1
|
Ali A, Ganie SA, Mir TA, Mazumdar N. Synthesis and characterization of amino-functionalized guar gum based polyurea: Preparation of iodine complexes, structural investigation and release studies. Int J Biol Macromol 2024; 271:132711. [PMID: 38815942 DOI: 10.1016/j.ijbiomac.2024.132711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Biobased materials are expanding dramatically in various industrial applications due to their unique intrinsic properties. In this study, various chemical functionalization procedures were used to synthesize guar gum, a naturally occurring polysaccharide-based polyurea, and its iodine complexes. Firstly, guar gum was subjected to tosylation reaction using p-toluene sulphonyl chloride to introduce tosyl moieties in the polymer chain with the degree of substitution (DS) ranging between 0.16 and 1.54. Sample having the highest degree of tosyl moiety was further reacted with tris(2-aminoethyl) amine to produce 6-deoxy-6-tris(2-aminoethyl) amine derivative via nucleophilic substitution reaction to impart amino functional groups. The degree of substitution in 6-deoxy-6-tris(2-aminoethyl) amine derivative was found to be 0.59. 6-deoxy-6-tris(2-aminoethyl) amine derivative was reacted with different diisocyanates (Toluene-2,4-diisocyanate (TDI), 1,6-diisocyanatohexane (HMDI)) to produce guar gum based polyurea. Iodine complexes of the resulting polyurea were prepared by reacting with different iodinating agents. Different chemical reactions, formation of polyurea and its iodine complexes were thoroughly analyzed by different analytical techniques such as FT-IR, NMR, elemental analysis, XRD, UV-Vis spectroscopy, and a reaction scheme has been proposed. Morphological and rheological characteristics were analyzed by SEM and viscosity measurement. Thermal analysis was carried out by TGA and DSC studies. Finally, by examining the complex's UV-Vis spectra, the iodine release characteristics from polyurea‑iodine complexes were investigated.
Collapse
Affiliation(s)
- Akbar Ali
- Materials (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India; Department of Chemistry, Kargil Campus, University of Ladakh, Kargil 194103, India.
| | - Showkat Ali Ganie
- Materials (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India
| | - Tariq Ahmed Mir
- Materials (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India
| | - Nasreen Mazumdar
- Materials (Polymer) Research Laboratory, Department of Chemistry, Jamia Millia Islamia, Central University, New Delhi 110025, India.
| |
Collapse
|
2
|
Liu H, Hu Y, Liu Y, Hu R, Wu X, Li B. A review of recent advances in biomedical applications of smart cellulose-based hydrogels. Int J Biol Macromol 2023; 253:127149. [PMID: 37778583 DOI: 10.1016/j.ijbiomac.2023.127149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In biomedical engineering, smart materials act as media to communicate physiological signals inspired by environmentally responsive stimuli with outer indicators for timely scrutiny and precise therapy. Various physical and chemical processes are applied in the design of specific smart functions. Hydrogels are polymeric networks consisting of hydrophilic chains and chemical groups and they have contributed their unique features in biomedical application as one of the most used smart materials. Numerous raw materials can form hydrogels, in which cellulose and its derivatives have been extensively exploited in biomedicine due to their high hydrophilicity, availability, renewability, biodegradability, biocompatibility, and multifunctional reactivity. This review collates cellulose-based hydrogels and their extensive applications in the biomedical domain, specifically benefiting from the "SMART" concept in their design, synthesis and device assembly. The first section discusses the physical and chemical crosslinking and electrospinning techniques used in the fabrication of smart cellulose-based hydrogels. The second section describes the performance of these hydrogels, and the final section is a comprehensive discussion of their biomedical applications.
Collapse
Affiliation(s)
- Haiyan Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
| | - Yang Hu
- Center for Human Tissue and Organs Degeneration and Shenzhen Key Laboratory of Marine Biomedical Materials, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yingyu Liu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China; Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China
| | - Rong Hu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
| | - Xiuping Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China.
| | - Bing Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi 030001, China
| |
Collapse
|
3
|
Pouya FD, Salehi R, Rasmi Y, Kheradmand F, Fathi-Azarbayjani A. Combination chemotherapy against colorectal cancer cells: Co-delivery of capecitabine and pioglitazone hydrochloride by polycaprolactone-polyethylene glycol carriers. Life Sci 2023; 332:122083. [PMID: 37717622 DOI: 10.1016/j.lfs.2023.122083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Colorectal cancer causes numerous deaths despite many treatment options. Capecitabine (CAP) is the standard chemotherapy regimen for colorectal cancer, and pioglitazone hydrochloride (PGZ) for diabetic disease treatment. However, free drugs do not induce effective apoptosis. This work aims to co-encapsulate CAP and PGZ and evaluate cytotoxic and apoptotic effects on HCT-119, HT-29 colorectal cancer cells, and human umbilical vein endothelial cells (HUVECs). METHOD CAP, PGZ, and combination treatment nano-formulations were prepared by triblock (TB) (PCL-PEG-PCL) biodegradable copolymers to enhance drugs' bioavailability as anti-cancer agents. The Ultrasonic homogenization method was used for preparing nanoparticles. The physicochemical characteristics of nanoparticles were studied using 1H NMR, FTIR, DLS, and FESEM techniques. The zeta potential, entrapment efficiency, drug release, and storage stability were studied. Also, cell viability and apoptosis were examined by using MTT, acridine orange (AO), and propidium iodide (PI), respectively. RESULT The smaller hydrodynamic size (236.1 nm), polydispersity index (0.159), and zeta potential (-20.8 mV) were observed in nanoparticles. Nanoparticles revealed a proper formulation and storage stability at 25 °C than 4 °C in 90 days. The synergistic effect was observed in (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 cells. In (AO/PI) staining, the high percentage of apoptotic cells in the (CAP-PGZ)-loaded TB nanoparticles in HUVEC, HCT-116, and HT-29 were calculated as 78 %, 71.66 %, and 69.31 %, respectively. CONCLUSION The (CAP-PGZ)-loaded TB nanoparticles in this research offer an effective strategy for targeted combinational colorectal cancer therapy.
Collapse
Affiliation(s)
- Fahima Danesh Pouya
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Roya Salehi
- Department of Medical Nanotechnology, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Anahita Fathi-Azarbayjani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
4
|
Malehmir S, Esmaili MA, Khaksary Mahabady M, Sobhani-Nasab A, Atapour A, Ganjali MR, Ghasemi A, Moradi Hasan-Abad A. A review: hemocompatibility of magnetic nanoparticles and their regenerative medicine, cancer therapy, drug delivery, and bioimaging applications. Front Chem 2023; 11:1249134. [PMID: 37711315 PMCID: PMC10499493 DOI: 10.3389/fchem.2023.1249134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023] Open
Abstract
Nanoparticles have demonstrated noteworthy advancements in the management of various complex medical conditions, particularly cancer. In any case, these particles still harbor the potential to improve medicate conveyance to challenging, hard-to-reach loci. The interactions that occur between nanoparticles and red blood cells during their journey throughout the human body, despite exposure to blood, are still not fully understood. Assessment of the ability of nanoparticles to integrate with blood, characterized as nanoparticle compatibility, has been consistently overlooked and undervalued in its import. This review article investigates the effect of nanoparticles on red blood cells, while examining the compatibility of nanoparticles through the angle of hemolysis. This article discusses the main roles of erythrocytes and also provides an informed interpretation of several mechanisms involved in the interaction of nanoparticles and erythrocytes. Throughout the review, significant emphasis is attributed to the investigation of hemocompatibility studies concerning newly designed nanoparticles to promote their successful translation into clinical application. This review article examines the compatibility of magnetic nanoparticles in various fields, including regenerative medicine, cancer therapy, bioimaging, and drug delivery. Our results show that the chemical composition of the nanoparticle surface is a determining factor in hemocompatibility performance and interaction with blood cells. The surface properties of nanoparticles, namely surface charge, geometry, porosity, and surface functionalities of polymers or specific functional groups, represent key determinants of hemocompatibility.
Collapse
Affiliation(s)
- Shirin Malehmir
- Karaj Branch, Molecular Biology Research Center, Islamic Azad University, Tehran, Iran
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Esmaili
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - M. Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Sobhani-Nasab
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Ghasemi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
6
|
Hasanzadeh A, Shojaei S, Gholipour B, Vahedi P, Rostamnia S. Biosynthesis of MCC/IL/Ag-AgCl NPs by Cellulose-Based Nanocomposite for Medical Antibiofilm Applications. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Affiliation(s)
- Amir Hasanzadeh
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh 55158-78151, Iran
- Department of Microbiology and Virology, School of Medicine, Urmia University of Medical Sciences , Urmia 57147-83734, Iran
| | - Salman Shojaei
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Behnam Gholipour
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| | - Parviz Vahedi
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh 55158-78151, Iran
| | - Sadegh Rostamnia
- Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), Tehran 16846-13114, Iran
| |
Collapse
|
7
|
Akram Ghumman S, Mahmood A, Noreen S, Aslam A, Ijaz B, Amanat A, Kausar R, Rana M, Hameed H. Chitosan-Linseed Mucilage Polyelectrolyte Complex Nanoparticles of Methotrexate: In vitro Cytotoxic Efficacy and Toxicological Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Noreen S, Hasan S, Ghumman SA, Bukhari SNA, Ijaz B, Hameed H, Iqbal H, Aslam A, Elsherif MAM, Noureen S, Ejaz H. pH Responsive Abelmoschus esculentus Mucilage and Administration of Methotrexate: In-Vitro Antitumor and In-Vivo Toxicity Evaluation. Int J Mol Sci 2022; 23:ijms23052725. [PMID: 35269867 PMCID: PMC8910941 DOI: 10.3390/ijms23052725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.
Collapse
Affiliation(s)
- Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Shazia Akram Ghumman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan;
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Huma Iqbal
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Afeefa Aslam
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | | | - Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
9
|
Karimian A, Yousefi B, Sadeghi F, Feizi F, Najafzadehvarzi H, Parsian H. Synthesis of biocompatible nanocrystalline cellulose against folate receptors as a novel carrier for targeted delivery of doxorubicin. Chem Biol Interact 2022; 351:109731. [PMID: 34728188 DOI: 10.1016/j.cbi.2021.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/02/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023]
Abstract
We designed amine-functionalized nanocrystalline cellulose grafted folic acid/magnetic nanoparticles (AF-NCC/Fe3O4 NPs) against folate receptors for targeted delivery of doxorubicin (DOX). Toxicity is a major side effect of DOX, damaging vital organs such as the heart, kidney, and liver; for example, it causes dilated cardiomyopathy and hepatotoxicity. Accordingly, we aimed to reduce this adverse effect and increase the targeted delivery of DOX to the right point of cancer cells by using the unique features of cancer cells. The characterizations were approved in each step using Fourier transform infrared (FTIR), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), zeta potential, and dynamic light scattering (DLS) analysis techniques. Encapsulation efficacy of AF-NCC/Fe3O4 NPs was 99.6%; drug release investigations showed excellent stability in physiological conditions (pH ∼ 7.4) and a high release rate in the low pH condition of cancer environments (pH ∼ 5.0). The hemolysis assay and Masson's trichrome and hematoxylin and eosin (H&E) staining results showed that the nanocarrier was entirely biocompatible. In vitro cell viability study approved that the designed nanocarrier increased the therapeutic effects of DOX on Saos-2 cells. The cellular internalization results displayed a high percentage of uptake within 2 h. Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) was applied for the evaluation of tumor protein p53 (p53), p21, and Bcl-2-associated X protein (Bax). DOX exerted its effects through DNA damage and oxidative stress that led to p53 upregulation, and p53 inhibited cell cycle progression. This arrest initiated apoptosis and inhibited cell migration. In summary, encapsulating DOX in AF-NCC/Fe3O4 NPs dramatically decreases the toxic effects of this chemotherapeutic agent on vital organs, especially on the heart. This smart nanocarrier increases the delivery of DOX using acid folic on its surface and also enhances the DOX release in the acidic environment of cancer cells. DOX exerts its therapeutic effects by the initiation of apoptosis and inhibition of migration.
Collapse
Affiliation(s)
- Ansar Karimian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farzin Sadeghi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Farideh Feizi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
10
|
Kadir NHA, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystalline cellulose and bacterial cellulose in biomedical and pharmaceutical applications. NANOTECHNOLOGY IN PAPER AND WOOD ENGINEERING 2022:409-470. [DOI: 10.1016/b978-0-323-85835-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Calix[4]arene-based thiosemicarbazide Schiff-base ligand and its transition metal complexes: synthesis and biological assessment. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02281-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Guo WX, Hu LF, Feng YH, Chen BZ, Guo XD. Advances in self-assembling of pH-sensitive polymers: A mini review on dissipative particle dynamics. Colloids Surf B Biointerfaces 2021; 210:112202. [PMID: 34840030 DOI: 10.1016/j.colsurfb.2021.112202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
Dissipative Particle Dynamics (DPD) is a mesoscopic simulation program used to simulate the behavior of complex fluids. This work systematically reviews the use of DPD to simulate the self-assembly process of pH-sensitive drug-loaded nanoparticles. pH-sensitive drug-loaded nanoparticles have the characteristics of good targeting and slow release in the body, which is an ideal method for treating cancer and other diseases. As an excellent simulation method, DPD can help people explore the loading and release laws of drugs with complex molecular structures and has extensive applications in other medical fields. This article reviews the self-assembly process of pH-sensitive polymers under neutral conditions and explores the factors that affect the self-assembly structure. It points out that different hydrophilic-hydrophobic ratios, molecular structures, and component distributions will affect the morphology, stability and drug carrying capacity of micelles. This article also introduces the release mechanism of the drug in detail and introduces the factors that affect the release. This article can help relevant researchers to follow the latest advances in the DPD simulation and pH-sensitive drug nano-carrier and insight people to investigate the further application of DPD simulation in biomedical science.
Collapse
Affiliation(s)
- Wei Xin Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Liu Fu Hu
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yun Hao Feng
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bo Zhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Xin Dong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
13
|
Fawzi Kabil M, Nasr M, El-Sherbiny IM. Conventional and hybrid nanoparticulate systems for the treatment of hepatocellular carcinoma: An updated review. Eur J Pharm Biopharm 2021; 167:9-37. [PMID: 34271117 DOI: 10.1016/j.ejpb.2021.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is considered a serious malignancy which affects a large number of people worldwide. Despite the presence of some diagnostic techniques for HCC, the fact that its symptoms somehow overlap with other diseases causes it to be diagnosed at a late stage, hence negatively affecting the prognosis of the disease. The currently available treatment strategies have many shortcomings such as high cost, induction of serious side effects as well as multiple drug resistance, hence resulting in therapeutic failure. Accordingly, nanoformulations have been developed in order to overcome the clinical challenges, enhance the therapeutic efficacy, and elicit chemotherapy tailor-ability. Hybrid nanoparticulate carriers in particular, which are composed of two or more drug vehicles with different physicochemical characteristics combined together in one system, have been recently reported to advance nanotechnology-based therapies. Therefore, this review sheds the light on HCC, and the role of nanotechnology and hybrid nanoparticulate carriers as well as the latest developments in the use of conventional nanoparticles in combating this disease.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ibrahim M El-Sherbiny
- Center for Materials Science, University of Science and Technology, Zewail City of Science and Technology, 6th October City, Giza 12578, Egypt.
| |
Collapse
|
14
|
Lunardi VB, Soetaredjo FE, Putro JN, Santoso SP, Yuliana M, Sunarso J, Ju YH, Ismadji S. Nanocelluloses: Sources, Pretreatment, Isolations, Modification, and Its Application as the Drug Carriers. Polymers (Basel) 2021; 13:2052. [PMID: 34201884 PMCID: PMC8272055 DOI: 10.3390/polym13132052] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
The 'Back-to-nature' concept has currently been adopted intensively in various industries, especially the pharmaceutical industry. In the past few decades, the overuse of synthetic chemicals has caused severe damage to the environment and ecosystem. One class of natural materials developed to substitute artificial chemicals in the pharmaceutical industries is the natural polymers, including cellulose and its derivatives. The development of nanocelluloses as nanocarriers in drug delivery systems has reached an advanced stage. Cellulose nanofiber (CNF), nanocrystal cellulose (NCC), and bacterial nanocellulose (BC) are the most common nanocellulose used as nanocarriers in drug delivery systems. Modification and functionalization using various processes and chemicals have been carried out to increase the adsorption and drug delivery performance of nanocellulose. Nanocellulose may be attached to the drug by physical interaction or chemical functionalization for covalent drug binding. Current development of nanocarrier formulations such as surfactant nanocellulose, ultra-lightweight porous materials, hydrogel, polyelectrolytes, and inorganic hybridizations has advanced to enable the construction of stimuli-responsive and specific recognition characteristics. Thus, an opportunity has emerged to develop a new generation of nanocellulose-based carriers that can modulate the drug conveyance for diverse drug characteristics. This review provides insights into selecting appropriate nanocellulose-based hybrid materials and the available modification routes to achieve satisfactory carrier performance and briefly discusses the essential criteria to achieve high-quality nanocellulose.
Collapse
Affiliation(s)
- Valentino Bervia Lunardi
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Felycia Edi Soetaredjo
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Jindrayani Nyoo Putro
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Shella Permatasari Santoso
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
- Department of Chemical Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Maria Yuliana
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Kuching 93350, Sarawak, Malaysia;
| | - Yi-Hsu Ju
- Graduate Institute of Applied Science, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan;
- Taiwan Building Technology Center, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Rd, Da’an District, Taipei City 10607, Taiwan
| | - Suryadi Ismadji
- Department of Chemical Engineering, Widya Mandala Surabaya Catholic University, Kalijudan 37, Surabaya 60114, Indonesia; (V.B.L.); (F.E.S.); (J.N.P.); (S.P.S.); (M.Y.)
| |
Collapse
|
15
|
Si Y, Luo H, Zhou F, Bai X, Han L, Sun H, Cha R. Advances in polysaccharide nanocrystals as pharmaceutical excipients. Carbohydr Polym 2021; 262:117922. [DOI: 10.1016/j.carbpol.2021.117922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
|
16
|
Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, Rizwan M, Senthilnithy R, Mahanama KRR, Tripathy A, Azman MF. Cellulose supported magnetic nanohybrids: Synthesis, physicomagnetic properties and biomedical applications-A review. Carbohydr Polym 2021; 267:118136. [PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
Collapse
Affiliation(s)
| | - Khadija Munawar
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Ching Yern Chee
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, 603203, Chennai, Tamil Nadu, India.
| | - Ahmed Halilu
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hazlee Azil Illias
- Centre of Advanced Manufacturing and Material Processing, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia; Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Muhammad Rizwan
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Rajendram Senthilnithy
- Department of Chemistry, Faculty of Natural Sciences, The Open University of Sri Lanka, 10250 Nawala, Nugegoda, Sri Lanka
| | | | - Ashis Tripathy
- Center for MicroElectroMechanics Systems (CMEMS), University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Mohd Fahmi Azman
- Physics Division, Centre for foundation studies, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Dual drug delivery of trapoxin A and methotrexate from biocompatible PLGA-PEG polymeric nanoparticles enhanced antitumor activity in breast cancer cell line. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
18
|
Abedi F, Davaran S, Hekmati M, Akbarzadeh A, Baradaran B, Moghaddam SV. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J Nanobiotechnology 2021; 19:18. [PMID: 33422062 PMCID: PMC7797119 DOI: 10.1186/s12951-020-00764-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
The combination therapy which has been proposed as the strategy for the cancer treatment could achieve a synergistic effect for cancer therapies and reduce the dosage of the applied drugs. On account of the the unique properties as the high absorbed water content, biocompatibility, and flexibility, the targeting nanogels have been considred as a suitable platform. Herein, a non-toxic pH/thermo-responsive hydrogel P(NIPAAm-co-DMAEMA) was synthesized and characterized through the free-radical polymerization and expanded upon an easy process for the preparation of the smart responsive nanogels; that is, the nanogels were used for the efficient and controlled delivery of the anti-cancer drug doxorubicin (DOX) and chemosensitizer curcumin (CUR) simultaneously like a promising strategy for the cancer treatment. The size of the nanogels, which were made, was about 70 nm which is relatively optimal for the enhanced permeability and retention (EPR) effects. The DOX and CUR co-loaded nanocarriers were prepared by the high encapsulation efficiency (EE). It is important to mention that the controlled drug release behavior of the nanocarriers was also investigated. An enhanced ability of DOX and CUR-loaded nanoformulation to induce the cell apoptosis in the HT-29 colon cancer cells which represented the greater antitumor efficacy than the single-drug formulations or free drugs was resulted through the In vitro cytotoxicity. Overall, according to the data, the simultaneous delivery of the dual drugs through the fabricated nanogels could synergistically potentiate the antitumor effects on the colon cancer (CC). ![]()
Collapse
Affiliation(s)
- Fatemeh Abedi
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| | - Malak Hekmati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
19
|
Synthesis, Characterization and Cytotoxicity Studies of Aminated Microcrystalline Cellulose Derivatives against Melanoma and Breast Cancer Cell Lines. Polymers (Basel) 2020; 12:polym12112634. [PMID: 33182562 PMCID: PMC7696900 DOI: 10.3390/polym12112634] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022] Open
Abstract
Cellulose based materials are emerging in the commercial fields and high-end applications, especially in biomedicines. Aminated cellulose derivatives have been extensively used for various applications but limited data are available regarding its cytotoxicity studies for biomedical application. The aim of this study is to synthesize different 6-deoxy-amino-cellulose derivatives from Microcrystalline cellulose (MCC) via tosylation and explore their cytotoxic potential against normal fibroblasts, melanoma and breast cancer. 6-deoxy-6-hydrazide Cellulose (Cell Hyd) 6-deoxy-6-diethylamide Cellulose (Cell DEA) and 6-deoxy-6-diethyltriamine Cellulose (Cell DETA) were prepared and characterized by various technologies like Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy (NMR), X-ray diffractogram (XRD), Scanning Electron microscopy (SEM), Elemental Analysis and Zeta potential measurements. Cytotoxicity was evaluated against normal fibroblasts (NIH3T3), mouse skin melanoma (B16F10), human epithelial adenocarcinoma (MDA-MB-231) and human breast adenocarcinoma (MCF-7) cell lines. IC50 values obtained from cytotoxicity assay and live/dead assay images analysis showed MCC was non cytotoxic while Cell Hyd, Cell DEA and Cell DETA exhibited noncytotoxic activity up to 200 μg/mL to normal fibroblast cells NIH3T3, suggesting its safe use in medical fields. The mouse skin melanoma (B16F10) are the most sensitive cells to the cytotoxic effects of Cell Hyd, Cell DEA and Cell DETA, followed by human breast adenocarcinoma (MCF-7). Based on our study, it is suggested that aminated cellulose derivatives could be promising candidates for tissue engineering applications and in cancer inhibiting studies in future.
Collapse
|
20
|
Cellular Analysis and Chemotherapeutic Potential of a Bi-Functionalized Halloysite Nanotube. Pharmaceutics 2020; 12:pharmaceutics12100962. [PMID: 33066206 PMCID: PMC7650711 DOI: 10.3390/pharmaceutics12100962] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The surface of halloysite nanotubes (HNTs) was bifunctionalized with two ligands—folic acid and a fluorochrome. In tandem, this combination should selectively target cancer cells and provide a means for imaging the nanoparticle. Modified bi-functionalized HNTs (bi-HNTs) were then doped with the anti-cancer drug methotrexate. bi-HNTs were characterized and subjected to in vitro tests to assess cellular growth and changes in cellular behavior in three cell lines—colon cancer, osteosarcoma, and a pre-osteoblast cell line (MC3T3-E1). Cell viability, proliferation, and cell uptake efficiency were assessed. The bi-HNTs showed cytocompatibility at a wide range of concentrations. Compared with regular-sized HNTs, reduced HNTs (~6 microns) were taken up by cells in more significant amounts, but increased cytotoxicity lead to apoptosis. Multi-photon images confirmed the intracellular location of bi-HNTs, and the method of cell entry was mainly through caveolae-mediated endocytosis. The bi-HNTs showed a high drug loading efficiency with methotrexate and a prolonged period of release. Most importantly, bi-HNTs were designed as a drug carrier to target cancer cells specifically, and imaging data shows that non-cancerous cells were unaffected after exposure to MTX-doped bi-HNTs. All data provide support for our nanoparticle design as a mechanism to selectively target cancer cells and significantly reduce the side-effects caused by off-targeting of anti-cancer drugs.
Collapse
|
21
|
Hasan N, Rahman L, Kim SH, Cao J, Arjuna A, Lallo S, Jhun BH, Yoo JW. Recent advances of nanocellulose in drug delivery systems. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00499-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Yan G, Chen B, Zeng X, Sun Y, Tang X, Lin L. Recent advances on sustainable cellulosic materials for pharmaceutical carrier applications. Carbohydr Polym 2020; 244:116492. [DOI: 10.1016/j.carbpol.2020.116492] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
23
|
Khelghati N, Rasmi Y, Farahmandan N, Sadeghpour A, Mir SM, Karimian A, Yousefi B. Hyperbranched polyglycerol β-cyclodextrin as magnetic platform for optimization of doxorubicin cytotoxic effects on Saos-2 bone cancerous cell line. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Ahmadi D, Zarei M, Rahimi M, Khazaie M, Asemi Z, Mir SM, Sadeghpour A, Karimian A, Alemi F, Rahmati-Yamchi M, Salehi R, Jadidi-Niaragh F, Yousefi M, Khelgati N, Majidinia M, Safa A, Yousefi B. Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
25
|
Jalilzadeh N, Samadi N, Salehi R, Dehghan G, Iranshahi M, Dadpour MR, Hamishehkar H. Novel nano-vehicle for delivery and efficiency of anticancer auraptene against colon cancer cells. Sci Rep 2020; 10:1606. [PMID: 32005894 PMCID: PMC6994674 DOI: 10.1038/s41598-020-58527-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 12/29/2019] [Indexed: 01/02/2023] Open
Abstract
The aim of this study is to devise, prepare and characterize nano encapsulated auraptene (AUR) and evaluate cytotoxic and apoptotic effects on HT-29 colon cancer cells. Herein, AUR nano formulations were prepared by triblock (PCL-PEG-PCL) and pentablock (PLA-PCL-PEG-PCL-PLA) biodegradable copolymers in order to increase AUR bioavailability as an anticancer agent. The preparation of nano particles (NPs) was done with rotor stator homogenization (RSH) and Ultrasonic homogenization (USH) methods. The physicochemical characteristics of prepared nanoparticles (NPs) were studied using HNMR, FTIR, GPC, DLS and SEM techniques. The smaller hydrodynamic size (110 nm) and polydispersity index (PDI: 0.288) as well as higher cellular uptake (89%) were observed in PB NPs rather than TB NPs. The highest cytotoxic and apoptotic effects were observed in AUR loaded PB NPs compared to AUR loaded TB NPs and free AUR obtained by MTT assay, cell cycle arrest, Annexin V-FITC, DAPI staining and RT-PCR techniques. Real time PCR results indicated that Bax /Bcl2 expression ratio as an apoptosis predicting criterion, in free AUR, AUR loaded TB and AUR loaded PB have increased 6, 9 and 13 times, respectively (p value < 0.05). In conclusion, using biodegradable nano-vehicles for sustained delivery of natural anti-cancer compounds may open new perspectives for treatment of cancer patients.
Collapse
Affiliation(s)
- Nazila Jalilzadeh
- Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Samadi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Mehrdad Iranshahi
- Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Dadpour
- Department of Horticulture, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Synthesis, Crystal Structure, and Biological Activity of a Multidentate Calix[4]arene Ligand Doubly Functionalized by 2-Hydroxybenzeledene-Thiosemicarbazone. Molecules 2020; 25:molecules25020370. [PMID: 31963211 PMCID: PMC7024204 DOI: 10.3390/molecules25020370] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
The design and synthesis of a novel tert-butyl-calix[4]arene functionalized at 1, 3 positions of the lower rim with two terminal 2-hydroxybenzeledene-thiosemicarbazone moieties is reported. The new ligand with multi-dentate chelating properties was fully characterized by several techniques: ESI-Mass spectroscopy, FT-IR, 1H-NMR, and single crystal X-ray diffraction. The solid state structure confirms that the calix[4]arene macrocycle has the expected open cone conformation, with two opposite phenyl rings inclined outwards with large angles. The conformation of the two alkoxythiosemicarbazone arms produces a molecule with a C2 point group symmetry. An interesting chiral helicity is observed, with the two thiosemicarbazone groups oriented in opposite directions like a two-blade propeller. A water molecule is encapsulated in the center of the two-blade propeller through multiple H-bond coordinations. The antibacterial, antifungal, anticancer, and cytotoxic activities of the calix[4]arene-thiosemicarbazone ligand and its metal derivatives (Co2+, Ni2+, Cu2+, and Zn2+) were investigated. A considerable antibacterial activity (in particular against E. coli, MIC, and MBC = 31.25 μg/mL) was observed for the ligand and its metal derivatives. Significant antifungal activities against yeast (C. albicans) were also observed for the ligand (MIC = 31.25 μg/mL and MBC = 125 μg/mL) and for its Co2+ derivative (MIC = 62.5 μg/mL). All compounds show cytotoxicity against the tested cancerous cells. For the Saos-2 cell line, the promising anticancer activity of ligand L (IC50 < 25 μg/mL) is higher than its metal derivatives. The microscopic analysis of DAPI-stained cells shows that the treated cells change in morphology, with deformation and fragmentation of the nuclei. The hemo-compatibility study demonstrated that this class of compounds are suitable candidates for further in vivo investigations.
Collapse
|
27
|
Bahojb Noruzi E, Kheirkhahi M, Shaabani B, Geremia S, Hickey N, Asaro F, Nitti P, Kafil HS. Design of a Thiosemicarbazide-Functionalized Calix[4]arene Ligand and Related Transition Metal Complexes: Synthesis, Characterization, and Biological Studies. Front Chem 2019; 7:663. [PMID: 31649917 PMCID: PMC6794423 DOI: 10.3389/fchem.2019.00663] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we synthesized a new thiosemicarbazide-functionalized calix[4]arene L and its Co2+, Ni2+, Cu2+, and Zn2+ transition metal complexes. For characterization several techniques were employed: Fourier-transform infrared (FT-IR), 1H nuclear magnetic resonance (NMR), 13C-NMR, 15N-NMR, correlation spectroscopy (COZY), nuclear Overhauser enhancement spectroscopy (NOESY), electrospray ionization (ESI)-mass spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and elemental analysis. To explore the capability of the thiosemicarbazide function hosted on a calix[4]arene scaffold for growth inhibition of bacteria, fungi, and cancerous tumor cells, a series of biological evaluations were performed. For L, the antimicrobial tests revealed a higher antibacterial activity against gram-positive Bacillus subtilis and a lower activity against gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), whereas the gram-positive Staphylococcus aureus shows resistance. All examined metal derivatives show an enhancement of the antibacterial activity against gram-negative E. coli bacteria, with a more significant improvement for the Ni2+ and Zn2+ complexes. MTT assays showed a considerable in vitro anticancer activity of Co2+, Ni2+, and Cu2+ complexes against Saos-2 bone cancer cell lines. The activity is ascribable to the inorganic ions rather than calixarene ligand. Hemolysis assay results demonstrated that all compounds have high blood compatibility.
Collapse
Affiliation(s)
- Ehsan Bahojb Noruzi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahsa Kheirkhahi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Behrouz Shaabani
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Silvano Geremia
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Patrizia Nitti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Attari E, Nosrati H, Danafar H, Kheiri Manjili H. Methotrexate anticancer drug delivery to breast cancer cell lines by iron oxide magnetic based nanocarrier. J Biomed Mater Res A 2019; 107:2492-2500. [DOI: 10.1002/jbm.a.36755] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Elahe Attari
- School of PharmacyZanjan University of Medical Sciences Zanjan Iran
| | - Hamed Nosrati
- Department of Pharmaceutical BiomaterialsSchool of Pharmacy, Zanjan University of Medical Sciences Zanjan Iran
| | - Hossein Danafar
- Department of Pharmaceutical BiomaterialsSchool of Pharmacy, Zanjan University of Medical Sciences Zanjan Iran
| | - Hamidreza Kheiri Manjili
- Department of Pharmaceutical NanotechnologySchool of Pharmacy, Zanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
29
|
Salehnia Z, Shahbazi-Gahrouei D, Akbarzadeh A, Baradaran B, Farajnia S, Naghibi M. Synthesis and characterisation of iron oxide nanoparticles conjugated with epidermal growth factor receptor (EGFR) monoclonal antibody as MRI contrast agent for cancer detection. IET Nanobiotechnol 2019; 13:400-406. [PMID: 31171745 PMCID: PMC8676663 DOI: 10.1049/iet-nbt.2018.5285] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/30/2018] [Accepted: 01/19/2019] [Indexed: 07/20/2023] Open
Abstract
The aim of this study is to synthesise superparamagnetic iron oxide nanoparticles conjugated with anti-epidermal growth factor receptor monoclonal antibody (ANTI-EGFR-SPION) and investigate its physicochemical characterisation and biocompatibility as a targeted magnetic resonance imaging (MRI) contrast agent for the EGFR-specific detection in EGFR expressing tumour cells. These particles employed biocompatible polymers, poly(D,L-lactide-co-glycolide) (PLGA) and polyethylene glycol aldehyde (PEG-aldehyde), to increase the half-life of particles in circulation and reduce their side effects. The Fe3O4-loaded PLGA-PEG-aldehyde nanoparticles were prepared by a modified water-in-oil-in-water double emulsion method. The EGFR antibody was conjugated to the surface of SPIONs using the aldehyde-amine reaction. Synthesised conjugates (nanoprobes) were characterised using Fourier transform infrared spectrophotometry, dynamic light scattering, transmission electron microscopy images, and vibrating-sample magnetometery, and the results showed that the conjugation was successful. The mean diameter of nanoprobes was about 25 nm. These nanoprobes exhibited excellent water-solubility, stability, and biocompatibility. Meanwhile, MR susceptibility test proved that synthesised nanoprobes can be managed for negative contrast enhancement. The results of this study suggested the potential use of these nanoprobes for non-invasive molecular MRI in EGFR detection in the future.
Collapse
Affiliation(s)
- Zeinab Salehnia
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Mehran Naghibi
- Department of Anatomical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Ashjaran M, Babazadeh M, Akbarzadeh A, Davaran S, Salehi R. Stimuli-responsive polyvinylpyrrolidone-NIPPAm-lysine graphene oxide nano-hybrid as an anticancer drug delivery on MCF7 cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:443-454. [PMID: 30688104 DOI: 10.1080/21691401.2018.1543198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Despite the advances in the development of chemotherapeutic agents, resistance to chemotherapy and adverse side effects are still big challenges against successful cancer treatment. To overcome these problems, one strategy is the application of nanomaterials and drug delivery systems to efficiently deliver the anticancer agents to tumour tissues with minimum toxic effects on healthy organs. In this study a graphene oxide nanohybrid (GO/NHs) was designed and fabricated for the delivery of chemotherapeutic agent fluorouracil (FU) to the breast cancer MCF7 cells. After preparation and characterization of GO/NHs, several biological analysis including haemolysis assay, cytotoxicity assay, cellular uptake, apoptosis assay, and protein expression were performed. The cytotoxic effects of FU, FU loaded GO/NHs (FU-GO/NHs), and blank GO/NHs was determined by MTT assay. The results of MTT assay showed no significant cytotoxicity for blank nano-hybrid on MCF7 cells. Furthermore, FU-GO/NHs were more cytotoxic than free FU. The uptake analysis results showed that developed nanocarrier could completely be internalized into the cells in the first hour. Besides, apoptotic effects and nuclear morphology changes of cells was evaluated by DAPI staining under fluorescent microscopy. Protein expression levels of p53, PARP, cleaved PARP, Bcl-2, and Bax were determined by western blot analysis. Western blot results showed higher levels of p53 and cleaved PARP after treatment with FU-GO/NHs, however, no substantial effect was observed for Bax and Bcl-2 protein concentrations.
Collapse
Affiliation(s)
- Maryam Ashjaran
- a Department of Chemistry , Tabriz branch, Islamic Azad University , Tabriz , Iran
| | - Mirzaagha Babazadeh
- a Department of Chemistry , Tabriz branch, Islamic Azad University , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,c Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,d Universal Scientific Education and Research Network (USERN) , Tabriz , Iran
| | - Soodabeh Davaran
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Roya Salehi
- b Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| |
Collapse
|
31
|
Nosrati H, Abhari F, Charmi J, Davaran S, Danafar H. Multifunctional nanoparticles from albumin for stimuli-responsive efficient dual drug delivery. Bioorg Chem 2019; 88:102959. [PMID: 31075743 DOI: 10.1016/j.bioorg.2019.102959] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/17/2019] [Accepted: 04/28/2019] [Indexed: 12/27/2022]
Abstract
In this project methotrexate (MTX) conjugated albumin based nanoparticles (MTX-BSA) loaded with curcumin (CUR) drug (CUR-MTX-BSA) for simultaneous delivery of multi-chemotherapeutic drugs and combination cancer therapy were designed. Co-delivery is a new strategy which minimize the amount of each drug, reduce of side effects and also to achieve the synergistic effect for cancer therapies. The MTX was conjugated to albumin via covalent bond. Next, this synthesized prodrug loaded with CUR. Afterward, the formulations were evaluated for physical and chemical properties by DLS, TEM, FTIR, UV/Vis, DSC analysis, in vitro cytotoxicity and in vivo biocompatibility studies. Furthermore, the drug loading and release study were evaluated. Proteinase K enzyme was used to break amid bond between MTX and BSA and also amidic bonds in BSA structure. Administration of up to 2000 mg/kg of BSA to healthy animals was non-toxic and all treated mice were still alive after 24 h. The result of this study proved that CUR-MTX-BSA can be used as a proficient vehicle for effective co-delivery of CUR and MTX in the treatment of cancer.
Collapse
Affiliation(s)
- Hamed Nosrati
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fatemeh Abhari
- Department of Medical Physics, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalil Charmi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box: 51656-65811, Tabriz, Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
32
|
Nezhad-Mokhtari P, Arsalani N, Javanbakht S, Shaabani A. Development of gelatin microsphere encapsulated Cu-based metal-organic framework nanohybrid for the methotrexate delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
33
|
Polyelectrolyte Carboxymethyl Cellulose for Enhanced Delivery of Doxorubicin in MCF7 Breast Cancer Cells: Toxicological Evaluations in Mice Model. Pharm Res 2019; 36:68. [DOI: 10.1007/s11095-019-2598-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/26/2019] [Indexed: 01/17/2023]
|
34
|
Nosrati H, Tarantash M, Bochani S, Charmi J, Bagheri Z, Fridoni M, Abdollahifar MA, Davaran S, Danafar H, Kheiri Manjili H. Glutathione (GSH) Peptide Conjugated Magnetic Nanoparticles As Blood–Brain Barrier Shuttle for MRI-Monitored Brain Delivery of Paclitaxel. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01420] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Mahsa Tarantash
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 94171-71946, Iran
| | | | - Jalil Charmi
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | | | | | - Mohammad-Amin Abdollahifar
- Department of Anatomical Sciences and Biology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran
| | | | | |
Collapse
|
35
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
36
|
Fallah iri sofla S, Abbasian M, Mirzaei M. A novel gold nanorods-based pH-sensitive thiol-ended triblock copolymer for chemo-photothermo therapy of cancer cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:12-33. [DOI: 10.1080/09205063.2018.1504193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Mortaza Mirzaei
- Department of Chemistry (Organic chemistry), Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
37
|
Assessment of novel core–shell Fe3O4@poly l‑DOPA nanoparticles for targeted Taxol® delivery to breast tumor in a mouse model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:1036-1043. [DOI: 10.1016/j.msec.2018.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 07/26/2018] [Accepted: 09/03/2018] [Indexed: 01/22/2023]
|
38
|
Bovine serum albumin: An efficient biomacromolecule nanocarrier for improving the therapeutic efficacy of chrysin. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.06.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B. Ovarian cancer stem cell: A potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 2018; 234:3238-3253. [PMID: 30317560 DOI: 10.1002/jcp.26768] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Abstract
The cancer stem cell (CSC) model encompasses an advantageous paradigm that in recent decades provides a better elucidation for many important biological aspects of cancer initiation, progression, metastasis, and, more important, development of multidrug resistance (MDR). Such several other hematological malignancies and solid tumors and the identification and isolation of ovarian cancer stem cells (OV-CSCs) show that ovarian cancer also follows this hierarchical model. Gaining a better insight into CSC-mediated resistance holds promise for improving current ovarian cancer therapies and prolonging the survival of recurrent ovarian cancer patients in the future. Therefore, in this review, we will discuss some important mechanisms by which CSCs can escape chemotherapy, and then review the recent and growing body of evidence that supports the contribution of CSCs to MDR in ovarian cancer.
Collapse
Affiliation(s)
- Aynaz Mihanfar
- Faculty of Medicine, Department of Biochemistry, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Iraj Mohebbi
- Department of Occupational Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Acadia University, Wolfville, Nova Scotia, Canada
| | - Mehdi Yousefi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
Nosrati H, Charmi J, Abedini S, Rashidi N, Attari E, Davaran S, Danafar H, Kheiri Manjili H. Preparation and characterization of magnetic theranostic nanoparticles for curcumin delivery and evaluation as MRI contrast agent. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hamed Nosrati
- Student Research Center; Zanjan University of Medical Sciences; Zanjan Iran
- Department of Pharmaceutical Biomaterials, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Jalil Charmi
- Department of Physics, Faculty of Science; University of Zanjan; Zanjan 45371-38791 Iran
| | - Somayeh Abedini
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Nafis Rashidi
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Elahe Attari
- School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Soodabeh Davaran
- Drug Applied Research Center; Tabriz University of Medical Sciences; P.O. Box 51656-65811 Tabriz Iran
| | - Hossein Danafar
- Student Research Center; Zanjan University of Medical Sciences; Zanjan Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Hamidreza Kheiri Manjili
- Department of Pharmaceutical Nanotechnology, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| |
Collapse
|
41
|
Nosrati H, Salehiabar M, Kheiri Manjili H, Davaran S, Danafar H. Theranostic nanoparticles based on magnetic nanoparticles: design, preparation, characterization, and evaluation as novel anticancer drug carrier and MRI contrast agent. Drug Dev Ind Pharm 2018; 44:1668-1678. [PMID: 29848101 DOI: 10.1080/03639045.2018.1483398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
In this work, we reported the synthesis of curcumin (CUR)-loaded hydrophilic and hydrophobic natural amino acids (AAs)-modified iron oxide magnetic nanoparticles (IONPs). Two types of AAs, l-lysine (Lys) and l-phenylalanine (PhA), were selected to study their effects on loading capacity, release profile of CUR, biocompatibility, and anticancer activity. CUR-loaded AAs-modified IONPs (F@AAs@CUR NPs) were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM) techniques. Next, the various kinetic equations were fitted to the release data of CUR from F@Lys@CUR NPs and F@PhA@CUR NPs. Additionally, hemolysis test and MTT assays on HFF-2 and HEK-293 cell lines were performed for determination of biocompatibility of AAs-coated IONPs. Finally, the anticancer activity of F@AAs@CUR NPs examined on MCF-7 breast cancer cell line. The results indicate that these nanocarriers are nontoxic and biocompatible and also F@AAs@CUR NPs are suitable carriers for delivery of curcumin and even other hydrophobic drugs. Also, the MRI training established the effectiveness of IONPs as contrast agent for the revealing of tumor as evidenced from the phantom images as well as higher T2 relaxivity.
Collapse
Affiliation(s)
- Hamed Nosrati
- a Student Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,b Department of Pharmaceutical Biomaterials, School of Pharmacy , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Marziyeh Salehiabar
- c Department of Medicinal Chemistry , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| | - Hamidreza Kheiri Manjili
- d Zanjan Pharmaceutical Biotechnology Research Center , Zanjan University of Medical Sciences , Zanjan , Iran
| | - Soodabeh Davaran
- e Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Hossein Danafar
- a Student Research Center , Zanjan University of Medical Sciences , Zanjan , Iran.,c Department of Medicinal Chemistry , School of Pharmacy, Zanjan University of Medical Sciences , Zanjan , Iran
| |
Collapse
|
42
|
Rahimi M, Shafiei-Irannejad V, D Safa K, Salehi R. Multi-branched ionic liquid-chitosan as a smart and biocompatible nano-vehicle for combination chemotherapy with stealth and targeted properties. Carbohydr Polym 2018; 196:299-312. [PMID: 29891300 DOI: 10.1016/j.carbpol.2018.05.059] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/26/2018] [Accepted: 05/17/2018] [Indexed: 01/08/2023]
Abstract
A possible approach for clinical cancer treatment is combination chemotherapy. To address this issue, many anticancer agents have been used simultaneously to achieve synergistic effects with the different mechanism of actions, however, their toxic side effects are still a big challenge. In this study, a smart, biocompatible, magnetic nanocarrier composed of multi-branched ionic liquid-chitosan grafted mPEG was designed and used for targeted multidrug delivery of DOX and MTX as model anticancer agents to MCF7 breast cancer cells. The results of hemolysis assay on human red blood cells and cytotoxicity studies indicated that blank nanocarrier has no significant hemolytic and cytotoxic effects in MCF7 cells as observed in the results of MTT assay, however, drugs-loaded nanocarrier could decrease the viability of MCF7 cells in a dose-dependent manner. To further simulate the interaction of nanocarrier with plasma proteins, the SDS-PAGE assay was performed after the nanocarrier was incubated with human plasma and the results indicated that a series of proteins were attached to the surface of nanocarrier leading protein-particle corona complex. This complex gives a stealth property as well as increasing cellular uptake process due to the presence of proteins acting as ligands for receptors in the surface of cancer cells that are suitable for drug delivery systems. The efficiency of dual-drug delivery was also confirmed by cellular uptake and DAPI staining. All these results persuade us, this nanocarrier is suitable for use in further animal studies in future investigations.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran; Drug Applied Research Centre, School of Advanced Medical Science, and Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem D Safa
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166614766, Iran.
| | - Roya Salehi
- Drug Applied Research Centre, School of Advanced Medical Science, and Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
43
|
Reversion of Multidrug Resistance by Co-Encapsulation of Doxorubicin and Metformin in Poly(lactide-co-glycolide)-d-α-tocopheryl Polyethylene Glycol 1000 Succinate Nanoparticles. Pharm Res 2018; 35:119. [DOI: 10.1007/s11095-018-2404-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/06/2018] [Indexed: 11/26/2022]
|
44
|
Nosrati H, Mojtahedi A, Danafar H, Kheiri Manjili H. Enzymatic stimuli-responsive methotrexate-conjugated magnetic nanoparticles for target delivery to breast cancer cells and release study in lysosomal condition. J Biomed Mater Res A 2018; 106:1646-1654. [DOI: 10.1002/jbm.a.36364] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Hamed Nosrati
- Department of Pharmaceutical Biomaterials, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Amir Mojtahedi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences; Zanjan Iran
| | - Hossein Danafar
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences; Zanjan Iran
- Department of Medicinal Chemistry, School of Pharmacy; Zanjan University of Medical Sciences; Zanjan Iran
| | - Hamidreza Kheiri Manjili
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences; Zanjan Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences; Zanjan Iran
| |
Collapse
|
45
|
pH-responsive magnetic nanocomposites based on poly(2-succinyloxyethyl methacrylate-co-methylmethacrylate) for anticancer doxorubicin delivery applications. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-017-1431-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Rahimi M, Karimian R, Mostafidi E, Bahojb Noruzi E, Taghizadeh S, Shokouhi B, Kafil HS. Highly branched amine-functionalized p-sulfonatocalix[4]arene decorated with human plasma proteins as a smart, targeted, and stealthy nano-vehicle for the combination chemotherapy of MCF7 cells. NEW J CHEM 2018. [DOI: 10.1039/c8nj01790e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanotechnology has recently emerged as a promising field for biomedical applications, especially the targeted delivery of drugs to tumors.
Collapse
Affiliation(s)
- Mahdi Rahimi
- Department of Organic and Biochemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz 5166614766
- Iran
| | - Ramin Karimian
- Chemical Injuries Research Center
- Systems Biology and Poisonings Institute
- Baqiyatallah University of Medical Sciences
- Tehran
- Iran
| | - Elmira Mostafidi
- Connective Tissue Diseases Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Ehsan Bahojb Noruzi
- Faculty of Chemistry
- Department of Inorganic Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Sepehr Taghizadeh
- Infectious and Tropical Diseases Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | - Behrooz Shokouhi
- Connective Tissue Diseases Research Center
- Tabriz University of Medical Sciences
- Tabriz
- Iran
| | | |
Collapse
|
47
|
Anticancer Activity of Tamoxifen Loaded Tyrosine Decorated Biocompatible Fe3O4 Magnetic Nanoparticles Against Breast Cancer Cell Lines. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0758-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Farshbaf M, Salehi R, Annabi N, Khalilov R, Akbarzadeh A, Davaran S. pH- and thermo-sensitive MTX-loaded magnetic nanocomposites: synthesis, characterization, and in vitro studies on A549 lung cancer cell and MR imaging. Drug Dev Ind Pharm 2017; 44:452-462. [DOI: 10.1080/03639045.2017.1397686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- National Institute for Medical Research Development (Nimad), Tehran, Iran
| | - Roya Salehi
- Drug Applied Research Center and Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Annabi
- Biomaterials Innovation Research Center, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rovshan Khalilov
- Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan
- Joint Ukrainian-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Baku, Azerbaijan
| | - Abolfazl Akbarzadeh
- National Institute for Medical Research Development (Nimad), Tehran, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Soodabeh Davaran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
49
|
Three-component synthesis of N -sulfonylformamidines in the presence of magnetic cellulose supported N -heterocyclic carbene-copper complex, as an efficient heterogeneous nanocatalyst. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.08.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
50
|
Farzi-Khajeh H, Safa KD, Dastmalchi S. Arsanilic acid modified superparamagnetic iron oxide nanoparticles for Purification of alkaline phosphatase from hen's egg yolk. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:26-33. [DOI: 10.1016/j.jchromb.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
|