discussed.
Collapse
Affiliation(s)
- T. A. V. Rees
- Leigh Marine LaboratoryInstitute of Marine ScienceUniversity of AucklandAuckland1142New Zealand
| | - John A. Raven
- Division of Plant ScienceUniversity of Dundee at the James Hutton InstituteInvergowrie, Dundee,DD2 5DAUK
- Climate Change ClusterFaculty of ScienceUniversity of TechnologySydney, UltimoNSW2007Australia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWA6009Australia
| |
Collapse
|
5
|
Carafa R, Lorenzo NE, Llopart JS, Kumar V, Schuhmacher M. Characterization of river biofilm responses to the exposure with heavy metals using a novel micro fluorometer biosensor. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105732. [PMID: 33385847 DOI: 10.1016/j.aquatox.2020.105732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 11/18/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
River biofilms are a suitable indicator of toxic stress in aquatic ecosystems commonly exposed to various anthropogenic pollutants from industrial, domestic, and agricultural sources. Among these pollutants, heavy metals are of particular concern as they are known to interfere with various physiological processes of river biofilm, directly or indirectly related to photosynthetic performance. Nevertheless, only limited toxicological data are available on the mechanisms and toxicodynamics of heavy metals in biofilms. Pulse Amplitude Modulated (PAM) fluorometry is a rapid, non-disruptive, well-established technique to monitor toxic responses on photosynthetic performance, fluorescence-kinetics, and changes in yield in other non-photochemical processes. In this study, a new micro-PAM-sensor was tested to assess potential acute and chronic effects of heavy metals in river biofilm. Toxicity values across the three parameters considered in this study (photosynthetic yield YII, non-photochemical quenching NPQ, and basal fluorescence F0) were comparable, as determined EC50 were within one order of magnitude (EC50 ∼1-10 mg L-1). However, the stimulation of NPQ was more clearly associated with early acute effects, especially in illuminated samples, while depression of YII and F0 were more prevalent in chronic tests. These results have implications for the development of functional indicators for the biomonitoring of aquatic health, in particular for the use of river biofilm as a bioindicator of water quality. In conclusion, the approach proposed seems promising to characterize and monitor the exposure and impact of heavy metals on river periphyton communities. Furthermore, this study provides a fast, highly sensitive, inexpensive, and accurate laboratory method to test effects of pollutants on complex periphyton communities that can also give insights regarding the probable toxicological mechanisms of heavy metals on photosynthetic performance in the river biofilm.
Collapse
Affiliation(s)
- Roberta Carafa
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| | - Nora Exposito Lorenzo
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| | - Jordi Sierra Llopart
- University of Barcelona Faculty of Pharmacy, Soil Science Unit, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Vikas Kumar
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain; IISPV, Hospital Universitari Sant Joan de Reus, Universitat Rovira I Virgili, Avinguda del Doctor Josep Laporte, 2, 43204 Reus, Spain
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain
| |
Collapse
|
6
|
Rodgher S, Contador TM, Rocha GS, Espindola ELG. Effect of phosphorus on the toxicity of zinc to the microalga Raphidocelis subcapitata. AN ACAD BRAS CIENC 2020; 92:e20190050. [PMID: 33174910 DOI: 10.1590/0001-3765202020190050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/08/2019] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to evaluate the effect of phosphorus (P) on the toxicity of zinc (Zn) for the alga Raphidocelis subcapitata. P was provided in three concentrations: 2.3 x 10-4 mol L-1, 2.3 x 10-6 mol L-1 and 1.0 x 10-6 mol L-1. Algal cells were acclimated to the specific P concentrations before the start of the experiment. The chemical equilibrium software MINEQL+ 4.61 was employed to calculate the Zn2+ concentration. After acclimated, the algal cells were inoculated into media containing different Zn concentrations (0.09 x 10-6 mol L-1 to 9.08 x 10-6 mol L-1). The study showed that besides the reduction in algal growth rates, phosphorus had an important influence on the toxicity of zinc for microalga. The inhibitory Zn2+ concentration values for R. subcapitata were 2.74 x 10-6 mol L-1, 0.58 x 10-6 mol L-1 and 0.24 x 10-6 mol L-1 for the microalgae acclimated at P concentrations of 2.3 x 10-4 mol L-1, 2.3 x 10-6 mol L-1 and 1.0 x 10-6 mol L-1, respectively. Ecotoxicological studies should consider the interaction between metal concentrations and varying P values to provide realistic data of what occurs in phytoplankton communities in environments.
Collapse
Affiliation(s)
- Suzelei Rodgher
- Universidade Estadual Paulista/UNESP, Instituto de Ciência e Tecnologia (UNESP/SJC), Departamento de Engenharia Ambiental, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondensan, 500, 12247-016 São José dos Campos, SP, Brazil
| | - Thais M Contador
- Universidade Estadual Paulista/UNESP, Instituto de Ciência e Tecnologia (UNESP/SJC), Departamento de Engenharia Ambiental, Parque Tecnológico de São José dos Campos, Estrada Dr. Altino Bondensan, 500, 12247-016 São José dos Campos, SP, Brazil
| | - Giseli S Rocha
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, SP, Brazil
| | - Evaldo L G Espindola
- Universidade de São Paulo, Escola de Engenharia de São Carlos, Avenida Trabalhador São Carlense, 400, 13566-590 São Carlos, SP, Brazil
| |
Collapse
|
7
|
Wacey D, Sirantoine E, Saunders M, Strother P. 1 billion-year-old cell contents preserved in monazite and xenotime. Sci Rep 2019; 9:9068. [PMID: 31227773 PMCID: PMC6588638 DOI: 10.1038/s41598-019-45575-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 06/04/2019] [Indexed: 11/09/2022] Open
Abstract
Exceptional microfossil preservation, whereby sub-cellular details of an organism are conserved, remains extremely rare in the Precambrian rock record. We here report the first occurrence of exceptional cellular preservation by the rare earth element (REE) phosphates monazite and xenotime. This occurs in ~1 billion-year-old lake sediments where REEs were likely concentrated by local erosion and drainage into a closed lacustrine basin. Monazite and xenotime preferentially occur inside planktonic cells where they preserve spheroidal masses of plasmolyzed cell contents, and occasionally also membranous fragments. They have not been observed associated with cell walls or sheaths, which are instead preserved by clay minerals or francolite. REE phosphates are interpreted to be the earliest minerals precipitated in these cells after death, with their loci controlled by the micro-scale availability of inorganic phosphate (Pi) and REEs, probably sourced from polyphosphate granules within the cells. The strong affinity of REEs for phosphate and the insolubility of these minerals once formed means that REE phosphates have the potential for rapid preservation of cellular morphology after death and durability in the rock record. Hence, authigenic REE phosphates provide a promising new target in the search for the preservation of intra-cellular components of fossilised microorganisms.
Collapse
Affiliation(s)
- David Wacey
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.
| | - Eva Sirantoine
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,School of Earth Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Martin Saunders
- Centre for Microscopy Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia.,School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| | - Paul Strother
- Department of Earth and Environmental Sciences, Weston Observatory of Boston College, 381 Concord Road, Weston, MA, 02493, USA
| |
Collapse
|
8
|
Koppel DJ, Adams MS, King CK, Jolley DF. Chronic toxicity of an environmentally relevant and equitoxic ratio of five metals to two Antarctic marine microalgae shows complex mixture interactivity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1319-1330. [PMID: 30121486 DOI: 10.1016/j.envpol.2018.07.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/16/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
Metal contaminants are rarely present in the environment individually, yet environmental quality guidelines are derived from single-metal toxicity data. Few metal mixture studies have investigated more than binary mixtures and many are at unrealistically high effect concentrations to freshwater organisms. This study investigates the toxicity of five metals (Cd, Cu, Ni, Pb, and Zn) to the Antarctic marine microalgae Phaeocystis antarctica and Cryothecomonas armigera. Two mixtures were tested: (i) an equitoxic mixture of contaminants present at their single-metal EC10 concentrations, and (ii) an environmental mixture based on the ratio metal concentrations in a contaminated Antarctic marine bay. Observed toxicity, as chronic population growth rate inhibition, was compared to Independent Action (IA) and Concentration Addition (CA) predictions parameterised to use EC10 values. This allowed for the inclusion of metals with low toxicities. The biomarkers chlorophyll a fluorescence, cell size and complexity, and intracellular lipid concentrations were assessed to investigate possible mechanisms behind metal-mixture interactions. Both microalgae had similar responses to the equitoxic mixture: non-interactive by IA and antagonistic by CA. Toxicity from the environmental mixture was antagonistic by IA to P. antarctica; however, to C. armigera it was concentration-dependent with antagonism at low toxicities and synergism at high toxicities by both IA and CA. Differences in dissolved organic carbon production and detoxification mechanisms may be responsible for these responses and warrants further investigation. This study shows that mixture toxicity interactions can be ratio, species, and concentration dependent. The responses of the microalgae to different mixture ratios highlight the need to assess toxicity at environmentally realistic metal ratios. Parameterising IA and CA reference models to use EC10s allowed for the inclusion of metals at low effect concentrations, which may otherwise be ignored. Reference mixture models are generally suitable for predicting chronic toxicity of metals to these marine microalgae at environmentally realistic ratios and concentrations.
Collapse
Affiliation(s)
- Darren J Koppel
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia.
| | | | | | - Dianne F Jolley
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
9
|
Koppel DJ, Gissi F, Adams MS, King CK, Jolley DF. Chronic toxicity of five metals to the polar marine microalga Cryothecomonas armigera - Application of a new bioassay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:211-221. [PMID: 28544998 DOI: 10.1016/j.envpol.2017.05.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/15/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The paucity of ecotoxicological data for Antarctic organisms is impeding the development of region-specific water quality guidelines. To address this limitation, toxicity testing protocols need to be developed to account for the unique physiology of polar organisms, in particular their slow growth rates. In this study, a toxicity test protocol was developed to investigate the toxicities of five metals to the polar marine microalga Cryothecomonas armigera. The concentrations which reduced population growth rate by 10% (EC10) after 24-d for Cu, Pb, Zn, Cd and Ni were 21.6, 152, 366, 454, and 1220 μg.L-1, respectively. At the concentrations used in tests, only Cu and Ni were sufficiently toxic to enable the derivation of EC50 values of 63.1 and 1570 μg.L-1 respectively. All metals affected C. armigera's cellular physiology including cellular chlorophyll a fluorescence, cell complexity and size, and lipid concentrations. However, no changes to cellular membrane permeability were observed. The reduction in cellular lipid concentrations was a more sensitive indicator of toxicity for Cd, Ni, and Pb than growth rate inhibition, with EC10 values of 89, 894, and 11 μg.L-1, respectively, highlighting its potential as a sensitive measure of metal toxicity.
Collapse
Affiliation(s)
- Darren J Koppel
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia; CSIRO Land and Water, Lucas Heights, NSW, Australia; Australian Antarctic Division, Kingston, Tasmania, Australia.
| | | | | | | | - Dianne F Jolley
- School of Chemistry, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|