1
|
Liu R, Liu Z, Li J, Qiu Y. Low-cost and convenient fabrication of polymer micro/nanopores with the needle punching process and their applications in nanofluidic sensing. BIOMICROFLUIDICS 2024; 18:024103. [PMID: 38571910 PMCID: PMC10987195 DOI: 10.1063/5.0203512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Solid-state micro/nanopores play an important role in the sensing field because of their high stability and controllable size. Aiming at problems of complex processes and high costs in pore manufacturing, we propose a convenient and low-cost micro/nanopore fabrication technique based on the needle punching method. The thin film is pierced by controlling the feed of a microscale tungsten needle, and the size variations of the micropore are monitored by the current feedback system. Based on the positive correlation between the micropore size and the current threshold, the size-controllable preparation of micropores is achieved. The preparation of nanopores is realized by the combination of needle punching and chemical etching. First, a conical defect is prepared on the film with the tungsten needle. Then, nanopores are obtained by unilateral chemical etching of the film. Using the prepared conical micropores, resistive-pulse detection of nanoparticles is performed. Significant ionic current rectification is also obtained with our conical nanopores. It is proved that the properties of micro/nanopores prepared by our method are comparable to those prepared by the track-etching method. The simple and controllable fabrication process proposed here will advance the development of low-cost micro/nanopore sensors.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yinghua Qiu
- Author to whom correspondence should be addressed:
| |
Collapse
|
2
|
Jodeyri Z, Taghipoor M. Multivariate analysis of nanoparticle translocation through a nanopore to improve the accuracy of resistive pulse sensing. Phys Chem Chem Phys 2024; 26:5097-5105. [PMID: 38259043 DOI: 10.1039/d3cp05565e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The advent of nanopore-based sensors based on resistive pulse sensing gave rise to a remarkable breakthrough in the detection and characterization of nanoscale species. Some strong correlations have been reported between the resistive pulse characteristics and the particle's geometrical and physical properties. These correlations are commonly used to obtain information about the particles in commercial devices and research setups. The correlations, however, do not consider the simultaneous effect of influential factors such as particle shape and off-axis translocation, which complicates the extraction of accurate information from the resistive pulses. In this paper, we numerically studied the impact of the shape and position of particles on pulse characteristics in order to estimate the errors that arise from neglecting the influence of multiple factors on resistive pulses. We considered the sphere, oblate, and prolate particles to investigate the nanoparticle shape effect. Moreover, the trajectory dependency was examined by considering the translocation of nanoparticles away from the nanopore axis. Meanwhile, the shape effect was studied for different trajectories. We observed that the simultaneous effects of influential parameters could lead to significant errors in estimating particle properties if the coupled effects are neglected. Based on the results, we introduce the "pulse waveshape" as a novel characteristic of the resistive pulse that can be utilized as a decoupling parameter in the analysis of resistive pulses.
Collapse
Affiliation(s)
- Zohre Jodeyri
- Micro Nano Systems Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mojtaba Taghipoor
- Micro Nano Systems Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
3
|
Berkovich AK, Pyshkina OA, Zorina AA, Rodin VA, Panova TV, Sergeev VG, Zvereva ME. Direct Determination of the Structure of Single Biopolymer Molecules Using Nanopore Sequencing. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S234-S248. [PMID: 38621753 DOI: 10.1134/s000629792414013x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 04/17/2024]
Abstract
This review highlights operational principles, features, and modern aspects of the development of third-generation sequencing technology of biopolymers focusing on the nucleic acids analysis, namely the nanopore sequencing system. Basics of the method and technical solutions used for its realization are considered, from the first works showing the possibility of creation of these systems to the easy-to-handle procedure developed by Oxford Nanopore Technologies company. Moreover, this review focuses on applications, which were developed and realized using equipment developed by the Oxford Nanopore Technologies, including assembly of whole genomes, methagenomics, direct analysis of the presence of modified bases.
Collapse
Affiliation(s)
- Anna K Berkovich
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Olga A Pyshkina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Anna A Zorina
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir A Rodin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Tatyana V Panova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir G Sergeev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria E Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Ma L, Liu Z, Man J, Li J, Siwy ZS, Qiu Y. Modulation mechanism of ionic transport through short nanopores by charged exterior surfaces. NANOSCALE 2023; 15:18696-18706. [PMID: 37947348 DOI: 10.1039/d3nr04467j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Short nanopores have various applications in biosensing, desalination, and energy conversion. Here, the modulation of ionic transport by charged exterior surfaces is investigated through simulations with sub-200 nm long nanopores under applied voltages. Detailed analysis of the ionic current, electric field strength, and fluid flow inside and outside nanopores reveals that charged exterior surfaces can increase ionic conductance by increasing both the concentration and migration speed of charge carriers. The electric double layers near charged exterior surfaces provide an ion pool and an additional passageway for counterions, which lead to enhanced exterior surface conductance and ionic concentrations at pore entrances and inside the nanopores. We also report that charges on the membrane surfaces increase the electric field strength inside nanopores. The effective width of a ring with surface charges placed at pore entrances (Lcs) is considered as well by studying the dependence of the current on Lcs. We find a linear relationship between the effective Lcs and the surface charge density and voltage, and an inverse relationship between the geometrical pore length and salt concentration. Our results elucidate the modulation mechanism of ionic transport through short nanopores by charged exterior surfaces, which is important for the design and fabrication of porous membranes.
Collapse
Affiliation(s)
- Long Ma
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
| | - Zhe Liu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Zuzanna S Siwy
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518000, China
- Suzhou Research Institute of Shandong University, Suzhou, 215123, China
| |
Collapse
|
5
|
Liu R, Jia R, Wang D, Mirkin MV. Elucidating the Shape of Current Transients in Electrochemical Resistive-Pulse Sensing of Single Liposomes. Anal Chem 2023; 95:13756-13761. [PMID: 37676905 DOI: 10.1021/acs.analchem.3c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Electrochemical resistive-pulse (ERP) sensing with conductive carbon nanopipettes (CNPs) has recently been developed and employed for the detection of single liposomes and biological vesicles, and for the analysis of redox molecules contained in such vesicles. However, the origins of different shapes of current transients produced by the translocation of single vesicles through the CNP remain poorly understood. Herein, we report extensive finite-element simulations of both portions of an ERP transient, the current blockage by a vesicle approaching and passing through the pipet orifice and the faradaic current spike due to oxidation/reduction of redox species released from a vesicle on the carbon surface, for different values of parameters defining the geometry and dynamics of the vesicle/CNP system. The effects of the pipet geometry, surface charge, transport, vesicle trajectory, and collision location on the shape of current transients are investigated. The possibility of quantitative analysis of experimental ERP transients produced by translocations of liposomes and extracellular vesicles by fitting them to simulated curves is demonstrated. The developed theory can enable a more reliable interpretation of complicated ERP signals and characterization of the size and contents of single biological and artificial vesicles.
Collapse
Affiliation(s)
- Rujia Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College - CUNY, Flushing, New York 11367, United States
- The Graduate Center of City University of New York, New York, New York 10016, United States
| | - Dengchao Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Michael V Mirkin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- The Graduate Center of City University of New York, New York, New York 10016, United States
| |
Collapse
|
6
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
7
|
Vieira LF, Weinhofer AC, Oltjen WC, Yu C, de Souza Mendes PR, Hore MJA. Combining dynamic Monte Carlo with machine learning to study nanoparticle translocation. SOFT MATTER 2022; 18:5218-5229. [PMID: 35770621 DOI: 10.1039/d2sm00431c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Resistive pulse sensing (RPS) measurements of nanoparticle translocation have the ability to provide information on single-particle level characteristics, such as diameter or mobility, as well as ensemble averages. However, interpreting these measurements is complex and requires an understanding of nanoparticle dynamics in confined spaces as well as the ways in which nanoparticles disrupt ion transport while inside a nanopore. Here, we combine Dynamic Monte Carlo (DMC) simulations with Machine Learning (ML) and Poisson-Nernst-Planck calculations to simultaneously simulate nanoparticle dynamics and ion transport during hundreds of independent particle translocations as a function of nanoparticle size, electrophoretic mobility, and nanopore length. The use of DMC simulations allowed us to explicitly investigate the effects of Brownian motion and nanoparticle/nanopore characteristics on the amplitude and duration of translocation signals. Simulation results were verified with experimental RPS measurements and found to be in quantitative agreement.
Collapse
Affiliation(s)
- Luiz Fernando Vieira
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
- Instituto Nacional de Tecnologia, Ministry of Science, Technology & Innovation, Av. Venezuela, 82 - Rio de Janeiro, RJ 20081-312, Brazil
| | - Alexandra C Weinhofer
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - William C Oltjen
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Cindy Yu
- Hathaway Brown School, 19600 North Park Blvd., Shaker Heights, OH 44122, USA
| | - Paulo Roberto de Souza Mendes
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22451-900, Brazil
| | - Michael J A Hore
- Department of Macromolecular Science & Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Nanoparticle-blockage-enabled rapid and reversible nanopore gating with tunable memory. Proc Natl Acad Sci U S A 2022; 119:e2200845119. [PMID: 35759673 PMCID: PMC9271175 DOI: 10.1073/pnas.2200845119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gated protein channels act as rapid, reversible, and fully-closeable nanoscale valves to gate chemical transport across the cell membrane. Replicating or outperforming such a high-performance gating and valving function in artificial solid-state nanopores is considered an important yet unsolved challenge. Here we report a bioinspired rapid and reversible nanopore gating strategy based on controlled nanoparticle blockage. By using rigid or soft nanoparticles, we respectively achieve a trapping blockage gating mode with volatile memory where gating is realized by electrokinetically trapped nanoparticles near the pore and contact blockage gating modes with nonvolatile memory where gating is realized by a nanoparticle physically blocking the pore. This gating strategy can respond to an external voltage stimulus (∼200 mV) or pressure stimulus (∼1 atm) with response time down to milliseconds. In particular, when 1,2-diphytanoyl-sn-glycero-3-phosphocholine liposomes are used as the nanoparticles, the gating efficiency, defined as the extent of nanopore closing compared to the opening state, can reach 100%. We investigate the mechanisms for this nanoparticle-blockage-enabled nanopore gating and use it to demonstrate repeatable controlled chemical releasing via single nanopores. Because of the exceptional spatial and temporal control offered by this nanopore gating strategy, we expect it to find applications for drug delivery, biotic-abiotic interfacing, and neuromorphic computing.
Collapse
|
9
|
Cheng Y, Ren J, Fan S, Wu P, Cong W, Lin Y, Lan S, Song S, Shao B, Dai W, Wang X, Zhang H, Xu B, Li W, Yuan X, He B, Zhang Q. Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. NANOSCALE HORIZONS 2022; 7:779-789. [PMID: 35703339 DOI: 10.1039/d2nh00067a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nano-tumor interactions are fundamental for cancer nanotherapy, and the cross-talk of nanomedicines with the extracellular matrix (ECM) is increasingly considered essential. Here, we specifically investigate the nano-ECM interactivity using drug-free nanoparticulates (NPs) and highly metastatic cancer cells as models. We discover with surprise that NPs closely bind to specific types of ECM components, namely, retraction fibers (RFs) and migrasomes, which are located at the rear of tumor cells during their migration. This interaction is observed to alter cell morphology, limit cell motion range and change cell adhesion. Importantly, NPs are demonstrated to inhibit tumor cell removal in vitro, and their anti-metastasis potential is preliminarily confirmed in vivo. Mechanically, the NPs are found to coat and form a rigid shell on the surface of migrasomes and retraction fibers via interaction with lipid raft/caveolae substructures. In this way, NPs block the recognition, endocytosis and elimination of migrasomes by their surrounding tumor cells. Thereby, NPs interfere with the cell-ECM interaction and reduce the promotion effect of migrasomes on cell movement. Additionally, NPs trigger alteration of the expression of proteins related to cell-cell adhesion and cytoskeleton organization, which also restricts cell migration. In summary, all the findings here provide a potential target for anti-tumor metastasis nanomedicines.
Collapse
Affiliation(s)
- Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junji Ren
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shumin Fan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Peiyao Wu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenshu Cong
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuxing Lin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Shaojie Lan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Siyang Song
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bin Shao
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital, Beijing 100142, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bo Xu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Tanimoto IMF, Cressiot B, Greive SJ, Le Pioufle B, Bacri L, Pelta J. Focus on using nanopore technology for societal health, environmental, and energy challenges. NANO RESEARCH 2022; 15:9906-9920. [PMID: 35610982 PMCID: PMC9120803 DOI: 10.1007/s12274-022-4379-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/30/2022] [Indexed: 06/15/2023]
Abstract
With an increasing global population that is rapidly ageing, our society faces challenges that impact health, environment, and energy demand. With this ageing comes an accumulation of cellular changes that lead to the development of diseases and susceptibility to infections. This impacts not only the health system, but also the global economy. As the population increases, so does the demand for energy and the emission of pollutants, leading to a progressive degradation of our environment. This in turn impacts health through reduced access to arable land, clean water, and breathable air. New monitoring approaches to assist in environmental control and minimize the impact on health are urgently needed, leading to the development of new sensor technologies that are highly sensitive, rapid, and low-cost. Nanopore sensing is a new technology that helps to meet this purpose, with the potential to provide rapid point-of-care medical diagnosis, real-time on-site pollutant monitoring systems to manage environmental health, as well as integrated sensors to increase the efficiency and storage capacity of renewable energy sources. In this review we discuss how the powerful approach of nanopore based single-molecule, or particle, electrical promises to overcome existing and emerging societal challenges, providing new opportunities and tools for personalized medicine, localized environmental monitoring, and improved energy production and storage systems.
Collapse
Affiliation(s)
- Izadora Mayumi Fujinami Tanimoto
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | | | | | - Bruno Le Pioufle
- LuMIn, CNRS, Institut d’Alembert, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Laurent Bacri
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- LAMBE, CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
- LAMBE, CNRS, CY Cergy Paris Université, 95000 Cergy, France
| |
Collapse
|
11
|
Abstract
Single-molecule detection and characterization with nanopores is a powerful technique that does not require labeling. Multinanopore systems, especially double nanopores, have attracted wide attention and have been applied in many fields. However, theoretical studies of electrokinetic ion transport in nanopores mainly focus on single nanopores. In this paper, for the first time, a theoretical study of pH-regulated double-barreled nanopores is conducted using three-dimensional Poisson-Nernst-Planck equations and Navier-Stokes equations. Four ionic species and the surface chemistry on the walls of the nanopores are included. The results demonstrate that the properties of the bulk salt solution significantly affect nanopore conductivity and ion transport phenomena in nanopores. There are two ion-enriched zones and two ion-depleted zones in double-barreled nanopores. Due to the symmetry of the double-barreled nanopore structure and surface charge density, there is no ionic rectification effect in double-barreled nanopores. The ion selectivity is similar to that of conventional single pH-regulated nanopores.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, P. R. China.,Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Mengli Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400030, P. R. China
| |
Collapse
|
12
|
Saharia J, Bandara YMNDY, Kim MJ. Investigating protein translocation in the presence of an electrolyte concentration gradient across a solid-state nanopore. Electrophoresis 2022; 43:785-792. [PMID: 35020223 DOI: 10.1002/elps.202100346] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
Abstract
Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans /Ccis < 1) or negative chemical gradients (Ctrans /Ccis > 1). The cis side concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while the trans side concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+ and Cl- ions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Y M Nuwan D Y Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA.,Department of Bioengineering, University of California, Riverside, CA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
13
|
Leong IW, Tsutsui M, Yokota K, Taniguchi M. Salt Gradient Control of Translocation Dynamics in a Solid-State Nanopore. Anal Chem 2021; 93:16700-16708. [PMID: 34860500 DOI: 10.1021/acs.analchem.1c04342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tuning capture rates and translocation time of analytes in solid-state nanopores are one of the major challenges for their use in detecting and analyzing individual nanoscale objects via ionic current measurements. Here, we report on the use of salt gradient for the fine control of capture-to-translocation dynamics in 300 nm sized SiNx nanopores. We demonstrated a decrease up to a factor of 3 in the electrophoretic speed of nanoparticles at the pore exit along with an over 3-fold increase in particle detection efficiency by subjecting a 5-fold ion concentration difference across the dielectric membrane. The improvement in the sensor performance was elucidated to be a result of the salt-gradient-mediated electric field and electroosmotic flow asymmetry at nanochannel orifices. The present findings can be used to enhance nanopore sensing capability for detecting biomolecules such as amyloids and proteins.
Collapse
Affiliation(s)
- Iat Wai Leong
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
14
|
Sharma V, Freedman KJ. Pressure-Biased Nanopores for Excluded Volume Metrology, Lipid Biomechanics, and Cell-Adhesion Rupturing. ACS NANO 2021; 15:17947-17958. [PMID: 34739757 DOI: 10.1021/acsnano.1c06393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanopore sensing has been widely used in applications ranging from DNA sequencing to disease diagnosis. To improve these capabilities, pressure-biased nanopores have been explored in the past to-primarily-increase the residence time of the analyte inside the pore. Here, we studied the effect of pressure on the ability to accurately quantify the excluded volume which depends on the current drop magnitude produced by a single entity. Using the calibration standard, the inverse current drop (1/ΔI) decreases linearly with increasing pressure, while the dwell drop reduces exponentially. We therefore had to derive a pressure-corrected excluded volume equation to accurately assess the volume of translocating species under applied pressure. Moreover, a method to probe deformation in nanoliposomes and a single cell is developed as a result. We show that the soft nanoliposomes and even cells deform significantly under applied pressure which can be probed in terms of the shape factor which was introduced in the excluded volume equation. The proposed work has practical applications in mechanobiology, namely, assessing the stiffness and mechanical rigidity of liposomal drug carriers. Pressure-biased pores also enabled multiple observations of cell-cell aggregates as well as their subsequent rupture, potentially allowing for the study of microbial symbioses or pathogen recognition by the human immune system.
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
- Department of Materials Engineering, Indian Institute of Technology Jammu, Jammu 181221, Jammu and Kashmir, India
| | - Kevin J Freedman
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, California 92521, United States
| |
Collapse
|
15
|
Yokota K, Takeo A, Abe H, Kurokawa Y, Hashimoto M, Kajimoto K, Tanaka M, Murayama S, Nakajima Y, Taniguchi M, Kataoka M. Application of Micropore Device for Accurate, Easy, and Rapid Discrimination of Saccharomyces pastorianus from Dekkera spp. BIOSENSORS-BASEL 2021; 11:bios11080272. [PMID: 34436074 PMCID: PMC8393547 DOI: 10.3390/bios11080272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/07/2021] [Indexed: 11/25/2022]
Abstract
Traceability analysis, such as identification and discrimination of yeasts used for fermentation, is important for ensuring manufacturing efficiency and product safety during brewing. However, conventional methods based on morphological and physiological properties have disadvantages such as time consumption and low sensitivity. In this study, the resistive pulse method (RPM) was employed to discriminate between Saccharomyces pastorianus and Dekkera anomala and S. pastorianus and D. bruxellensis by measuring the ionic current response of cells flowing through a microsized pore. The height and shape of the pulse signal were used for the simultaneous measurement of the size, shape, and surface charge of individual cells. Accurate discrimination of S. pastorianus from Dekkera spp. was observed with a recall rate of 96.3 ± 0.8%. Furthermore, budding S. pastorianus was quantitatively detected by evaluating the shape of the waveform of the current ionic blockade. We showed a proof-of-concept demonstration of RPM for the detection of contamination of Dekkera spp. in S. pastorianus and for monitoring the fermentation of S. pastorianus through the quantitative detection of budding cells.
Collapse
Affiliation(s)
- Kazumichi Yokota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Asae Takeo
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Hiroko Abe
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Yuji Kurokawa
- Institute for Future Beverages, Research & Development Division, Kirin Holdings Company, Limited. 1-17-1, Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8628, Japan; (A.T.); (Y.K.)
| | - Muneaki Hashimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Kazuaki Kajimoto
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masato Tanaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Yoshihiro Nakajima
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.)
| | - Masatoshi Kataoka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (H.A.); (M.H.); (K.K.); (M.T.); (Y.N.)
- Correspondence: ; Tel.: +81-87-869-3576
| |
Collapse
|
16
|
Saharia J, Bandara YMNDY, Karawdeniya BI, Hammond C, Alexandrakis G, Kim MJ. Modulation of electrophoresis, electroosmosis and diffusion for electrical transport of proteins through a solid-state nanopore. RSC Adv 2021; 11:24398-24409. [PMID: 34354824 PMCID: PMC8285365 DOI: 10.1039/d1ra03903b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/03/2021] [Indexed: 01/01/2023] Open
Abstract
Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate (CR), transport mechanism (i.e., electrophoresis, electroosmosis or diffusion), and 3D conformation (e.g., chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5–4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations (i.e., 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate (Rdiff) into electrophoretic (Rdiff,EP) and electroosmotic (Rdiff,EO) components provided an approach to calculate the zeta-potential of hSTf (ζhSTf) with the aid of CR and zeta potential of the nanopore surface (ζpore) with (ζpore–ζhSTf) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins. Figure shows hSTf protein translocating through a solid-state nanopore under an applied electric field and the resulting current traces. The transport mechanism is determined by the interplay of electrophoretic and electroosmotic force.![]()
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University Dallas TX 75275 USA
| | - Y M Nuwan D Y Bandara
- Department of Mechanical Engineering, Southern Methodist University Dallas TX 75275 USA
| | - Buddini I Karawdeniya
- Department of Mechanical Engineering, Southern Methodist University Dallas TX 75275 USA
| | - Cassandra Hammond
- Department of Mechanical Engineering, Southern Methodist University Dallas TX 75275 USA
| | - George Alexandrakis
- Department of Bioengineering, University of Texas at Arlington Arlington TX 76019 USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University Dallas TX 75275 USA
| |
Collapse
|
17
|
Yokota K, Hashimoto M, Kajimoto K, Tanaka M, Murayama S, Tsutsui M, Nakajima Y, Taniguchi M, Kataoka M. Effect of Electrolyte Concentration on Cell Sensing by Measuring Ionic Current Waveform through Micropores. BIOSENSORS-BASEL 2021; 11:bios11030078. [PMID: 33809382 PMCID: PMC7998150 DOI: 10.3390/bios11030078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/25/2022]
Abstract
Immunostaining has been widely used in cancer prognosis for the quantitative detection of cancer cells present in the bloodstream. However, conventional detection methods based on the target membrane protein expression exhibit the risk of missing cancer cells owing to variable protein expressions. In this study, the resistive pulse method (RPM) was employed to discriminate between cultured cancer cells (NCI-H1650) and T lymphoblastoid leukemia cells (CCRF-CEM) by measuring the ionic current response of cells flowing through a micro-space. The height and shape of a pulse signal were used for the simultaneous measurement of size, deformability, and surface charge of individual cells. An accurate discrimination of cancer cells could not be obtained using 1.0 × phosphate-buffered saline (PBS) as an electrolyte solution to compare the size measurements by a microscopic observation. However, an accurate discrimination of cancer cells with a discrimination error rate of 4.5 ± 0.5% was achieved using 0.5 × PBS containing 2.77% glucose as the electrolyte solution. The potential application of RPM for the accurate discrimination of cancer cells from leukocytes was demonstrated through the measurement of the individual cell size, deformability, and surface charge in a solution with a low electrolyte concentration.
Collapse
Affiliation(s)
- Kazumichi Yokota
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Muneaki Hashimoto
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Kazuaki Kajimoto
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masato Tanaka
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Sanae Murayama
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Yoshihiro Nakajima
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
| | - Masateru Taniguchi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; (S.M.); (M.T.); (M.T.)
| | - Masatoshi Kataoka
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan; (K.Y.); (M.H.); (K.K.); (M.T.); (Y.N.)
- Correspondence: ; Tel.: +81-87-869-3576
| |
Collapse
|
18
|
Liu Y, Du J, Wang M, Zhang J, Liu C, Li X. Recent Progress in Quantitatively Monitoring Vesicular Neurotransmitter Release and Storage With Micro/Nanoelectrodes. Front Chem 2021; 8:591311. [PMID: 33505953 PMCID: PMC7831278 DOI: 10.3389/fchem.2020.591311] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023] Open
Abstract
Exocytosis is one of the essential steps for chemical signal transmission between neurons. In this process, vesicles dock and fuse with the plasma membrane and release the stored neurotransmitters through fusion pores into the extracellular space, and all of these steps are governed with various molecules, such as proteins, ions, and even lipids. Quantitatively monitoring vesicular neurotransmitter release in exocytosis and initial neurotransmitter storage in individual vesicles is significant for the study of chemical signal transmission of the central nervous system (CNS) and neurological diseases. Electrochemistry with micro/nanoelectrodes exhibits great spatial-temporal resolution and high sensitivity. It can be used to examine the exocytotic kinetics from the aspect of neurotransmitters and quantify the neurotransmitter storage in individual vesicles. In this review, we first introduce the recent advances of single-cell amperometry (SCA) and the nanoscale interface between two immiscible electrolyte solutions (nanoITIES), which can monitor the quantity and release the kinetics of electrochemically and non-electrochemically active neurotransmitters, respectively. Then, the development and application of the vesicle impact electrochemical cytometry (VIEC) and intracellular vesicle impact electrochemical cytometry (IVIEC) and their combination with other advanced techniques can further explain the mechanism of neurotransmitter storage in vesicles before exocytosis. It has been proved that these electrochemical techniques have great potential in the field of neuroscience.
Collapse
Affiliation(s)
| | | | | | | | - Chunlan Liu
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Xianchan Li
- Center for Imaging and Systems Biology, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| |
Collapse
|
19
|
Karawdeniya BI, Bandara YMNDY, Khan AI, Chen WT, Vu HA, Morshed A, Suh J, Dutta P, Kim MJ. Adeno-associated virus characterization for cargo discrimination through nanopore responsiveness. NANOSCALE 2020; 12:23721-23731. [PMID: 33231239 PMCID: PMC7735471 DOI: 10.1039/d0nr05605g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solid-state nanopore (SSN)-based analytical methods have found abundant use in genomics and proteomics with fledgling contributions to virology - a clinically critical field with emphasis on both infectious and designer-drug carriers. Here we demonstrate the ability of SSN to successfully discriminate adeno-associated viruses (AAVs) based on their genetic cargo [double-stranded DNA (AAVdsDNA), single-stranded DNA (AAVssDNA) or none (AAVempty)], devoid of digestion steps, through nanopore-induced electro-deformation (characterized by relative current change; ΔI/I0). The deformation order was found to be AAVempty > AAVssDNA > AAVdsDNA. A deep learning algorithm was developed by integrating support vector machine with an existing neural network, which successfully classified AAVs from SSN resistive-pulses (characteristic of genetic cargo) with >95% accuracy - a potential tool for clinical and biomedical applications. Subsequently, the presence of AAVempty in spiked AAVdsDNA was flagged using the ΔI/I0 distribution characteristics of the two types for mixtures composed of ∼75 : 25% and ∼40 : 60% (in concentration) AAVempty : AAVdsDNA.
Collapse
|
20
|
Bakouei M, Abdorahimzadeh S, Taghipoor M. Effects of cone angle and length of nanopores on the resistive pulse quality. Phys Chem Chem Phys 2020; 22:25306-25314. [PMID: 33140790 DOI: 10.1039/d0cp04728g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Resistive pulse sensing (RPS) has proved to be a viable method for the detection and characterization of micro and nano particles. Modern fabrication methods have introduced different nanopore geometries for resistive pulse sensors. In this paper, we have numerically studied the effects of membrane thickness and the pore's cone angle, as the main geometrical parameters, on the sensing performance of the nanopores used for nanoparticle detection in the resistive pulse sensing method. To compare the sensing performance, three resistive pulse quality parameters were investigated - sensitivity, pulse duration and pulse amplitude. The thorough investigation on the relations between the geometrical parameters and the pulse quality parameters produced several interesting results, which were categorized and summarized for different nanopore structures (as different nanopore platforms) enabling the readers to more effectively compare them with one another. The results revealed that large cone angle and low aspect ratio nanopores have higher pulse amplitude and sensitivity, but their low duration could be a challenge in the process of detecting the resistive pulse. In addition, our results show small variation in sensitivity and duration of large cone angle nanopores with respect to pore length change, which is explained using the effective length concept and the definition of electric field strength and length. The findings of the present work can be used in practical applications where choosing the optimal pore geometry is of crucial significance. Furthermore, the results provide several possible ways to improve the resistive pulse quality for better sensing performance.
Collapse
Affiliation(s)
- Mostafa Bakouei
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
21
|
Pollard M, Hunsicker E, Platt M. A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics. ACS Sens 2020; 5:2578-2586. [PMID: 32638589 DOI: 10.1021/acssensors.0c00987] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Technologies that can detect and characterize particulates in liquids have applications in health, food, and environmental monitoring. Simply counting the numbers of cells or particles is not sufficient for most applications; other physical properties must also be measured. Typically, it is necessary to compromise between the speed of a sensor and its chemical and biological specificity. Here, we present a low-cost and high-throughput multiuse counter that classifies a particle's size, concentration, and shape. We also report how the porosity/conductivity or the particle can influence the signal. Using an additive manufacturing process, we have assembled a reusable flow resistive pulse sensor capable of being tuned in real time to measure particles from 2 to 30 μm across a range of salt concentrations, i.e., 2.5 × 10-4 to 0.1 M. The device remains stable for several days with repeat measurements. We demonstrate its use for characterizing algae with spherical and rod structures as well as microplastics shed from tea bags. We present a methodology that results in a specific signal for microplastics, namely, a conductive pulse, in contrast to particles with smooth surfaces such as calibration particles or algae, allowing the presence of microplastics to be easily confirmed and quantified. In addition, the shapes of the signal and of the particle are correlated, giving an extra physical property to characterize suspended particulates. The technology can rapidly screen volumes of liquid, 1 mL/min, for the presence of microplastics and algae.
Collapse
Affiliation(s)
- Marcus Pollard
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| | - Eugenie Hunsicker
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| | - Mark Platt
- School of Science, Loughborough University, Epinal Way, Loughborough LE11 3TU, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
22
|
Song Y, Zhou T, Liu Q, Liu Z, Li D. Nanoparticle and microorganism detection with a side-micron-orifice-based resistive pulse sensor. Analyst 2020; 145:5466-5474. [PMID: 32578584 DOI: 10.1039/d0an00679c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This paper presents the detection of nanoparticles and microorganisms using a recently developed side-orifice-based resistive pulse sensor (SO-RPS). By decreasing the channel height of the detection section of the SO-RPS, the detection sensitivity was increased and an average signal to noise ratio (S/N) of about 3 was achieved for 100 nm polystyrene particles. It was also found that spherical particles generate symmetrical signals. Algae with irregular shapes generate signals with more complex patterns. A scatter plot of signal magnitude versus signal width was proven to be reliable for differentiating bacteria from the nanoparticles and two types of algae. The side orifice for detecting heterogeneous nanoparticles and microorganisms is advantageous to avoid orifice clogging and the large flow resistance.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, 116026, China
| | | | | | | | | |
Collapse
|
23
|
Ding T, Yang J, Pan V, Zhao N, Lu Z, Ke Y, Zhang C. DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Res 2020; 48:2791-2806. [PMID: 32083656 PMCID: PMC7102975 DOI: 10.1093/nar/gkaa095] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 01/29/2020] [Accepted: 02/17/2020] [Indexed: 12/30/2022] Open
Abstract
Nanopore technology is a promising label-free detection method. However, challenges exist for its further application in sequencing, clinical diagnostics and ultra-sensitive single molecule detection. The development of DNA nanotechnology nonetheless provides possible solutions to current obstacles hindering nanopore sensing technologies. In this review, we summarize recent relevant research contributing to efforts for developing nanopore methods associated with DNA nanotechnology. For example, DNA carriers can capture specific targets at pre-designed sites and escort them from nanopores at suitable speeds, thereby greatly enhancing capability and resolution for the detection of specific target molecules. In addition, DNA origami structures can be constructed to fulfill various design specifications and one-pot assembly reactions, thus serving as functional nanopores. Moreover, based on DNA strand displacement, nanopores can also be utilized to characterize the outputs of DNA computing and to develop programmable smart diagnostic nanodevices. In summary, DNA assembly-based nanopore research can pave the way for the realization of impactful biological detection and diagnostic platforms via single-biomolecule analysis.
Collapse
Affiliation(s)
- Taoli Ding
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Victor Pan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Nan Zhao
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Zuhong Lu
- Department of Biomedical Engineering, College of engineering, Peking University, Beijing 100871, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Cheng Zhang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| |
Collapse
|
24
|
Wang S, Khan A, Huang R, Ye S, Di K, Xiong T, Li Z. Recent advances in single extracellular vesicle detection methods. Biosens Bioelectron 2020; 154:112056. [PMID: 32093894 DOI: 10.1016/j.bios.2020.112056] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/23/2020] [Accepted: 01/26/2020] [Indexed: 01/03/2023]
Abstract
Extracellular vesicles (EVs) are secreted by a variety of cells. They are known for their pertinent role in intercellular communication, and participation in different pathological processes, making them ideal candidate for utilization as a biomarker for diagnosis and treatment of diseases. In contemporary years, the concept of a well-established liquid biopsy technology, and detection and utilization of EVs as a biomarkers have received unprecedented attention. Many rapid and precise EVs detection methods have been proposed, however, majority of them detect EVs in a bulk. As the prevalent heterogeneity of single extracellular vesicle (SEV) plays an important role in the analysis of disease progression, therefore, to prevent information loss, increased attention has been paid to SEV detection with remarkable successes. Technologies like fluorescence labeling, micro imaging and microfluidic chip were successfully employed for EVs detection at SEV level. This review summarizes the recent advances in SEV detection methods, their potential targets, applications as well as concludes future prospects for developing new SEV detection strategies.
Collapse
Affiliation(s)
- Su Wang
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Adeel Khan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, National Demonstration Center for Experimental Biomedical Engineering Education (Southeast University), Southeast University, Nanjing 210096, PR China
| | - Rongrong Huang
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Shiyi Ye
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Kaili Di
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, PR China
| | - Tao Xiong
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| | - Zhiyang Li
- Department of Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Xuzhou Medical University, Nanjing, 210008, China; Department of Clinical Laboratory, Yizheng Hospital of Nanjing Drum Tower Hospital Group, Yizheng 211900, PR China.
| |
Collapse
|
25
|
Saharia J, Bandara YMNDY, Lee JS, Wang Q, Kim MJ, Kim MJ. Fabrication of hexagonal boron nitride based 2D nanopore sensor for the assessment of electro‐chemical responsiveness of human serum transferrin protein. Electrophoresis 2019; 41:630-637. [DOI: 10.1002/elps.201900336] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Y. M. Nuwan D. Y. Bandara
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Jung Soo Lee
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| | - Qingxiao Wang
- Department of Materials Science and Engineering The University of Texas at Dallas Richardson Texas USA
| | - Moon J. Kim
- Department of Materials Science and Engineering The University of Texas at Dallas Richardson Texas USA
| | - Min Jun Kim
- Department of Mechanical Engineering Lyle School of Engineering Southern Methodist University Dallas Texas USA
| |
Collapse
|
26
|
Tsutsui M, Yokota K, Arima A, He Y, Kawai T. Solid-State Nanopore Time-of-Flight Mass Spectrometer. ACS Sens 2019; 4:2974-2979. [PMID: 31576750 DOI: 10.1021/acssensors.9b01470] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Analysis of field-controlled dynamics of ionized substances in a vacuum enables mass spectroscopy of particles and molecules. Analogously, here we report that nanoscale tracking of electrophoretically driven fast motions of single nanoparticles allows label-free and nondestructive detection of their mass in liquid. We fine-traced the time-dependent positions of space-filtered regular motions of particles passed through a thin solid-state nanopore by dissecting the associated ionic blockade phenomena under a scope of multiphysics simulations. Characterizing the viscous-drag-mediated exponential decay in the electrophoretic speed of particles ejected into an electrolyte solution from the nanochannel, we demonstrated the discrimination of nanoparticles by the femtogram mass difference. The present method is viable for mass measurement of virtually any object that can be put through the sensing zone, the sensor capability of which may find many applications such as pathogen screening and proteomics.
Collapse
Affiliation(s)
- Makusu Tsutsui
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Kazumichi Yokota
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
- National Institute of Advanced Industrial Science and Technology, Takamatsu, Kagawa 761-0395, Japan
| | - Akihide Arima
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| | - Yuhui He
- Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Osaka, Ibaraki 567-0047, Japan
| |
Collapse
|
27
|
D Y Bandara YMN, Tang J, Saharia J, Rogowski LW, Ahn CW, Kim MJ. Characterization of Flagellar Filaments and Flagellin through Optical Microscopy and Label-Free Nanopore Responsiveness. Anal Chem 2019; 91:13665-13674. [PMID: 31525946 DOI: 10.1021/acs.analchem.9b02874] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In this study, we investigated the translocation characteristics of flagellar filaments (Salmonella typhimurium) and flagellin subunits through silicon nitride nanopores in tandem with optical microscopy analysis. Even though untagged flagella are dark to the optical method, the label-free nature of the nanopore sensor allows it to characterize both tagged (Cy3) and pristine forms of flagella (including real-time developments). Flagella were depolymerized to flagellin subunits at ∼65 °C (most commonly reported temperature), ∼70 °C, ∼75 °C, and ∼80 °C to investigate the effect of temperature (Tdepol) on depolymerization. The change in conductance (ΔG) profiles corresponding to Tdepol ∼65 °C and ∼70 °C were bracketed within the flagellin monomer profile whereas those of ∼75 °C and ∼80 °C extended beyond this profile, suggesting a change to the native protein state. The molecular radius calculated from the excluded electrolyte volume of flagellin through nanopore-based ΔG characteristics for each Tdepol of ∼65 °C, ∼70 °C, ∼75 °C, and ∼80 °C yielded ∼4.2 ± 0.2 nm, ∼4.3 ± 0.3 nm, ∼4.1 ± 0.2 nm, and ∼4.7 ± 0.5 nm, respectively. This, along with ΔG (plateaued values) and translocation time profiles, points to the possibility of flagellin misfolding at ∼80 °C.
Collapse
Affiliation(s)
- Y M Nuwan D Y Bandara
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Jiannan Tang
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Jugal Saharia
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Louis William Rogowski
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Chi Won Ahn
- Nano-Materials Laboratory , National NanoFab Center , Daejeon 34141 , Republic of Korea
| | - Min Jun Kim
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
28
|
Saharia J, Bandara YMNDY, Goyal G, Lee JS, Karawdeniya BI, Kim MJ. Molecular-Level Profiling of Human Serum Transferrin Protein through Assessment of Nanopore-Based Electrical and Chemical Responsiveness. ACS NANO 2019; 13:4246-4254. [PMID: 30844233 DOI: 10.1021/acsnano.8b09293] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we investigated the voltage and pH responsiveness of human serum transferrin (hSTf) protein using silicon nitride (Si xN y) nanopores. The Fe(III)-rich holo form of hSTf was dominant when pH > pI, while the Fe(III)-free apo form was dominant when pH < pI. The translocations of hSTf were purely in an electrophoretic sense, thus depended on its pI and the solution pH. With increasing voltage, voltage driven protein unfolding became prominent which was indicated by the trends associated with change in conductance, due to hSTf translocation, and in the excluded electrolyte volume. Additionally, analysis of the translocation events of the pure apo form of hSTf showed a clear difference in the event population compared to that of the holo form. The results obtained demonstrate the successful application of nanopore devices to distinguish between the holo and apo forms of hSTf in a mixture and to analyze its folding and unfolding phenomenon over a range of pH and applied voltages.
Collapse
Affiliation(s)
- Jugal Saharia
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Y M Nuwan D Y Bandara
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | - Gaurav Goyal
- Department of Biological Engineering , Chalmers University of Technology , SE-412 96 Gothenburg , Sweden
| | - Jung Soo Lee
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| | | | - Min Jun Kim
- Department of Mechanical Engineering , Southern Methodist University , Dallas , Texas 75275 , United States
| |
Collapse
|
29
|
Darvish A, Lee JS, Peng B, Saharia J, Sundaram RVK, Goyal G, Bandara N, Ahn CW, Kim J, Dutta P, Chaiken I, Kim MJ. Mechanical characterization of HIV-1 with a solid-state nanopore sensor. Electrophoresis 2019; 40:776-783. [PMID: 30151981 PMCID: PMC7400684 DOI: 10.1002/elps.201800311] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.
Collapse
Affiliation(s)
- Armin Darvish
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Bin Peng
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Jugal Saharia
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Ramalingam Venkat Kalyana Sundaram
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Nuwan Bandara
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Chi Won Ahn
- Nano-Materials Laboratory, National NanoFab Center, Daejeon, Republic of Korea
| | - Jungsuk Kim
- Department of Biomedical Engineering, Gachon University, Incheon, Republic of Korea
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, USA
| | - Irwin Chaiken
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
30
|
Lee JS, Saharia J, Bandara YMNDY, Karawdeniya BI, Goyal G, Darvish A, Wang Q, Kim MJ, Kim MJ. Stiffness measurement of nanosized liposomes using solid‐state nanopore sensor with automated recapturing platform. Electrophoresis 2019; 40:1337-1344. [DOI: 10.1002/elps.201800476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jung Soo Lee
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | - Jugal Saharia
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | - Y. M. Nuwan D. Y. Bandara
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | | | - Gaurav Goyal
- Department of Biology and Biological EngineeringChalmers University of Technology Gothenburg Sweden
| | | | - Qingxiao Wang
- Department of Materials Science and EngineeringThe University of Texas at Dallas Richardson Texas USA
| | - Moon J. Kim
- Department of Materials Science and EngineeringThe University of Texas at Dallas Richardson Texas USA
| | - Min Jun Kim
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| |
Collapse
|
31
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
Liu Y, Xu C, Yu P, Chen X, Wang J, Mao L. Counting and Sizing of Single Vesicles/Liposomes by Electrochemical Events. ChemElectroChem 2018. [DOI: 10.1002/celc.201800616] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yang Liu
- Research Center for Analytical Sciences Department of Chemistry, College of SciencesNortheastern University Box 332 Shenyang 110819 China
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryThe Chinese Academy of Sciences (CAS) Beijing 100190 China
| | - Cong Xu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryThe Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ping Yu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryThe Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuwei Chen
- Research Center for Analytical Sciences Department of Chemistry, College of SciencesNortheastern University Box 332 Shenyang 110819 China
| | - Jianhua Wang
- Research Center for Analytical Sciences Department of Chemistry, College of SciencesNortheastern University Box 332 Shenyang 110819 China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of ChemistryThe Chinese Academy of Sciences (CAS) Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
33
|
Peng R, Li D. Particle detection on microfluidic chips by differential resistive pulse sensing (RPS) method. Talanta 2018; 184:418-428. [PMID: 29674063 DOI: 10.1016/j.talanta.2018.03.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/05/2018] [Accepted: 03/09/2018] [Indexed: 11/19/2022]
Abstract
The resistive pulse sensing (RPS) method has been widely used for characterization of particles, cells, and biomolecules due to its merits of high sensitivity and resolution. This paper investigates working parameters involved in detecting submicron and micron-sized particles by the differential RPS method on microfluidic chips. Effects of particle-to-sensor size ratio, ionic concentration and pH of the electrolyte solution, and applied electric field are studied systematically by using polystyrene particles with a size range from 140 nm to 5 µm. The results show that both the amplitude and the signal-to-noise ratio (SNR) of the RPS signals increase with the particle-to-sensor size ratio as well as the ionic concentration of the electrolyte media. The amplitude of the RPS signals also increases with increasing applied voltage, while the SNR experiences an upslope at low voltages and a decline under the condition of high voltages. pH has little effect on the background noise of the differential RPS signals but reduces the amplitude of the RPS signals at high pH. Grouping of RPS signals is considered to be caused by interactions between the sensor walls and the particles. Nanoparticle detection by the differential RPS method can be enhanced by optimizing these working parameters.
Collapse
Affiliation(s)
- Ran Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
34
|
Peng R, Tang XS, Li D. Detection of Individual Molecules and Ions by Carbon Nanotube-Based Differential Resistive Pulse Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800013. [PMID: 29504261 DOI: 10.1002/smll.201800013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/18/2018] [Indexed: 06/08/2023]
Abstract
This paper presents a new method of sensing single molecules and cations by a carbon nanotube (CNT)-based differential resistive pulse sensing (RPS) technique on a nanofluidic chip. A mathematical model for multichannel RPS systems is developed to evaluate the CNT-based RPS signals. Individual cations, rhodamine B dye molecules, and ssDNAs are detected successfully with high resolution and high signal-to-noise ratio. Differentiating ssDNAs with 15 and 30 nucleotides are achieved. The experimental results also show that translocation of negatively charged ssDNAs through a CNT decreases the electrical resistance of the CNT channel, while translocation of positively charged cations and rhodamine B molecules increases the electrical resistance of the CNT. The CNT-based nanofluidic device developed in this work provides a new avenue for single-molecule/ion detection and offers a potential strategy for DNA sequencing.
Collapse
Affiliation(s)
- Ran Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
35
|
Gunderson CG, Peng Z, Zhang B. Collision and Coalescence of Single Attoliter Oil Droplets on a Pipet Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2699-2707. [PMID: 29400980 DOI: 10.1021/acs.langmuir.7b04090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We describe the use of a quartz pipet nanopore to study the collision and coalescence of individual emulsion oil droplets and their subsequent nanopore translocation. Collision and coalescence of single toluene droplets at a nanopore orifice are driven primarily by electroosmosis and electrophoresis and lead to the fast growth of a trapped oil droplet. This results in a stepwise current response due to the coalesced oil droplet increasing its volume and its ability to partially block the nanopore's ionic current, allowing us to use the resistive-pulse method to resolve single droplet collisions. Further growth of the trapped oil droplet leads to a complete blockage of the nanopore and a nearly 100% current decay. The trapped oil droplet shows enormous mechanical stability at lower voltages and stays in its trapped status for hundreds of seconds. An increased voltage can be used to drive the trapped droplet into the pipet pore within several milliseconds. Simultaneous fluorescence imaging and amperometry were performed to examine droplet collision, coalescence, and translocation, further confirming the proposed mechanism of droplet-nanopore interaction. Moreover, we demonstrate the unique ability to perform fast voltammetric measurements on a nanopore-supported attoliter oil droplet and study its voltage-driven ion transfer processes.
Collapse
Affiliation(s)
- Christopher G Gunderson
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Zhuoyu Peng
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | - Bo Zhang
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| |
Collapse
|
36
|
Abstract
Optimal voltages were found for particle detections, at which the current blockade ratio did not depend on surface charge density.
Collapse
Affiliation(s)
- Yinghua Qiu
- Department of Physics
- Northeastern University
- Boston
- USA
| |
Collapse
|
37
|
Lee JS, Peng B, Sabuncu AC, Nam S, Ahn C, Kim MJ, Kim M. Multiple consecutive recapture of rigid nanoparticles using a solid-state nanopore sensor. Electrophoresis 2017; 39:833-843. [PMID: 29125659 DOI: 10.1002/elps.201700329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/21/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Solid-state nanopore sensors have been used to measure the size of a nanoparticle by applying a resistive pulse sensing technique. Previously, the size distribution of the population pool could be investigated utilizing data from a single translocation, however, the accuracy of the distribution is limited due to the lack of repeated data. In this study, we characterized polystyrene nanobeads utilizing single particle recapture techniques, which provide a better statistical estimate of the size distribution than that of single sampling techniques. The pulses and translocation times of two different sized nanobeads (80 nm and 125 nm in diameter) were acquired repeatedly as nanobeads were recaptured multiple times using an automated system controlled by custom-built scripts. The drift-diffusion equation was solved to find good estimates for the configuration parameters of the recapture system. The results of the experiment indicated enhancement of measurement precision and accuracy as nanobeads were recaptured multiple times. Reciprocity of the recapture and capacitive effects in solid state nanopores are discussed. Our findings suggest that solid-state nanopores and an automated recapture system can also be applied to soft nanoparticles, such as liposomes, exosomes, or viruses, to analyze their mechanical properties in single-particle resolution.
Collapse
Affiliation(s)
- Jung Soo Lee
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Bin Peng
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Ahmet C Sabuncu
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| | - Seungjin Nam
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.,School of Advanced Materials Engineering Kookmin University, Seoul, Republic of Korea
| | - ChiWon Ahn
- Nano-Materials Laboratory, National NanoFab Center, Daejeon, Republic of Korea
| | - Moon J Kim
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - MinJun Kim
- Department of Mechanical Engineering, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
38
|
Qiu Y, Siwy Z. Probing charges on solid-liquid interfaces with the resistive-pulse technique. NANOSCALE 2017; 9:13527-13537. [PMID: 28871289 DOI: 10.1039/c7nr03998k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our manuscript addresses the issue of probing an effective surface charge that any surface can acquire at the solid/liquid interface. Even if a particle is predicted to be neutral based on its chemical structure, the particle can carry finite surface charges when placed in a solution. We present tools to probe the presence of surface charge densities of meso-particles, characterized with zeta potentials below 10 mV. The tools are based on the resistive-pulse technique, which uses single pores to probe properties of individual objects including molecules, particles, and cells. The presented experiments were performed with particles 280 and 400 nm in diameter and single pores with opening diameter tuned between ∼ 200 nm and one micron. Surface charge properties were probed in two modes: (i) the passage of the particles through pores of diameters larger than the particles, as well as (ii) an approach curve of a particle to a pore that is smaller than the particle diameter. The curve in the latter mode has a biphasic character starting with a low-amplitude current decrease, followed by a current enhancement reaching an amplitude of ∼10% of the baseline current. The current increase was long-lasting and stable, and shown to strongly depend on the particle surface charge density. The results are explained via voltage-modulation of ionic concentrations in the pore.
Collapse
Affiliation(s)
- Yinghua Qiu
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
39
|
Peng R, Li D. Detection and sizing of nanoparticles and DNA on PDMS nanofluidic chips based on differential resistive pulse sensing. NANOSCALE 2017; 9:5964-5974. [PMID: 28440838 DOI: 10.1039/c7nr00488e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The RPS (Resistive Pulse Sensing) technique is a popular tool for the label-free detection of particles. This paper describes a simple, cost-effective PDMS nanofluidic chip for the detection and characterization of nanoparticles based on the differential RPS technique with high resolution and sensitivity. The chip is composed of two layers of PDMS slabs. Microchannel systems fabricated by the photolithography method on the top layer are used for sample loading and differential signal acquisition, and a straight nanochannel on the bottom layer fabricated by an unconventional approach bridging the gap between the microchannels works as an RPS sensing gate. A single-stage differential amplifier is used to amplify the RPS signals when particles or DNA pass through the sensing gate. It was demonstrated that this nanofluidic RPS chip can detect nanoparticles as small as 23 nm with a high SNR (Signal-to-Noise Ratio). The experimental results also show that the device is able to distinguish nanoparticles of smaller size differences such as 60 nm and 83 nm with high resolution, showing superior performance in comparison with the results obtained from DLS (Dynamic Light Scattering). This differential nano-RPS chip was also applied to detect the translocation of dsDNA molecules.
Collapse
Affiliation(s)
- Ran Peng
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, CanadaN2L 3G1.
| | | |
Collapse
|