1
|
Xue W, Ling X, Li H, Liu Y, Zhao B, Yin Y. Highly Reversible "On-Off-On" Fluorescence Switch Governed by pH, Utilizing Bis(Benzimidazole) Derivatives with Varied Link Groups. J Fluoresc 2024:10.1007/s10895-024-03881-9. [PMID: 39186139 DOI: 10.1007/s10895-024-03881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
In this work, a series of dibenzimidazole derivatives 1-4, act as highly reversible colorimetric and fluorescent pH chemosensor, were designed and synthesized. Excellent reversible pH response of these sensors could be found by a specific pH change through obvious fluorescent color changes. The response is not affected by common cations (including Al3+, Cu2+, Ca2+, Cd2+, Co2+, Cr3+, Mg2+, Na+, K+, Ni2+, Pb2+ and Zn2+) and anions (including F-, Cl-, Br-, I-, ClO4-, H2PO4-, HSO4-, HCO3- and CH3COO-). Notably, these sensors can be reused more than 10 times without losing functionality. Unlike previous reports, the distinct properties of 1-4 are attributed to the varied link groups. Based on comprehensive experimental data and mechanistic analyses, it is concluded that sensors 1-4 are promising candidates for use as highly reversible "on-off-on" fluorescence switches under precise pH control.
Collapse
Affiliation(s)
- Weijian Xue
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China.
| | - Xiangyu Ling
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Huiqian Li
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Yuhang Liu
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Bing Zhao
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| | - Yanbing Yin
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Technology Innovation Center of Industrial Hemp for State Market Regulation, Institute of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, PR China
| |
Collapse
|
2
|
da Silva RB, Coelho FL, de Castro Silva Junior H, Germino JC, Atvars TDZ, Rodembusch FS, Duarte LGTA, Schneider PH. Organosulfur and Organoselenium Functionalized Benzimidazo[1,2-a]quinolines: From Experimental and Theoretical Photophysics to All-Solution-Processed OLEDs. J Fluoresc 2024; 34:1427-1439. [PMID: 37542587 DOI: 10.1007/s10895-023-03358-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/18/2023] [Indexed: 08/07/2023]
Abstract
In this study, we present the synthesis of benzimidazo[1,2-a] quinoline-based heterocycles bearing organosulfur and organoselenium moieties through transition-metal-free cascade reactions involving a sequential intermolecular aromatic nucleophilic substitution (SNAr). Both sulfur and selenium derivatives presented absorption maxima located around 355 nm related to spin and symmetry allowing electronic 1π-π* transitions, and fluorescence emission at the violet-blue region (~440 nm) with relatively large Stokes shift. The fluorescence quantum yields were slightly influenced by the chalcogen, with the sulfur derivatives presenting higher values than the selenium analogs. In this sense, the quantum yields for selenium derivatives can probably be affected by the intersystem crossing or even the photoinduced electron transfer process (PET). The compounds were successfully applied in all-solution-processed organic light-emitting diodes (OLEDs), where poly(9-vinylcarbazole) was employed as a dispersive matrix generating single-layer device cells. The obtained electroluminescence spectra are a sum of benzimidazo[1,2-a]quinolines and PVK singlet and/or triplet emissive states, according to their respective energy band gaps. The best diode rendered a luminance of 25.4 cd⋅m-2 with CIE (0.17, 0.14) and current efficiency of 20.2 mcd⋅A-1, a fivefold improvement in comparison to the PVK device that was explained by a 50-fold increase of charge-carriers electrical mobility.
Collapse
Affiliation(s)
- Rodrigo Borges da Silva
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - Felipe Lange Coelho
- Instituto de Química, Universidade Federal de Goiás, Av. Esperança s/n, Campus Samambaia, Goiânia, Goias, 74690-900, Brazil
| | - Henrique de Castro Silva Junior
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil
| | - José Carlos Germino
- Department of Physics and i3N - Institute for Nanostructures, Nanomodelling and Nanofabrication, University of Aveiro, Aveiro, 3810-193, Portugal
| | | | - Fabiano Severo Rodembusch
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| | | | - Paulo Henrique Schneider
- Instituto de Química, Departamento de Química Orgânica, Universidade Federal do Rio Grande do Sul (UFRGS), PO Box 15003, Porto Alegre, Rio Grande do Sul, 91501-970, Brazil.
| |
Collapse
|
3
|
Dasmahapatra U, Kumar CK, Das S, Subramanian PT, Murali P, Isaac AE, Ramanathan K, MM B, Chanda K. In-silico molecular modelling, MM/GBSA binding free energy and molecular dynamics simulation study of novel pyrido fused imidazo[4,5-c]quinolines as potential anti-tumor agents. Front Chem 2022; 10:991369. [PMID: 36247684 PMCID: PMC9566731 DOI: 10.3389/fchem.2022.991369] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
With an alarming increase in the number of cancer patients and a variety of tumors, it is high time for intensive investigation on more efficient and potent anti-tumor agents. Though numerous agents have enriched the literature, still there exist challenges, with the availability of different targets and possible cross-reactivity. Herein we have chosen the phosphoinositide 3-kinase (PI3K) as the target of interest and investigated the potential of pyrido fused imidazo[4,5-c]quinoline derivatives to bind strongly to the active site, thereby inhibiting the progression of various types of tumors. The AutoDock, Glide and the Prime-MM/GBSA analysis are used to execute the molecular docking investigation and validation for the designed compounds. The anti-tumor property evaluations were carried out by using PASS algorithm. Based on the GLIDE score, the binding affinity of the designed molecules towards the target PI3K was evaluated. The energetics associated with static interactions revealed 1j as the most potential candidate and the dynamic investigations including RMSD, RMSF, Rg, SASA and hydrogen bonding also supported the same through relative stabilization induced through ligand interactions. Subsequently, the binding free energy of the Wortmannin and 1j complex calculated using MM-PBSA analysis. Further evaluations with PASS prediction algorithm also supported the above results. The studies reveal that there is evidence for considering appropriate pyrido fused imidazo[4,5-c]quinoline compounds as potential anti-tumor agents.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Chitluri Kiran Kumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Prathima Thimma Subramanian
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai, Tamil Nadu, India
| | - Poornimaa Murali
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Arnold Emerson Isaac
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Karuppasamy Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Balamurali MM
- Division of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Chennai campus, Chennai, Tamil Nadu, India
- *Correspondence: Balamurali MM, ; Kaushik Chanda,
| | - Kaushik Chanda
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
- *Correspondence: Balamurali MM, ; Kaushik Chanda,
| |
Collapse
|
4
|
Boček I, Hranjec M, Vianello R. Imidazo[4,5-b]pyridine derived iminocoumarins as potential pH probes: Synthesis, spectroscopic and computational studies of their protonation equilibria. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
5
|
Spectroscopic and Computational Study of the Protonation Equilibria of Amino-Substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as Novel pH-Sensing Materials. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We present the synthesis and analytical, spectroscopic and computational characterization of three amino-substituted benzo[b]thieno[2,3-b]pyrido[1,2-a]benzimidazoles as novel pH probes with a potential application in pH-sensing materials. The designed systems differ in the number and position of the introduced isobutylamine groups on the pentacyclic aromatic core, which affects their photophysical and acid-base properties. The latter were investigated by UV-Vis absorption and fluorescence spectroscopies and interpreted by DFT calculations. An excellent agreement in experimentally measured and computationally determined pKa values and electronic excitations suggests that all systems are unionized at neutral pH, while their transition to monocationic forms occurs at pH values between 3 and 5, accompanied by substantial changes in spectroscopic responses that make them suitable for detecting acidic conditions in solutions. Computations identified imidazole imino nitrogen as the most favorable protonation site, further confirmed by analysis of perturbations in the chemical shifts of 1H and 13C NMR, and showed that the resulting basicity emerges as a compromise between the basicity-reducing effect of a nearby nitrile and a favorable contribution from the attached secondary amines. With this in mind, we designed a system with three amino substituents for which calculations predict pKa = 7.0 that we suggest as an excellent starting point for a potential pH sensor able to capture solution changes during the transition from neutral towards acidic media.
Collapse
|
6
|
Fedotov VV, Ulomsky EN, Belskaya NP, Eltyshev AK, Savateev KV, Voinkov EK, Lyapustin DN, Rusinov VL. Benzimidazoazapurines: Design, Synthesis, and Photophysical Study. J Org Chem 2021; 86:8319-8332. [PMID: 34098716 DOI: 10.1021/acs.joc.1c00760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A highly efficient approach to a new class of polycyclic 8-azapurines, benzo[4,5]imidazo[1,2-a][1,2,3]triazolo[4,5-e]pyrimidines (BITPs), with good photophysical characteristics is proposed. The approach comprises condensation of aminobenzimidazoles with 3-oxo-2-phenylazopropionitrile to form 3-(arylazo)benzo[4,5]imidazo[1,2-a]pyrimidine-4-amines, which undergo oxidative cyclization by the catalytic action of copper(II) acetate, resulting in BITPs with 73-84% yield. Spectral investigations demonstrated the fluorescent properties of BITPs, exhibiting good quantum yields (up to 60%) with maxima absorption at 379-399 and emission at 471-505 nm.
Collapse
Affiliation(s)
- Victor V Fedotov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Evgeny N Ulomsky
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Nataliya P Belskaya
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Alexander K Eltyshev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Konstantin V Savateev
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Egor K Voinkov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Daniil N Lyapustin
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| | - Vladimir L Rusinov
- Ural Federal University named after the first President of Russia B. N. Yeltsin, 19 Mira St., Yekaterinburg 620002, Russia
| |
Collapse
|
7
|
Kim A, Lee H, Yun D, Jung U, Kim KT, Kim C. Developing a new chemosensor targeting zinc ion based on two types of quinoline platform. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 241:118652. [PMID: 32623303 DOI: 10.1016/j.saa.2020.118652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
A chemosensor DQ (2-(2-(quinolin-2-yl)hydrazinyl)-N-(quinolin-8-yl)acetamide), based on two quinoline moieties, has been synthesized. DQ could detect zinc ion through fluorescence turn-on in aqueous media. Limit of detection was calculated as 0.07 μM, far lower than the standard of WHO for zinc ion. The practicality of DQ was demonstrated via the successful results of reusability with EDTA, easy detection on the test strip, and precise quantification in real water samples. Additionally, sensor DQ could be applied to bioimaging of zinc ion in zebrafish. Sensing process of zinc ion by DQ was studied through fluorescence and UV-Vis spectroscopy, 1H NMR titration, and ESI-mass spectrometry.
Collapse
Affiliation(s)
- Ahran Kim
- Department of Fine Chemistry, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul, 01811, Republic of Korea
| | - Hangyul Lee
- Department of Fine Chemistry, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul, 01811, Republic of Korea
| | - Dongju Yun
- Department of Fine Chemistry, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul, 01811, Republic of Korea
| | - Ukhyun Jung
- Department of Environ. Engineering, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, Republic of Korea
| | - Ki-Tae Kim
- Department of Environ. Engineering, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul 01811, Republic of Korea.
| | - Cheal Kim
- Department of Fine Chemistry, SNUT (Seoul National Univ. of Sci. and Tech.), Seoul, 01811, Republic of Korea.
| |
Collapse
|
8
|
Sathyanarayana R, Kumar V, Pujar G, Poojary B, Shankar MK, Yallappa S. Hydroxy-benzimidazoles as blue-green emitters: Synthesis, structural and DFT studies. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Pantalon Juraj N, Krklec M, Novosel T, Perić B, Vianello R, Raić-Malić S, Kirin SI. Copper(ii) and zinc(ii) complexes of mono- and bis-1,2,3-triazole-substituted heterocyclic ligands. Dalton Trans 2020; 49:9002-9015. [PMID: 32558875 DOI: 10.1039/d0dt01244k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chelating 1,4-disubstituted mono- (8a-8d) and bis-1,2,3-triazole-based (9a-11a) ligands were prepared by regioselective copper(i)-catalysed 1,3-dipolar cycloaddition of terminal alkynes with aromatic azides, together with bioconjugate 13a synthesized by amide coupling of l-phenylalanine methyl ester to 11a. Cu(ii) and Zn(ii) complexes were prepared and single crystal structures were determined for complexes 8aCu, 8dCu, 9cCu and 10cCu, as well as the free ligands 10a and 10c. The in situ prepared Zn(ii) complexes were studied by NMR spectroscopy, while the stoichiometry of the Cu(ii) complexes in solution was determined by UV-Vis titrations and confirmed by the electronic structure DFT calculations at the (SMD)/M05-2X/6-31+G(d)/LanL2DZ+ECP level of theory.
Collapse
|
10
|
Horak E, Babić D, Vianello R, Perin N, Hranjec M, Steinberg IM. Photophysical properties and immobilisation of fluorescent pH responsive aminated benzimidazo[1,2-a]quinoline-6-carbonitriles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117588. [PMID: 31703991 DOI: 10.1016/j.saa.2019.117588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
This work presents a systematic evaluation of 2-amino, 5-amino and 2,5-diamino substituted benzimidazo[1,2-a]quinoline-6-carbonitriles as novel pH probes with a potential application in pH sensing materials or as H+ fluoroionophores in bulk optode membranes. The study was carried out by varying the length, type and position of amino substituents in ten fluorescent dyes with the same benzimidazo[1,2-a]quinoline-6-carbonitrile core. The photophysical and acid-base properties of the dyes were investigated by the UV/Vis absorption and fluorescence spectroscopies, and interpreted by the electronic structure DFT calculations. pH sensing mechanisms and structure-property relations affecting the fluorescence response were discussed through a detailed analysis of the piperidine substituted derivatives 1-4. Push-pull donor-acceptor interactions stimulate strong fluorescence in the visible spectral range (up to Φ = 0.65 for 7) and induce significant changes in the photophysical properties associated with the acid-base equilibria (up to a 50-fold increase in the fluorescence intensity). pKa values in aqueous and mixed solutions (v/v H2O:EtOH 99:1, 50:50), appear suitable for monitoring acidic pH in solution. The most promising candidates were immobilised in thin polymer matrices by the spin coating technique to form fluorescent sensing materials - optodes, and examined as novel pH-sensitive fluoroionophores. In the liquid membrane environment, dyes exhibited significant increase of the apparent pKas by almost 4 units. Bright and blue emissive thin films showed pH response and dynamic range around pKa = 5, making them suitable for a wide range of optical sensing applications.
Collapse
Affiliation(s)
- Ema Horak
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| | - Darko Babić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Robert Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia.
| | - Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000, Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 20, 10000, Zagreb, Croatia
| | - Ivana Murković Steinberg
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, 10000, Zagreb, Croatia
| |
Collapse
|
11
|
Pantalon Juraj N, Miletić GI, Perić B, Popović Z, Smrečki N, Vianello R, Kirin SI. Stereochemistry of Hexacoordinated Zn(II), Cu(II), Ni(II), and Co(II) Complexes with Iminodiacetamide Ligands. Inorg Chem 2019; 58:16445-16457. [PMID: 31774277 DOI: 10.1021/acs.inorgchem.9b02200] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metal complexes of iminodiacetamide (imda) ligands and metal ions Zn(II), Cu(II), Ni(II), and Co(II) were prepared using eight imda ligands (L1-L8) substituted with groups of different steric and electronic properties on the central amine N atom (H atom, methyl, isopropyl, and benzyl) and the para position of the phenyl rings (nitro and dimethylamino). The effect of these substituents on the stoichiometry (ML and ML2), geometry, and stereochemistry (mer, trans-fac, cis-fac) of the complexes was studied in the solid state, in solution, and by density functional theory calculations. Single-crystal and powder X-ray diffraction, thermogravimetry, and IR spectroscopy showed that in the solid state imda ligands preferentially form trans-fac ML2 complexes, with the exception of the cis-fac complex 7Zn. NMR spectroscopy of diamagnetic Zn(II) and paramagnetic Co(II) complexes revealed the formation of both ML and ML2 complexes in solution, which was also confirmed by UV-vis titrations. Variable-temperature NMR was used to study the effect of the substituent on the central amine N atom on the Zn-N bond strength and nitrogen inversion. The relative stabilities of the isomers were rationalized by computations and the optimized structures used for geometry analysis.
Collapse
Affiliation(s)
| | - Goran I Miletić
- Ruđer Bošković Institute , Bijenička c. 54 , HR-10000 Zagreb , Croatia
| | - Berislav Perić
- Ruđer Bošković Institute , Bijenička c. 54 , HR-10000 Zagreb , Croatia
| | - Zora Popović
- Department of Chemistry, Faculty of Science , University of Zagreb , Horvatovac 102a , HR-10000 Zagreb , Croatia
| | - Neven Smrečki
- Department of Chemistry, Faculty of Science , University of Zagreb , Horvatovac 102a , HR-10000 Zagreb , Croatia
| | - Robert Vianello
- Ruđer Bošković Institute , Bijenička c. 54 , HR-10000 Zagreb , Croatia
| | - Srećko I Kirin
- Ruđer Bošković Institute , Bijenička c. 54 , HR-10000 Zagreb , Croatia
| |
Collapse
|
12
|
Yasaei Z, Mohammadpour Z, Shiri M, Tanbakouchian Z, Fazelzadeh S. Isocyanide Reactions Toward the Synthesis of 3-(Oxazol-5-yl)Quinoline-2-Carboxamides and 5-(2-Tosylquinolin-3-yl)Oxazole. Front Chem 2019; 7:433. [PMID: 31259168 PMCID: PMC6587330 DOI: 10.3389/fchem.2019.00433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/28/2019] [Indexed: 11/13/2022] Open
Abstract
A palladium-catalyzed three-component reaction between 5-(2-chloroquinolin-3-yl) oxazoles, isocyanides, and water to yield 3-(oxazol-5-yl)quinoline-2-carboxamides is described. Interestingly, sulfonylation occurred when the same reaction was performed with toluenesulfonylmethyl isocyanide (TosMIC) as an isocyanide source. The reaction with 5-(2-chloroquinolin-3-yl)oxazoles and TosMIC in the presence of Cs2CO3 in DMSO afforded 5-(2-Tosylquinolin-3-yl)oxazoles. In basic media, TosMIC probably decomposed to generate Ts- species, which were replaced with Cl-. Tandem oxazole formation with subsequent sulfonylation of 2-chloroquinoline-3-carbaldehydes to form directly 5-(2-tosylquinolin-3-yl)oxazoles was also investigated.
Collapse
Affiliation(s)
| | | | - Morteza Shiri
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Iran
| | | | | |
Collapse
|
13
|
DNA/RNA recognition controlled by the glycine linker and the guanidine moiety of phenanthridine peptides. Int J Biol Macromol 2019; 134:422-434. [PMID: 31082420 DOI: 10.1016/j.ijbiomac.2019.05.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
The binding of four phenanthridine-guanidine peptides to DNA/RNA was evaluated via spectrophotometric/microcalorimetric methods and computations. The minor structural modifications-the type of the guanidine group (pyrrole guanidine (GCP) and arginine) and the linker length (presence or absence of glycine)-greatly affected the conformation of compounds and consequently the binding to double- (ds-) and single-stranded (ss-) polynucleotides. GCP peptide with shorter linker was able to distinguish between RNA (A-helix) and DNA (B-helix) by different circular dichroism response at 295 nm and thus can be used as a chiral probe. Opposed to the dominant stretched conformation of GCP peptide with shorter linker, the more flexible and longer linker of its analogue enabled the molecule to adopt the intramolecularly stacked form which resulted in weaker yet selective binding to DNA. Beside efficient organization of ss-polynucleotide structures, GCP peptide with shorter linker bound stronger to ss-DNA/RNA compared to arginine peptides which emphasize the importance of GCP unit.
Collapse
|
14
|
Fluorescent detection of Zn(II) and In(III) and colorimetric detection of Cu(II) and Co(II) by a versatile chemosensor. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Gao W, Li H, Pu S. A highly selective fluorescent probe for Cu2+ based on a diarylethene with a benzo[1,2,5]oxadiazol-4-ylamine Schiff base unit. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2018.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
16
|
Perin N, Škulj S, Martin-Kleiner I, Kralj M, Hranjec M. Synthesis and Antiproliferative Activity of Novel 2-Substituted N-Methylated Benzimidazoles and Tetracyclic Benzimidazo [1,2-a]Quinolines. Polycycl Aromat Compd 2018. [DOI: 10.1080/10406638.2018.1441877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Nataša Perin
- Department of Organic Chemistry, and Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Sanja Škulj
- Division of Organic Chemistry and Biochemistry, Laboratory for physical-organic chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marijana Hranjec
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
17
|
Horak E, Vianello R, Hranjec M, Murković Steinberg I. Colourimetric and fluorimetric metal ion chemosensor based on a benzimidazole functionalised Schiff base. Supramol Chem 2018. [DOI: 10.1080/10610278.2018.1436708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Ema Horak
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Ivana Murković Steinberg
- Department of General and Inorganic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
18
|
Perin N, Alić J, Liekens S, Van Aerschot A, Vervaeke P, Gadakh B, Hranjec M. Different positions of amide side chains on the benzimidazo[1,2-a]quinoline skeleton strongly influence biological activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj00416a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzimidazo[1,2-a]quinolines substituted with amide chains have been evaluated for their antiproliferative, antibacterial and antiviral activity in vitro.
Collapse
Affiliation(s)
- Nataša Perin
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Jasna Alić
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| | - Sandra Liekens
- Rega Institute
- Department of Microbiology and Immunology
- B-3000 Leuven
- Belgium
| | - Arthur Van Aerschot
- Rega Institute
- Department of Pharmaceutical and Pharmacological Sciences
- B-3000 Leuven
- Belgium
| | - Peter Vervaeke
- Rega Institute for Medical Research
- Laboratory of Virology and Chemotherapy
- B-3000 Leuven
- Belgium
| | - Bharat Gadakh
- Rega Institute
- Department of Pharmaceutical and Pharmacological Sciences
- B-3000 Leuven
- Belgium
| | - Marijana Hranjec
- Department of Organic Chemistry
- Faculty of Chemical Engineering and Technology
- University of Zagreb
- HR-10000 Zagreb
- Croatia
| |
Collapse
|
19
|
Nucleobase-Guanidiniocarbonyl-Pyrrole Conjugates as Novel Fluorimetric Sensors for Single Stranded RNA. Molecules 2017; 22:molecules22122213. [PMID: 29236076 PMCID: PMC6149679 DOI: 10.3390/molecules22122213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 01/13/2023] Open
Abstract
We demonstrate here for the first time that a guanidiniocarbonyl-pyrrole (GCP) unit can be applied for the fine recognition of single stranded RNA sequences—an intuitively unexpected result since so far binding of the GCP unit to ds-DNA or ds-RNA relied strongly on minor or major groove interactions, as shown in previous work. Two novel nucleobase–GCP isosteric conjugates differing in the flexibility of GCP unit revealed a fluorimetric recognition of various single stranded RNA, which could be additionally regulated by pH. The more rigid conjugate showed a specific fluorescence increase for poly A only at pH 7, whereby this response could be reversibly switched-off at pH 5. The more flexible derivative revealed selective fluorescence quenching by poly G at pH 7 but no change for poly A, whereas its recognition of poly AH+ can be switched-on at pH 5. The computational analysis confirmed the important role of the GCP fragment and its protonation states in the sensing of polynucleotides and revealed that it is affected by the intrinsic dynamical features of conjugates themselves. Both conjugates showed a negligible response to uracil and cytosine ss-RNA as well as ds-RNA at pH 7, and only weak interactions with ds-DNA. Thus, nucleobase–GCP conjugates can be considered as novel lead compounds for the design of ss-RNA or ss-DNA selective fluorimetric probes.
Collapse
|
20
|
Horak E, Kassal P, Murković Steinberg I. Benzimidazole as a structural unit in fluorescent chemical sensors: the hidden properties of a multifunctional heterocyclic scaffold. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1403607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ema Horak
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Petar Kassal
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| | - Ivana Murković Steinberg
- Faculty of Chemical Engineering and Technology (FCET), Department of General and Inorganic Chemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Khattab M, Wang F, Clayton AHA. A pH-induced conformational switch in a tyrosine kinase inhibitor identified by electronic spectroscopy and quantum chemical calculations. Sci Rep 2017; 7:16271. [PMID: 29176733 PMCID: PMC5701190 DOI: 10.1038/s41598-017-16583-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) are a major class of drug utilised in the clinic. During transit to their cognate kinases, TKIs will encounter different pH environments that could have a major influence on TKI structure. To address this, we report UV-Vis spectroscopic and computational studies of the TKI, AG1478, as a function of pH. The electronic absorption spectrum of AG1478 shifted by 10 nm (from 342 nm to 332 nm) from acid to neutral pH and split into two peaks (at 334 nm and 345 nm) in highly alkaline conditions. From these transitions, the pKa value was calculated as 5.58 ± 0.01. To compute structures and spectra, time-dependent density functional theory (TD-DFT) calculations were performed along with conductor-like polarizable continuum model (CPCM) to account for implicit solvent effect. On the basis of the theoretical spectra, we could assign the AG1478 experimental spectrum at acidic pH to a mixture of two twisted conformers (71% AG1478 protonated at quinazolyl nitrogen N(1) and 29% AG1478 protonated at quinazolyl nitrogen N(3)) and at neutral pH to the neutral planar conformer. The AG1478 absorption spectrum (pH 13.3) was fitted to a mixture of neutral (70%) and NH-deprotonated species (30%). These studies reveal a pH-induced conformational transition in a TKI.
Collapse
Affiliation(s)
- Muhammad Khattab
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia
| | - Feng Wang
- Molecular Model Discovery Laboratory, Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia.
- School of Chemistry (Bio21 Institute), University of Melbourne, Parkville, Victoria, 3052, Australia.
- School of Physics, University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Andrew H A Clayton
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Melbourne, Victoria, 3122, Australia.
| |
Collapse
|
22
|
Yagishita F, Kozai N, Nii C, Tezuka Y, Uemura N, Yoshida Y, Mino T, Sakamoto M, Kawamura Y. Synthesis of Dimeric Imidazo[1, 5-a
]pyridines and Their Photophysical Properties. ChemistrySelect 2017. [DOI: 10.1002/slct.201702277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fumitoshi Yagishita
- Department of Applied Chemistry; Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Natsumi Kozai
- Department of Applied Chemistry; Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Chiho Nii
- Department of Applied Chemistry; Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Yoshihiko Tezuka
- Department of Optical Science and Technology; Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| | - Naohiro Uemura
- Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Yasushi Yoshida
- Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Takashi Mino
- Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Masami Sakamoto
- Graduate School of Engineering; Chiba University; Chiba 263-8522 Japan
| | - Yasuhiko Kawamura
- Department of Applied Chemistry; Graduate School of Science and Technology; Tokushima University; Tokushima 770-8506 Japan
| |
Collapse
|