1
|
Gabrusenok PV, Ramazanov RR, Kasyanenko NA, Lantushenko AO, Sokolov PA. pH-dependent binding of ATP aptamer to the target and competition strands: Fluorescent melting curve fitting study. Biochim Biophys Acta Gen Subj 2024; 1868:130689. [PMID: 39134247 DOI: 10.1016/j.bbagen.2024.130689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024]
Abstract
The pH varies in different tissues and organelles and also changes during some diseases. In this regard, the application of molecular switches that use a competition-based aptamer switch design in biological systems requires studying the thermodynamics of such systems at different pH values. In this work, we studied the binding of the classical ATP aptamer to ATP and competition strands under different pH and ionic conditions using fluorescent melting curve analysis. We have developed an original approach to processing source data from a PCR thermal cycler. It is based on constructing a thermodynamic model of the melting profile and the subsequent fit of experimental curves within this model. We have shown that this approach enables us to narrow the temperature region under study to the width of the melting region without a significant loss in the quality of the result. This impressively expands the application area of this approach compared to frequently used techniques that require mandatory measurement of the signal outside the melting region. The results obtained by the method showed that the thermodynamic parameters of the ATP aptamer and its duplexes with competition strands change depending on pH. Therefore, molecular switches that use a competition strand to the ATP aptamer may have a pH-dependent sensitivity that has not been previously considered. This should be taken into account for future rational design of similar systems.
Collapse
Affiliation(s)
- P V Gabrusenok
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - R R Ramazanov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - N A Kasyanenko
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia
| | - A O Lantushenko
- Sevastopol State University, 33 Universitetskaya Street, Sevastopol, 299053, Russia
| | - P A Sokolov
- St. Petersburg University, 13B Universitetskaya Emb., St. Petersburg, 199034, Russia.
| |
Collapse
|
2
|
Qiu Z, Huang R, Wu Y, Li X, Sun C, Ma Y. Decoding the Structural Diversity: A New Horizon in Antimicrobial Prospecting and Mechanistic Investigation. Microb Drug Resist 2024; 30:254-272. [PMID: 38648550 DOI: 10.1089/mdr.2023.0232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
The escalating crisis of antimicrobial resistance (AMR) underscores the urgent need for novel antimicrobials. One promising strategy is the exploration of structural diversity, as diverse structures can lead to diverse biological activities and mechanisms of action. This review delves into the role of structural diversity in antimicrobial discovery, highlighting its influence on factors such as target selectivity, binding affinity, pharmacokinetic properties, and the ability to overcome resistance mechanisms. We discuss various approaches for exploring structural diversity, including combinatorial chemistry, diversity-oriented synthesis, and natural product screening, and provide an overview of the common mechanisms of action of antimicrobials. We also describe techniques for investigating these mechanisms, such as genomics, proteomics, and structural biology. Despite significant progress, several challenges remain, including the synthesis of diverse compound libraries, the identification of active compounds, the elucidation of complex mechanisms of action, the emergence of AMR, and the translation of laboratory discoveries to clinical applications. However, emerging trends and technologies, such as artificial intelligence, high-throughput screening, next-generation sequencing, and open-source drug discovery, offer new avenues to overcome these challenges. Looking ahead, we envisage an exciting future for structural diversity-oriented antimicrobial discovery, with opportunities for expanding the chemical space, harnessing the power of nature, deepening our understanding of mechanisms of action, and moving toward personalized medicine and collaborative drug discovery. As we face the continued challenge of AMR, the exploration of structural diversity will be crucial in our search for new and effective antimicrobials.
Collapse
Affiliation(s)
- Ziying Qiu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Rongkun Huang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yuxuan Wu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xinghao Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chunyu Sun
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yunqi Ma
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Sorrentino D, Ranallo S, Nakamura E, Franco E, Ricci F. Synthetic Genes For Dynamic Regulation Of DNA-Based Receptors. Angew Chem Int Ed Engl 2024; 63:e202319382. [PMID: 38457363 DOI: 10.1002/anie.202319382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/10/2024]
Abstract
We present a strategy to control dynamically the loading and release of molecular ligands from synthetic nucleic acid receptors using in vitro transcription. We demonstrate this by engineering three model synthetic DNA-based receptors: a triplex-forming DNA complex, an ATP-binding aptamer, and a hairpin strand, whose ability to bind their specific ligands can be cotranscriptionally regulated (activated or inhibited) through specific RNA molecules produced by rationally designed synthetic genes. The kinetics of our DNA sensors and their genetically generated inputs can be captured using differential equation models, corroborating the predictability of the approach used. This approach shows that highly programmable nucleic acid receptors can be controlled with molecular instructions provided by dynamic transcriptional systems, illustrating their promise in the context of coupling DNA nanotechnology with biological signaling.
Collapse
Affiliation(s)
- Daniela Sorrentino
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Department of Mechanical and Aerospace Engineering and of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California, 90095, United States
| | - Simona Ranallo
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Eiji Nakamura
- Department of Mechanical and Aerospace Engineering and of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California, 90095, United States
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering and of Bioengineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, California, 90095, United States
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
4
|
Picchetti P, Volpi S, Sancho-Albero M, Rossetti M, Dore MD, Trinh T, Biedermann F, Neri M, Bertucci A, Porchetta A, Corradini R, Sleiman H, De Cola L. Supramolecular Nucleic Acid-Based Organosilica Nanoparticles Responsive to Physical and Biological Inputs. J Am Chem Soc 2023; 145:22903-22912. [PMID: 37844092 PMCID: PMC10603779 DOI: 10.1021/jacs.3c04345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 10/18/2023]
Abstract
Organosilica nanoparticles that contain responsive organic building blocks as constitutive components of the silica network offer promising opportunities for the development of innovative drug formulations, biomolecule delivery, and diagnostic tools. However, the synthetic challenges required to introduce dynamic and multifunctional building blocks have hindered the realization of biomimicking nanoparticles. In this study, capitalizing on our previous research on responsive nucleic acid-based organosilica nanoparticles, we combine the supramolecular programmability of nucleic acid (NA) interactions with sol-gel chemistry. This approach allows us to create dynamic supramolecular bridging units of nucleic acids in a silica-based scaffold. Two peptide nucleic acid-based monoalkoxysilane derivatives, which self-assemble into a supramolecular bis-alkoxysilane through direct base pairing, were chosen as the noncovalent units inserted into the silica network. In addition, a bridging functional NA aptamer leads to the specific recognition of ATP molecules. In a one-step bottom-up approach, the resulting supramolecular building blocks can be used to prepare responsive organosilica nanoparticles. The supramolecular Watson-Crick-Franklin interactions of the organosilica nanoparticles result in a programmable response to external physical (i.e., temperature) and biological (i.e., DNA and ATP) inputs and thus pave the way for the rational design of multifunctional silica materials with application from drug delivery to theranostics.
Collapse
Affiliation(s)
- Pierre Picchetti
- Karlsruhe
Institute of Technology (KIT), Institute
of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Stefano Volpi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - María Sancho-Albero
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Marianna Rossetti
- Department
of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Michael D. Dore
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Québec City H3A 0B8, Canada
| | - Tuan Trinh
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Québec City H3A 0B8, Canada
| | - Frank Biedermann
- Karlsruhe
Institute of Technology (KIT), Institute
of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Martina Neri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Alessandro Bertucci
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Alessandro Porchetta
- Department
of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Roberto Corradini
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/a, 43124 Parma, Italy
| | - Hanadi Sleiman
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal, Québec City H3A 0B8, Canada
| | - Luisa De Cola
- Karlsruhe
Institute of Technology (KIT), Institute
of Nanotechnology (INT), Hermann-von-Helmholtz Platz 1, Eggenstein-Leopoldshafen 76344, Germany
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Mariottini D, Idili A, Ercolani G, Ricci F. Thermo-Programmed Synthetic DNA-Based Receptors. ACS NANO 2023; 17:1998-2006. [PMID: 36689298 PMCID: PMC9933611 DOI: 10.1021/acsnano.2c07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Herein, we present a generalizable and versatile strategy to engineer synthetic DNA ligand-binding devices that can be programmed to load and release a specific ligand at a defined temperature. We do so by re-engineering two model DNA-based receptors: a triplex-forming bivalent DNA-based receptor that recognizes a specific DNA sequence and an ATP-binding aptamer. The temperature at which these receptors load/release their ligands can be finely modulated by controlling the entropy associated with the linker connecting the two ligand-binding domains. The availability of a set of receptors with tunable and reversible temperature dependence allows achieving complex load/release behavior such as sustained ligand release over a wide temperature range. Similar programmable thermo-responsive synthetic ligand-binding devices can be of utility in applications such as drug delivery and production of smart materials.
Collapse
Affiliation(s)
- Davide Mariottini
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Andrea Idili
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Gianfranco Ercolani
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Chemistry
Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
6
|
Pan J, Xu W, Li W, Chen S, Dai Y, Yu S, Zhou Q, Xia F. Electrochemical Aptamer-Based Sensors with Tunable Detection Range. Anal Chem 2023; 95:420-432. [PMID: 36625123 DOI: 10.1021/acs.analchem.2c04498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jing Pan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wenxia Xu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Wanlu Li
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shuwen Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yu Dai
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shanwu Yu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qitao Zhou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
7
|
Bucci J, Irmisch P, Del Grosso E, Seidel R, Ricci F. Orthogonal Enzyme-Driven Timers for DNA Strand Displacement Reactions. J Am Chem Soc 2022; 144:19791-19798. [PMID: 36257052 DOI: 10.1021/jacs.2c06599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Here, we demonstrate a strategy to rationally program a delayed onset of toehold-mediated DNA strand displacement reactions (SDRs). The approach is based on blocker strands that efficiently inhibit the strand displacement by binding to the toehold domain of the target DNA. Specific enzymatic degradation of the blocker strand subsequently enables SDR. The kinetics of the blocker enzymatic degradation thus controls the time at which the SDR starts. By varying the concentration of the blocker strand and the concentration of the enzyme, we show that we can finely tune and modulate the delayed onset of SDR. Additionally, we show that the strategy is versatile and can be orthogonally controlled by different enzymes each specifically targeting a different blocker strand. We designed and established three different delayed SDRs using RNase H and two DNA repair enzymes (formamidopyrimidine DNA glycosylase and uracil-DNA glycosylase) and corresponding blockers. The achieved temporal delay can be programed with high flexibility without undesired leak and can be conveniently predicted using kinetic modeling. Finally, we show three possible applications of the delayed SDRs to temporally control the ligand release from a DNA nanodevice, the inhibition of a target protein by a DNA aptamer, and the output signal generated by a DNA logic circuit.
Collapse
Affiliation(s)
- Juliette Bucci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Patrick Irmisch
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Erica Del Grosso
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Ralf Seidel
- Molecular Biophysics Group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103 Leipzig, Germany
| | - Francesco Ricci
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
8
|
Lu S, Shen J, Fan C, Li Q, Yang X. DNA Assembly-Based Stimuli-Responsive Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100328. [PMID: 34258165 PMCID: PMC8261508 DOI: 10.1002/advs.202100328] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/05/2021] [Indexed: 05/06/2023]
Abstract
Stimuli-responsive designs with exogenous stimuli enable remote and reversible control of DNA nanostructures, which break many limitations of static nanostructures and inspired development of dynamic DNA nanotechnology. Moreover, the introduction of various types of organic molecules, polymers, chemical bonds, and chemical reactions with stimuli-responsive properties development has greatly expand the application scope of dynamic DNA nanotechnology. Here, DNA assembly-based stimuli-responsive systems are reviewed, with the focus on response units and mechanisms that depend on different exogenous stimuli (DNA strand, pH, light, temperature, electricity, metal ions, etc.), and their applications in fields of nanofabrication (DNA architectures, hybrid architectures, nanomachines, and constitutional dynamic networks) and biomedical research (biosensing, bioimaging, therapeutics, and theranostics) are discussed. Finally, the opportunities and challenges for DNA assembly-based stimuli-responsive systems are overviewed and discussed.
Collapse
Affiliation(s)
- Shasha Lu
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jianlei Shen
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Chunhai Fan
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
- Institute of Molecular MedicineShanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineDepartment of UrologyRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Qian Li
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xiurong Yang
- School of Chemistry and Chemical EngineeringFrontiers Science Center for Transformative MoleculesInstitute of Translational MedicineShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
9
|
Hu Y, Wang Z, Chen Z, Pan L. Switching the activity of Taq polymerase using clamp-like triplex aptamer structure. Nucleic Acids Res 2020; 48:8591-8600. [PMID: 32644133 PMCID: PMC7470972 DOI: 10.1093/nar/gkaa581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/31/2020] [Accepted: 06/27/2020] [Indexed: 01/22/2023] Open
Abstract
In nature, allostery is the principal approach for regulating cellular processes and pathways. Inspired by nature, structure-switching aptamer-based nanodevices are widely used in artificial biotechnologies. However, the canonical aptamer structures in the nanodevices usually adopt a duplex form, which limits the flexibility and controllability. Here, a new regulating strategy based on a clamp-like triplex aptamer structure (CLTAS) was proposed for switching DNA polymerase activity via conformational changes. It was demonstrated that the polymerase activity could be regulated by either adjusting structure parameters or dynamic reactions including strand displacement or enzymatic digestion. Compared with the duplex aptamer structure, the CLTAS possesses programmability, excellent affinity and high discrimination efficiency. The CLTAS was successfully applied to distinguish single-base mismatches. The strategy expands the application scope of triplex structures and shows potential in biosensing and programmable nanomachines.
Collapse
Affiliation(s)
- Yingxin Hu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China
| | - Zhiyu Wang
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Linqiang Pan
- To whom correspondence should be addressed. Tel: +86 27 87556070; Fax: +86 27 87543130;
| |
Collapse
|
10
|
Deng J, Walther A. ATP-Responsive and ATP-Fueled Self-Assembling Systems and Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002629. [PMID: 32881127 DOI: 10.1002/adma.202002629] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Adenosine triphosphate (ATP) is a central metabolite that plays an indispensable role in various cellular processes, from energy supply to cell-to-cell signaling. Nature has developed sophisticated strategies to use the energy stored in ATP for many metabolic and non-equilibrium processes, and to sense and bind ATP for biological signaling. The variations in the ATP concentrations from one organelle to another, from extracellular to intracellular environments, and from normal cells to cancer cells are one motivation for designing ATP-triggered and ATP-fueled systems and materials, because they show great potential for applications in biological systems by using ATP as a trigger or chemical fuel. Over the last decade, ATP has been emerging as an attractive co-assembling component for man-made stimuli-responsive as well as for fuel-driven active systems and materials. Herein, current advances and emerging concepts for ATP-triggered and ATP-fueled self-assemblies and materials are discussed, shedding light on applications and highlighting future developments. By bringing together concepts of different domains, that is from supramolecular chemistry to DNA nanoscience, from equilibrium to non-equilibrium self-assembly, and from fundamental sciences to applications, the aim is to cross-fertilize current approaches with the ultimate aim to bring synthetic ATP-dependent systems closer to living systems.
Collapse
Affiliation(s)
- Jie Deng
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Materials, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, Freiburg, 79104, Germany
- Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, Freiburg, 79104, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, Freiburg, 79110, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, Freiburg, D-79110, Germany
| |
Collapse
|
11
|
Biswas R, Naskar S, Ghosh S, Das M, Banerjee S. A Remarkable Fluorescence Quenching Based Amplification in ATP Detection through Signal Transduction in Self-Assembled Multivalent Aggregates. Chemistry 2020; 26:13595-13600. [PMID: 32776606 DOI: 10.1002/chem.202002648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Indexed: 01/20/2023]
Abstract
Signal transduction is essential for the survival of living organisms, because it allows them to respond to the changes in external environments. In artificial systems, signal transduction has been exploited for the highly sensitive detection of analytes. Herein, a remarkable signal transduction, upon ATP binding, in the multivalent fibrillar nanoaggregates of anthracene conjugated imidazolium receptors is reported. The aggregates of one particular amphiphilic receptor sensed ATP in high pm concentrations with one ATP molecule essentially quenching the emission of thousands of receptors. A cooperative merging of the multivalent binding and signal transduction led to this superquenching and translated to an outstanding enhancement of more than a millionfold in the sensitivity of ATP detection by the nanoaggregates; in comparison to the "molecular" imidazolium receptors. Furthermore, an exceptional selectivity to ATP over other nucleotides was demonstrated.
Collapse
Affiliation(s)
- Rakesh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Sumit Naskar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Surya Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Mousumi Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Supratim Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| |
Collapse
|
12
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020; 59:13238-13245. [DOI: 10.1002/anie.202002180] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/15/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
13
|
Del Grosso E, Prins LJ, Ricci F. Transient DNA‐Based Nanostructures Controlled by Redox Inputs. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Erica Del Grosso
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| | - Leonard J. Prins
- Department of Chemical Sciences University of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Department of Chemistry University of Rome Tor Vergata, Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
14
|
Engelen W, Zhu K, Subedi N, Idili A, Ricci F, Tel J, Merkx M. Programmable Bivalent Peptide-DNA Locks for pH-Based Control of Antibody Activity. ACS CENTRAL SCIENCE 2020; 6:22-31. [PMID: 31989023 PMCID: PMC6978833 DOI: 10.1021/acscentsci.9b00964] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Indexed: 05/11/2023]
Abstract
The ability to control antibody activity by pH has important applications in diagnostics, therapeutic antibody targeting, and antibody-guided imaging. Here, we report the rational design of bivalent peptide-DNA ligands that allow pH-dependent control of antibody activity. Our strategy uses a pH-responsive DNA triple helix to control switching from a tight-binding bivalent peptide-DNA lock into a weaker-binding monovalent ligand. Different designs are introduced that allow antibody activation at both basic and acidic pHs, either autonomously or in the presence of an additional oligonucleotide trigger. The pH of antibody activation could be precisely tuned by changing the DNA triple helix sequence. The peptide-DNA locks allowed pH-dependent antibody targeting of tumor cells both in bulk and for single cells confined in water-in-oil microdroplets. The latter approach enables high-throughput antibody-mediated detection of single tumor cells based on their distinctive metabolic activity.
Collapse
Affiliation(s)
- Wouter Engelen
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Kwankwan Zhu
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Nikita Subedi
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Andrea Idili
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Francesco Ricci
- Dipartimento
di Scienze e Tecnologie Chimiche, University
of Rome, Tor Vergata, Rome 00133, Italy
| | - Jurjen Tel
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- Laboratory
of Immunoengineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Maarten Merkx
- Laboratory
of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5600 MB, The Netherlands
- E-mail:
| |
Collapse
|
15
|
Biniuri Y, Luo GF, Fadeev M, Wulf V, Willner I. Redox-Switchable Binding Properties of the ATP-Aptamer. J Am Chem Soc 2019; 141:15567-15576. [PMID: 31478647 DOI: 10.1021/jacs.9b06256] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In this study, we report on a redox-controllable and reversible complete "ON"/"OFF"-switchable aptamer binding to ATP. A series of methylene blue-modified ATP-aptamers was synthesized, revealing improved binding affinities toward ATP as compared to the nonmodified aptamer. These binding affinities were dependent on the conjugation site of the redox label on the aptamer scaffold. Importantly, we find that the oxidized methylene blue-modified aptamers bind to ATP with micromolar affinity, while the reduced form lacks binding affinity toward ATP, resulting in an unprecedented complete "ON"/"OFF" redox-controllable aptamer switch. We demonstrate the cyclic "ON"/"OFF" binding of ATP to the methylene blue-functionalized aptamer through cyclic oxidation and reduction of the redox label using both chemical and electrochemical means. Molecular dynamics and docking simulations were performed to account for the redox-switchable properties of the conjugated aptamers and to rationalize the enhanced binding affinities of the different aptamer designs.
Collapse
Affiliation(s)
- Yonatan Biniuri
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Guo-Feng Luo
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Michael Fadeev
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Verena Wulf
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| | - Itamar Willner
- Institute of Chemistry, The Minerva Center for Biohybrid Complex Systems , The Hebrew University of Jerusalem , Jerusalem 91904 , Israel
| |
Collapse
|
16
|
Patino T, Porchetta A, Jannasch A, Lladó A, Stumpp T, Schäffer E, Ricci F, Sánchez S. Self-Sensing Enzyme-Powered Micromotors Equipped with pH-Responsive DNA Nanoswitches. NANO LETTERS 2019; 19:3440-3447. [PMID: 30704240 DOI: 10.1021/acs.nanolett.8b04794] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biocatalytic micro- and nanomotors have emerged as a new class of active matter self-propelled through enzymatic reactions. The incorporation of functional nanotools could enable the rational design of multifunctional micromotors for simultaneous real-time monitoring of their environment and activity. Herein, we report the combination of DNA nanotechnology and urease-powered micromotors as multifunctional tools able to swim, simultaneously sense the pH of their surrounding environment, and monitor their intrinsic activity. With this purpose, a FRET-labeled triplex DNA nanoswitch for pH sensing was immobilized onto the surface of mesoporous silica-based micromotors. During self-propulsion, urea decomposition and the subsequent release of ammonia led to a fast pH increase, which was detected by real-time monitoring of the FRET efficiency through confocal laser scanning microscopy at different time points (i.e., 30 s, 2 and 10 min). Furthermore, the analysis of speed, enzymatic activity, and propulsive force displayed a similar exponential decay, matching the trend observed for the FRET efficiency. These results illustrate the potential of using specific DNA nanoswitches not only for sensing the micromotors' surrounding microenvironment but also as an indicator of the micromotor activity status, which may aid to the understanding of their performance in different media and in different applications.
Collapse
Affiliation(s)
- Tania Patino
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , Barcelona 08028 , Spain
| | - Alessandro Porchetta
- Department of Chemistry , University of Rome , Tor Vergata, Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Anita Jannasch
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Anna Lladó
- Advanced Digital Microscopy , Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology , Barcelona 08010 , Spain
| | - Tom Stumpp
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Erik Schäffer
- Center for Plant Molecular Biology (ZMBP) , University of Tübingen , Auf der Morgenstelle 32 , Tübingen 72076 , Germany
| | - Francesco Ricci
- Department of Chemistry , University of Rome , Tor Vergata, Via della Ricerca Scientifica 1 , Rome 00133 , Italy
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , Barcelona 08028 , Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) , Pg. Lluís Companys 23 , Barcelona 08010 , Spain
| |
Collapse
|
17
|
Ji W, Li D, Lai W, Yao X, Alam MF, Zhang W, Pei H, Li L, Chandrasekaran AR. pH-Operated Triplex DNA Device on MoS 2 Nanosheets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5050-5053. [PMID: 30879305 DOI: 10.1021/acs.langmuir.8b04272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a triplex-based DNA device coupled with molybdenum disulfide (MoS2) nanosheets for use as a pH-sensing platform. The device transitions from a duplex state at pH 8 to a triplex state at pH 5. The interaction of the device with MoS2 nanosheets in the two states is read out as a fluorescence signal from a pH-insensitive dye attached to the device. We characterized the operation of the DNA device on MoS2 nanosheets, analyzed the pH response, and tested the reversibility of the system. Our strategy can lead to the creation of a suite of biosensors where the sensing element is a triplex DNA device and the signal response is modulated by inorganic nanomaterials.
Collapse
Affiliation(s)
- Wei Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Dan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Xiaowei Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Md Fazle Alam
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Weijia Zhang
- Institutes of Biomedical Sciences and Zhongshan Hospital , Fudan University , Shanghai 200032 , P. R. China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , 500 Dongchuan Road , Shanghai 200241 , P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University at Albany , State University of New York , Albany , New York 12222 , United States
| |
Collapse
|
18
|
Mariottini D, Idili A, Nijenhuis MAD, de Greef TFA, Ricci F. DNA-Based Nanodevices Controlled by Purely Entropic Linker Domains. J Am Chem Soc 2018; 140:14725-14734. [PMID: 30351025 DOI: 10.1021/jacs.8b07640] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate here the rational design of purely entropic domains as a versatile approach to achieve control of the input/output response of synthetic molecular receptors. To do so and to highlight the versatility and generality of this approach, we have rationally re-engineered two model DNA-based receptors: a clamp-like DNA-based switch that recognizes a specific DNA sequence and an ATP-binding aptamer. We show that, by varying the length of the linker domain that connects the two recognition portions of these receptors, it is possible to finely control their affinity for their specific ligand. Through mathematical modeling and thermodynamic characterization, we also demonstrate for both systems that entropy changes associated with changes in linker length are responsible for affinity modulation and that the linker we have designed behaves as a disordered random-coil polymer. The approach also allows us to regulate the ligand concentration range at which the receptors respond and show optimal specificity. Given these attributes, the use of purely entropic domains appears as a versatile and general approach to finely control the activity of synthetic receptors in a highly predictable and controlled fashion.
Collapse
Affiliation(s)
- Davide Mariottini
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , 00133 Rome , Italy
| | - Andrea Idili
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , 00133 Rome , Italy
| | - Minke A D Nijenhuis
- Institute for Complex Molecular Systems , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands
| | - Tom F A de Greef
- Institute for Complex Molecular Systems , Eindhoven University of Technology , 5600 MB Eindhoven , The Netherlands
| | - Francesco Ricci
- Chemistry Department , University of Rome Tor Vergata , Via della Ricerca Scientifica , 00133 Rome , Italy
| |
Collapse
|
19
|
Li C, Ma J, Shi H, Hu X, Xiang Y, Li Y, Li G. Design of a stretchable DNAzyme for sensitive and multiplexed detection of antibodies. Anal Chim Acta 2018; 1041:102-107. [PMID: 30340681 DOI: 10.1016/j.aca.2018.08.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 01/19/2023]
Abstract
Advanced methods for developing and applying responsive DNA nanodevices are of great interest. Herein, we report a stretchable DNAzyme that allows simple, multiplexed and sensitive fluorescent detection of antibodies. We find that rigid antibody can tightly stretch soft, antigen-labelled DNAzyme strand and disrupt the hybridization between DNAzyme and its substrate. Based on this finding, we develop a novel strategy to detect antibodies. Due to the robustness and high activity of DNAzyme, this assay can easily detect target as low as 1 ± 0.25 pM and achieve multiplexed detection by using a cocktail of DNAzymes. The proposed assay not only provides a new approach to readily measure antibody, but broadens the application of DNAzyme that is usually employed to detect metal ions or indirectly analyze biomolecules without the cumbersome design.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Jiehua Ma
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; State Key Laboratory of Reproductive Medicine, Department of Reproductive Health, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, 210004, PR China
| | - Hai Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Xiaolu Hu
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Yang Xiang
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China
| | - Yuanyang Li
- Department of Neurosurgery, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, 210014, PR China.
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology and Collaborative Innovation Center of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing, 210093, PR China; Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
20
|
Belleperche M, DeRosa MC. pH-Control in Aptamer-Based Diagnostics, Therapeutics, and Analytical Applications. Pharmaceuticals (Basel) 2018; 11:ph11030080. [PMID: 30149664 PMCID: PMC6161035 DOI: 10.3390/ph11030080] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022] Open
Abstract
Aptamer binding has been used effectively for diagnostics, in-vivo targeting of therapeutics, and the construction and control of nanomachines. Nanostructures that respond to pH by releasing or changing affinity to a target have also been used for in vivo delivery, and in the construction of sensors and re-usable nanomachines. There are many applications that use aptamers together with pH-responsive materials, notably the targeted delivery of chemotherapeutics. However, the number of reported applications that directly use pH to control aptamer binding is small. In this review, we first discuss the use of aptamers with pH-responsive nanostructures for chemotherapeutic and other applications. We then discuss applications that use pH to denature or otherwise disrupt the binding of aptamers. Finally, we discuss motifs using non-canonical nucleic acid base pairing that can shift conformation in response to pH, followed by an overview of engineered pH-controlled aptamers designed using those motifs.
Collapse
Affiliation(s)
- Micaela Belleperche
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| | - Maria C DeRosa
- Department of Chemistry and Institute of Biochemistry, Carleton University, Ottawa, ON K1S5B6, Canada.
| |
Collapse
|
21
|
Del Grosso E, Amodio A, Ragazzon G, Prins LJ, Ricci F. Dissipative Synthetic DNA‐Based Receptors for the Transient Loading and Release of Molecular Cargo. Angew Chem Int Ed Engl 2018; 57:10489-10493. [DOI: 10.1002/anie.201801318] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Erica Del Grosso
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| | - Alessia Amodio
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| | - Giulio Ragazzon
- Department of Chemical SciencesUniversity of Padua Via Marzolo 1 35131 Padua Italy
| | - Leonard J. Prins
- Department of Chemical SciencesUniversity of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| |
Collapse
|
22
|
Del Grosso E, Amodio A, Ragazzon G, Prins LJ, Ricci F. Dissipative Synthetic DNA‐Based Receptors for the Transient Loading and Release of Molecular Cargo. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Erica Del Grosso
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| | - Alessia Amodio
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| | - Giulio Ragazzon
- Department of Chemical SciencesUniversity of Padua Via Marzolo 1 35131 Padua Italy
| | - Leonard J. Prins
- Department of Chemical SciencesUniversity of Padua Via Marzolo 1 35131 Padua Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie ChimicheUniversity of Rome Tor Vergata Via della Ricerca Scientifica Rome 00133 Italy
| |
Collapse
|
23
|
Rossetti M, Ippodrino R, Marini B, Palleschi G, Porchetta A. Antibody-Mediated Small Molecule Detection Using Programmable DNA-Switches. Anal Chem 2018; 90:8196-8201. [DOI: 10.1021/acs.analchem.8b01584] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Marianna Rossetti
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Rudy Ippodrino
- Ulisse BioMed S.r.l., Area Science Park, 34149 Trieste, Italy
| | - Bruna Marini
- Ulisse BioMed S.r.l., Area Science Park, 34149 Trieste, Italy
| | - Giuseppe Palleschi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
24
|
Chandrasekaran AR, Rusling DA. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Res 2018; 46:1021-1037. [PMID: 29228337 PMCID: PMC5814803 DOI: 10.1093/nar/gkx1230] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 11/14/2022] Open
Abstract
DNA self-assembly has proved to be a useful bottom-up strategy for the construction of user-defined nanoscale objects, lattices and devices. The design of these structures has largely relied on exploiting simple base pairing rules and the formation of double-helical domains as secondary structural elements. However, other helical forms involving specific non-canonical base-base interactions have introduced a novel paradigm into the process of engineering with DNA. The most notable of these is a three-stranded complex generated by the binding of a third strand within the duplex major groove, generating a triple-helical ('triplex') structure. The sequence, structural and assembly requirements that differentiate triplexes from their duplex counterparts has allowed the design of nanostructures for both dynamic and/or structural purposes, as well as a means to target non-nucleic acid components to precise locations within a nanostructure scaffold. Here, we review the properties of triplexes that have proved useful in the engineering of DNA nanostructures, with an emphasis on applications that hitherto have not been possible by duplex formation alone.
Collapse
Affiliation(s)
| | - David A Rusling
- Biological Sciences, Institute for Life Sciences, University of Southampton, Southampton, Hampshire SO17 1BJ, UK
| |
Collapse
|
25
|
Rossetti M, Porchetta A. Allosterically regulated DNA-based switches: From design to bioanalytical applications. Anal Chim Acta 2018; 1012:30-41. [PMID: 29475471 DOI: 10.1016/j.aca.2017.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/10/2017] [Accepted: 12/28/2017] [Indexed: 02/07/2023]
Abstract
DNA-based switches are structure-switching biomolecules widely employed in different bioanalytical applications. Of particular interest are DNA-based switches whose activity is regulated through the use of allostery. Allostery is a naturally occurring mechanism in which ligand binding induces the modulation and fine control of a connected biomolecule function as a consequence of changes in concentration of the effector. Through this general mechanism, many different allosteric DNA-based switches able to respond in a highly controlled way at the presence of a specific molecular effector have been engineered. Here, we discuss how to design allosterically regulated DNA-based switches and their applications in the field of molecular sensing, diagnostic and drug release.
Collapse
Affiliation(s)
- Marianna Rossetti
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Alessandro Porchetta
- Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy.
| |
Collapse
|
26
|
Idili A, Ricci F. Design and Characterization of pH-Triggered DNA Nanoswitches and Nanodevices Based on DNA Triplex Structures. Methods Mol Biol 2018; 1811:79-100. [PMID: 29926447 DOI: 10.1007/978-1-4939-8582-1_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Triplex DNA is becoming a very useful domain to design pH-triggered DNA nanoswitches and nanodevices. The high versatility and programmability of triplex DNA interactions allows the integration of pH-controllable modules into DNA-based reactions and self-assembly processes. Here, we describe the procedure to characterize DNA-based triplex nanoswitches and more in general pH-triggered structure-switching mechanisms. Procedures to characterize pH-triggered DNA nanodevices will be useful for many applications in the field of biosensing, drug delivery systems and smart nanomaterials.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
27
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex DNA Nanostructures: From Basic Properties to Applications. Angew Chem Int Ed Engl 2017; 56:15210-15233. [PMID: 28444822 DOI: 10.1002/anie.201701868] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Triplex nucleic acids have recently attracted interest as part of the rich "toolbox" of structures used to develop DNA-based nanostructures and materials. This Review addresses the use of DNA triplexes to assemble sensing platforms and molecular switches. Furthermore, the pH-induced, switchable assembly and dissociation of triplex-DNA-bridged nanostructures are presented. Specifically, the aggregation/deaggregation of nanoparticles, the reversible oligomerization of origami tiles and DNA circles, and the use of triplex DNA structures as functional units for the assembly of pH-responsive systems and materials are described. Examples include semiconductor-loaded DNA-stabilized microcapsules, DNA-functionalized dye-loaded metal-organic frameworks (MOFs), and the pH-induced release of the loads. Furthermore, the design of stimuli-responsive DNA-based hydrogels undergoing reversible pH-induced hydrogel-to-solution transitions using triplex nucleic acids is introduced, and the use of triplex DNA to assemble shape-memory hydrogels is discussed. An outlook for possible future applications of triplex nucleic acids is also provided.
Collapse
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Alessandro Cecconello
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Andrea Idili
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, via della Ricerca Scientifica, 00133, Rome, Italy
| | - Itamar Willner
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
28
|
Hu Y, Cecconello A, Idili A, Ricci F, Willner I. Triplex-DNA-Nanostrukturen: von grundlegenden Eigenschaften zu Anwendungen. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701868] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yuwei Hu
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | | | - Andrea Idili
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Francesco Ricci
- Department of Chemistry; Universität Rom; Tor Vergata, via della Ricerca Scientifica 00133 Rom Italien
| | - Itamar Willner
- Institute of Chemistry; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| |
Collapse
|